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A GENERALIZATION OF MODULATION SPECTRA*

BY

HAN CHANG and V. C. RIDEOUT

University of Wisconsin

I. Introduction. A general theory of modulation spectra may be developed by the

use of Fourier analysis. It may be applied to frequency as well as to amplitude modu-

lation and is particularly valuable in the study of modulation products resulting when

nonlinear devices such as rectifiers are used as modulators. In all cases it shows that the

modulation products are harmonics of the highest common factor among the carrier and

the modulating frequencies. Also, this approach yields some new results and some

clarification of concepts.

Of course the methods of Fourier can only be used where there is an integral re-

lationship between the carrier and each modulating frequency so that the modulated

wave may be treated as a periodic function. When this is not strictly true Bohr's method

for almost periodic functions may be used.

II. Outline of Theory.
1. Modulation products. When two or more waves are combined in a nonlinear

circuit such as a diode rectifier, a reactance-tube oscillator, or the human ear, new

frequencies appear as a result of some characteristic (such as amplitude or frequency)

of one wave being modified by another. Mathematically the process may be expressed as

e = F(e, ,e2, ■■■ , en). (1)

The new waves, which may include waves of the same frequency as the original waves,

are the modulation products.

The principal ways in which modulation may be achieved for the simple case of two

input waves are:

(a) Mixing in a nonlinear circuit whose characteristic is representable by a finite

number of terms of a power series.

Fi(ei , e2) = (ae> + be2)n. (2)
m — 0

(b) Mixing in a nonlinear circuit consisting of a biased ideal rectifier whose forward

characteristic is representable by a finite number of terms of a power series.

F2(ei , e2) = I + be2 — E] Yj (ae1 + be2 — E)m. (3)
m«= 0

(Here 1[ ] is the Heaviside unit function. The summation is zero unless the term

in square brackets is positive.)

(c) Amplitude Modulation

F3(ei , e2) = («- + bme,)m(an + bne2)". (4)
m = mj n=ni
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(d) Angle Modulation

sin

Ft(c, , e2) = K or j/,(e, , e2) + /2(e, , e2)j. (5)

cos

Particular values of the constants in these expressions reduce them to ones which

are more familiar in engineering practice. Thus if in (4) an = 0, m = n = 1, one has ordi-

nary amplitude modulation.

Fs(ei , e2) = ambn( 1 + kej)e2 , (6)

where X = i>ma„ is the modulation factor.

In (5) if fx(ei , e2) = ki sin-1 c,/ | ei j = kjut, and /2(ei , e2) = /c2 e2 then one has

ordinary phase modulation, or

sin

Ft(ei , c2) = /v or (k&t + k2e2). (7)

cos

If the frequencies of the waves which are combined in a nonlinear circuit are com-

mensurable (in the language of electrical engineering) or contain a common factor or

factors, then the modulation products will have a common period which is given by the

highest common factor among the original frequencies. In this case ordinary Fourier

analysis may be used to find the spectral components.

It is possible that the frequencies of the combined waves may be incommensurable

or have no common factor. In such cases (1) may be treated as an "almost periodic

function", the theory of which was first advanced by H. Bohr in 1925 [1]. Such a wave

would never repeat itself exactly, but for any small quantity e there is always an approxi-

mate period r at the beginning and end of which the amplitudes of the wave differ by less

than €. There are actually infinitely many such periods.

The expansion of the almost periodic function is called a generalized Fourier series

whose coefficients are found by a limiting process as follows:

a„ = lim |-, [ f(t) cos \nt dt, (8)
T—oo Jo

2 rT
b„ = lim ■= / /(<) sin \nt dt. (9)

r-co 1 J o

It is to be noted that it is no longer necessary to ascertain An beforehand. If one

replaces X„ in (8) by some variable x, the limit will be in general zero. The \n's are then

the values of x which could render these limits not identically zero.

Therefore, to sum up, we see that the modulation products can always be analyzed

into systematic spectral components by finding the Fourier or generalized Fourier

coefficients. The result is often more revealing than the conventional trigonometrical

expansion used in engineering.

An important theorem on Fourier coefficients known as Parseval's theorem [2] will

be of use in the development of energy changes due to modulation. In its simplest form,

this theorem states that if a function /(x) has its square summable in (— t, it) and if its
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Fourier coefficients are a0/2, ax , a2 , • ■ • ?>i ,b2 ,b3 , • • • then

- r {fix)}2 dx = | + i: (al + bl). (10)
7T J — r & n«= 1

This theorem fits our problem because it is well known that the average power or

energy of an electric wave is proportional to the sum of the squares of the amplitudes

of its Fourier components.

Bohr's "Fundamental Theorem" has proved that the generalized Fourier series for

almost periodic functions still satisfies Parseval's formula, providing again a theoretical

basis for considering the energy changes in modulation.

III. Application of the Method and New Results. The method will now be applied

to the analysis of several typical examples of modulated waves whose conventional

sideband expansions are known. The new findings and clarification of concepts will be

evident where they occur.

1. Modulation products with pure period.

a. Simple Amplitude-Modulated Wave. This is usually given in the form

e = -4(1 + m cos&JaO coscM, (11)

where A is the carrier amplitude,

oia is the modulation frequency,

wc is the carrier frequency,

m is the degree of modulation.

By a trigonometrical identity (11) can be written as

e = A cos a)et (jnA/2) cos (coc + ua)t + (mA/2) cos (coc — a> •)t. (12)

It can be shown that these sidebands are actually harnonics of a certain fundamental

in (11) as follows. Let the highest common factor between wc and ua be o>0 , such that

uc — neo>0, &>0 = na w0 • Then T — 2jr/o>0, and

4 rT/i
a" ~ T J ^(1 + m cos nau0t) cos ncuQt cos nu0t dt,

(13)
K = o.

The cosine coefficient in (13) gives

2 f*
a„ = - A cos neo>0t cos ruo0l dw0t

7T Jo

i r*
H— / m4[cos (nc + na)o30t + cos (nc — na)co0<] cos noi0t dw0t. (14)

T Jo

Thus an is not zero only when n = nc and when n — nc na giving

an. = A, = mA/z. (15)

Therefore the three terms in (12) are the (nc)th, the (nc + n„)th and the (nc — n„)th

harmonics of a wave of period 2ir/a0 whose fundamental and other harmonics are zero.
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b. Simple Frequency-Modulated Wave. Assume again the simplest form with con-

ventional notation,

e = A sin (ccct + mfsmwat). (16)

Since this is an odd function, one can safely ignore all the cosine coefficients. Then if

co0 is again the highest common factor between wc and co0 ,

2 ("
b„ = - / A sin (ncunt + m, sin n„wnt) sin ncont du0t. (17)

t Ju

If we use the identities,

cos {mf sin x) = + 2 ^ cos 2kx, (1 ISa)
*-1

oo

sin (mf sin x) = 2 ^ J2k+i{mr) sin {2k -f l)x, (18b)
A = 0

then (17) can be expanded and integrated to give

6. = AV.Xm,) - J..(m,)](—1)" (19)

where Si = (nc — n)/n„ has values which are positive or negative integers including

zero and s2 = (nc + n)/na has values which are positive integers and is the

Bessel coefficient of the first kind of order s and argument mf. When s is negative,

J.(mf) = (-1 )-7..(m,). (20)

There are special values for na for which (19) will actually involve two terms as

given but otherwise there will be but one term. This can be seen as follows: nc and na are

prime to each other and therefore both are odd numbers or one is odd and the other even.

Because nc = nj.s, + s3)/ 2 where and s2 are integers then for na and nc both odd it is

only possible to have na = 1. If re0 is even and nc is odd it is only possible to have n„ = 2

while if na is odd and nc even it is again only possible to have na = 1.

In view of this, equation (19) can be written as follows:

If na = 1, whether nc is even or odd,

bn = A[Jn.-n(mf) - J„c+n(wi/)](—1)<""_">/2. (21)

If n„ = 2, and nc is odd,

bn = (A/2)[J„,-n(mf) - Jnc+n(m,)](-iy-+n)/\ (22)

If na = 1 or 2, nc either even or odd,

bn = (A/na)[J„.-n(m,)K-iyn'-H)"\ (23)

To see what these coefficients really mean, take nc = 26, na = 7. If n = 1, (i.e. consider

the fundamental of the wave), then (nc ± ri)/na = (26 ± l)/7 is not an integer indi-

cating that the frequency component at o>0 is zero.

Next let n = 2; then (nc — ri)/na = (26 — 2)/7 an integer, and (nc + n)/na =

(26 + 2)/7 = 4 and ( —l)4 = 1 indicating that the second harmonic at 2«0 of magnitude

—AJiirrif) exists.

A continuation of this process will show that the fifth harmonic exists and is of

magnitude —AJ3(mf). The ninth harmonic exists and is of magnitude AJb(mf) and the
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twelfth harmonic exists and is of magnitude AJ2(mr), and etc. This result is shown in the

diagram of Fig. 1.

It is interesting to note that this is the same spectrum as if in the ordinary expansion

those side-bands of negative frequencies were reflected at the zero frequency axis with

signs reversed. This diagram also shows that in general there will be additional frequency

components sandwiched between the ordinary sideband spaces, for example, those

between the carrier J0 and the first sidebands Ji .

■a
c
a

-Q
©"O

x5 j4 v j.
11 II

1 I 1 1 I 1 11 1 ' ' 1—i—i—i—I—i—i—l—i—r—

J, Jj Jt J/ frequency

Fig. 1. FM sidebands, nc = 26, n„ = 7, (magnitudes not to scale).

Another defect of the ordinary expansion appears in the special case when n„ = 1 or

when na = 2 and nc is an odd number. Thus, if n„ = 1, nc = 9, say, then application of

(19) will show that the fundamental is of magnitude

A[Js(mf) - Jio(mf)],

and the second harmonic is of magnitude

— A[J7(m,) - Jn(wif)].

And if n„ = 2, nc = 9, the application of (19) will show that even harmonics do not

exist and the odd harmonics each involve two terms. These are shown in Fig. 2.

<0

TJ
C
0
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Q)"D

1.1.1"

~0

c
o

-Q
<1)~V
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1 I
J7~ J„ J5" J,3 J3" J,? frGCjuency

(a)

J5 J4" ^"7

I ' I
J,-Jt Ji"J« frequency

(bj
Fig. 2. (a) FM sidebands, ne = 9, na = 1. (b) FM sidebands, nc = 9, na — 2.

It may be seen that the ordinary expansion is inadequate for these particular cases,

for it gives the correct frequency components but not the correct amplitude for each

component.
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c. Multi-tone Modulation. The same procedure applied to multi-tone modulation

shows that for an AM wave of the form

e = + T m. cosw,^! cos uct, (24)

there exist the Fourier coefficients

a„ = —— J ^1 + cos co, coseoet cos nuj d(w0t). (25)

where w0 again is the highest common factor among • • • co* , and each sideband

can be identified as one of these Fourier harmonics.

For the FM case

e = A sin + 23 m> cos u.tj. (26)

The Fourier coefficients,

a„ = — [ sin \nc030t + 23 m, cos n^o0<) cos no}0t d(u0t), (27)
7T J 0 \ «-i /

bn = — [ sin (ncu0t + 23 cos n,w0t) sin nu0t d(u0t), (28)
IT J o \ «-l /

can be obtained and one has,

^ = [e (n d""i/2) + £ (n ^„(m.)(-D<i'-i)/5)]4, (29)

where

23 kaln. 23 fc.2n. nc — n |, (29a)= | nc + n I,
s = I

and

h = 23 fc.i or 23 k-2 > (29b)
8 = 1 8-1

when they are odd numbers.

k = [£ (n jk.xm.x-i)k'/2) - £ (n /»..w(-ir) (30)

where

and

K

23
s - 1

= I ne - n I, 23 k,2n, ! = | nc + n |, (30a)

h = 23 or 23 > (30b)
8=1 8-1

when they are even numbers.
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Therefore, we have

e = y. a„ cos nw»t + bn sin nwat,
n n

which is considerably different from the ordinary result,

e = X { El JkAnOf cos ( X k,u.t). (31)
*»-0 V. «-l ) \ s-l /

d. Modulation Products from a Linear Rectifier. The subject of heterodyne detection

has been investigated by many. Engineering practice assumes that detector can follow

the envelope ideally so that higher harmonics can be neglected and the difference fre-

quency taken as the fundamental. W. R. Bennett [3] gives a double Fourier series de-

velopment of the output of such a rectifier for any amplitude and frequency ratio which

seems to be the only exact analysis which has so far appeared. The present method of

analysis appears to be an interesting and useful alternative.

Express Heaviside's Unit Function by,

K0 ={ + Z (32)
jj 7T J o CO

Assume an input wave of the form

e = A cos + B cos u2t. (33)

From (3) and (32) the output wave from a zero-bias linear rectifier is

= | (.4 cos ujl + B cos w2<)

j A cos «it + B cos co2< /""sina)(i4 cosaii t + B cosu21)f"° sinco(^4 coscoit + B coseo-2t) ̂

Jo o>

Let a>0t = x, where oi0 is again the highest common factor between wj and o)2 , such

that coi = too, w2 = w2oj0 . Then the Fourier series of (34), of cosine terms only, can be

specified completely by

an — ~ J {A cos nxx + B cos n2x)

, A cos n,x + B cos n2x I" sin {A cos nxx + B cosn2x) , |
-J  —  — /   — doi cos nx dx. (35)

t Jo w J

The first part of (35) gives

an, = A/2, a„, = B/2. (36)

The second part can be written as

Ii\= 4 f [ [^(A cos rij.r + B cos E2K+i^2*r+t(^4«)(—1)K cos (2K + l)n,a^

• (E2KJ2K(Boi)(— \)k cos 2Kn2x) + (E2X,72K(.4a>)(—1)* cos 2Knyx)
\K-0 /

(
2 E2K+iJ2K+l(Bw)(—l)K cos (2K + l)raix) f
K = 0 ' J .

cos nx dx —, (37)
CO
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by using the expansions,

cos (m cos x) = E2X</2k(»i)(— l)* cos 2Kx, (38a)
A' = 0

sin (m cos x) = X) E2jr+i,/2A-+i(m)(—1)* cos (2A' + I)*, (38b)
A' = 0

where E, is the Neumann E-factor defined as,

E, = 1, i = 0,

(39)
E; = 2, i 0.

There are in (37) infinitely many terms in the integrand, each term involving four

cosine functions multiplied together associated with a product of two Bessel coefficients

which are constant if we integrate with respect to x first. Integration with respect to x

shows that each term in the integrand is not zero only when the sum and difference of

two of the four cosine angles are equal respectively to the sum or difference of the other

two angles. Following this the formula below is obtained.

If Tii is even, and n2 is odd, then for n odd

an=^~T Z E2Si+1(-1)*+sV2K(Ao)/2Si+1(£co) -
•tV"" J 0 St.K-0 W

+ E E2K+1(-l)K+sV2K+1(A„)J2S,(5a>)- (40a)
A-'n"' J 0 S,.K-0 03

(40b)

where

±n ± ni±2Krii
2S1 + 1 =

2 S2 =

and for n even

n2

ziztl zt 7l2 zL (2K l)^i

n2

n = ^~T E E2JC + 1(-1)K+SV2^+1Mco)/2S,(^)-
■t^n7r JO Si,K-0 <°

+ W~r i E2Sl+I(-l)K+sV2K(^)J2S.+1(Bco)-, (41a)
-'o S,,K-0 &

(41b)

=fcfi rt n2 ± 2Kv,i

(40c)

B f v~> n r -\K+S. -r , A \ t /r. \ d(l)
I "

where,

2 S1 =
zizTl rt Tlx ± (2K -|- l)^i

n2

2S2 -f- 1 =
n2

(41c)

If n, and n2 are both odd, all odd harmonics are missing in the output because then

in (42) there will be no possibility of combining the angles such that the whole integral
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is not zero. For the even harmonics a„ is given by (41a) with (41b) and (41c) replaced by,

= I ±n ± n, ± (2K + IK j _ }
I n2 |

and

± n2 ± 2Knx v
252 + 1 =    . (42b)

n2 |

In these formulas, the summations should run over all possible integral values of

S and K that may satisfy the Diophantine equations in absolute value form.

Without loss of generality, we can assume that A > B (The case A = B will be dis-

cussed later). Then (40) and (41) can be integrated as a special case of the infinite dis-

continuous integral of Weber and Schafheitlin [4]. Thus if n, is even and n2 odd, then for

n odd,

r(= _A v (2*Ya,+1 —
Ejr s£k-o \a) (2

2K + 25, -j- 1 -^a'+s,

r(2K - 2,S', + 1jr(25, + 2)

J2K + 25, + 1 -2K + 25, + 1 oc , . &' i 2 } 2 1 i i

rf2K + 25, + lV
_B_ y /B\2S' T\ 2 ){~1}

E„7T s.^.o \Aj r(2K - 252 +
r(——lSi + 3)r(2/S2 + 1)

42K + 252 +l -2K + 252 -l„„ , , B\

2 > 2 ' A2''

Here equations (40b) and (40c) have to be satisfied by 252 + 1 and 252

For neven

/2g + 2& + lV ,

_ A. v f^)2S' ^ 2 '
a" Enir Sl^_0 U/ „(2K - 25, + 3^

#+Si

2
r(25, + l)

J2tf + 2-S, + 1 -2K + 25, - 1 „„ , , B
' 2 ' 2 ' A2

V(2K + 25, + l\, .ssr+s,
B_ y, (BVs'+> T\ 2 A-1)

E-' U> f K - f + ')r(2S, + 2)

2K + 252 + 1 -2K + 25, + 1 B\
2 ' 2 ' A2'

where 2$! and 2S2 + 1 satisfy (41b) and (41c).
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If '«! and n2 are both odd, only even harmonics exist in the output and these are

given by (44) with the Diophantine equations replaced by those of (42a) and (42b).

In the foregoing equations, r(a;) is the gamma function of argument x and F(a, b, c, x)

is the hypergeometric function of parameters a, b, c and argument x.

If A — B, (40) and (41) still exist, but the hypergeometric functions simplify to gamma

functions, i.e.,

F(a, M,') - r(c-Vr(e - >)• (45)

This Fourier series analysis of the output shows two interesting results. First, it

shows that the output may have important components of frequency lower than the

difference frequency. When the difference frequency is not too much smaller than the

beating frequencies and if it is not the highest common factor, there will be beat tones of

considerable amplitude at frequencies lower than the difference frequency. Secondly,

for a particular frequency component in the output, these formulas give the amplitudes

of all components provided the Diophantine equations are solved for all the possible S

and K. For illustration, suppose/i = 800,/2 = 1400 such that the highest common factor

is 200, and nx = 4, n2 = 7. Then instead of the difference frequency 600, one would have

the series of frequencies of values 200, 400, 600, 800, 1,000 etc. in the output. The fre-

quencies 200 and 400 are both lower than the difference 600. On the other hand, suppose

/, = 210, f2 = 330, so that the highest common factor is 30 and nl = 7, n2 = 11. We

would expect the series of frequencies 30, 60, 90, 120, 150 etc. in the output. Here, how-

ever, since nj and n2 are both odd, the odd harmonics 30, 90, 150 etc. will be missing

except 210 and 330 which will be present, (Eq. 36).

e. Arbitrary Wave-Shape Modulation. It is evident that the same analysis for fre-

quency modulation by any arbitrary wave-shape would exhibit the same reflected side-

band phenomena as the case of sinusoidal modulation. A particular case of rectangular

wave modulation has been analyzed in detail and the result compared with the ordinary

spectrum to verify this conclusion. The result, however, does not seem to deserve more

space here.

2. Modulation Products With No Exact Period. When a common factor among the

component frequencies present in the modulation products does not exist, the wave

as a whole is not periodic. The theory of almost periodic function then relieves us of any

possible logical confusion. Here a definite spectrum still exists; the frequency compo-

nents, however, are no longer related by a multiple of a common component but are

determined by certain characteristic values as explained in connection with (8) and (9).

To illustrate the principle, consider again the amplitude-modulated wave e = A

(1 + m Cos &>„<) Cos uct. If Coc and a>„ have no factor in common, then the conventional

Fourier analysis no longer applies. However by, (8),

A rT
an — lim -= (1 + m cos o.>at) cos u>ct cos \t dt

7*—»oo 1 J 0

a rT
= lim -=• / [cos (a>c + A)< + cos (a>e — X)<] dt

r-oo 1 J o

thA fT
+ lim / [cos (o)e + Cda + \)t + COS (a>e + C*>a ~ X)/

T-CO Al J o

+ cos (oc — + \)t + cos (coc — w„ — X)i] dt. (46)
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After integration each term in (46) will be of the form

(47)
,. A sin (K ± \)t

]™r- k± x

and will be identically zero except when X = ± K. Therefore, since we are dealing with

real or positive frequency only, the characteristic values are Xj = , X2 = coe + wa, and

X3 = o3c — w0 . It can easily be shown that

ax — A, a2 = mA/2, a3 = mA/2. (48)

These are the same as the sideband amplitudes obtained in the periodic case.

The other kinds of modulation, which so far have been considered only for the case

where the carrier and modulating frequencies have a common factor, may similarly be

handled by this method for the almost periodic case. Also the results may be inferred for

the case where coe and w„, have a very small highest common factor and almost have a

larger highest common factor. Here we would expect that the true modulation products

would be large for the cases where they most nearly coincided with the products for the

period based on the large "highest common factor".

IV. Findings on Energy Relationships. It is well known that in amplitude modula-

tion the modulated wave has its energy increased by an amount corresponding to that

in the sidebands. From the point of view of Fourier's series, this finding is nothing but

an application of Parseval's theorem, since the energy or average power per cycle of an

oscillation is proportional to the average square of the wave, and hence equal to the

sum of the square of its Fourier coefficients. Thus, for the wave in equation (11) the

energy E is,

E = J al = A2 + \ A2m2 + \ A2m2 = A2 + \ A2m2 (49)
n = 1 4 4 2i

which agrees with the usual result.

For an FM wave, the coefficients obtained from (21), (i.e. when n„ = 1, nc either

even or odd) give

oo oo

E = H, K = A2 [J2nc-n(mf) + J2ne+„(mf) — 2Jnc-n(mf)Jn,+n(m,)], (50)
n™ 1 n = 1

and the coefficients from (22), i.e. for na = 2, nc odd, give

E = X) b2n = A2 £ [Jlr._K(mf) + J2lc-+K+l(mf) - 2Jn..-K(m,)Jnc.+K+1(mf)] (51)
n«l K=0

where n'c = {nc — l)/2, and 2K + 1 = n.

Equations (50) and (51) can be simplified (Appendix) to

E = A2[ 1 - J2».(2wi/)], (52)

and E = A2[ 1 — JnX2mr)\ respectively. (53)

The general case when n„ ^ 1 or 2 as in equation (23) can be easily analyzed by
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using the fact that as » runs from 1 to °°, the Fourier coefficients J < (m,) will e£

twice when i ^ 0 and only once when i = 0. Therefore Parseval's formula gi

the aid of the relation

00

Jo (inf) + 2 E Jl (»»/) =
n- 1

£ = ^2[j;(i»r) + 2 e j!(m,)j = a2.

Since the energy before modulation is A2, (52) and (53) show that in tl

particular cases frequency modulation decreases the wave energy because

always positive if x < K. In the case of (54), the energy remains unchanged.

Appendix

Equations (52) and (53) may be derived by starting with equation (50) in tl

E = A2 Z [Jl.-n(mf) + JlUm,) -
n-oo

Let tie + n — m, then nc — n = 2ne — m.

When n = 1, m = nc + 1, and when n = &, m = a> ■ therefore,

E = A2 E - 2JtH..m(m,)JJrn/)].
T7i — «e +1

E J\n.Umr) = £ + E
m — n e + 1 m«ne + l m — 2ne +1

= E j:(m,) + E /4(m,),
m™0 m"-l

E -/-(«/) = E ^(«/) - E

Now

and

so that

E Vl.-M + J Urn,)] = E ^(™/) - •£.(«/).
m — ne +1 nj —— oo

Since = ( — 1)" E™ » can be written as

Jo(m,) + 2 E ^(™/) = 1.
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Equation (5') becomes, therefore,

± Vl.Umd + J Km,)] = 1 - (70
m—i»« +1

The product sum

2J2n.-m{mf)Jm(mf)
m = n+1

can be treated as follows:

X! 2 Jnc-m(m,)JJjn,)
m — ne + 1

co ce

= H [J2u.-J,m,)J m(m,)] + Yj J2nc-n(mf)Jm(mf)
m — nc + l m«ne + l

= H J ;n.-n,{m,)J „{m,) + X J 2 nc-m
Lm»n+1 m —2ne + l J

Lm = 0 m = 0 J

= 23 + J2 Jm(rnf)J2nc-m(mf)
L m = 0 m--1 J

+ 2 m{m,) — 52 J 2 ne — m
Lm-0 m = 0 J

= X! (80

Combining (7') and (8') one has (!') in the simple form

E = .42 (9')1 - it J2nc-m{rn,)Jm{rnf)^.

By the Addition Theorem of Neumann and Schlafli (4)

J™('J + z) = ± Jm{y)Jn-„(z)- (100
n= — co

If y = z, therefore, J J2y) = Jm(y)Jn-m(y) and (90 can be replaced by

E = A2[ 1 - JonX2mr)] (110

which is equation (52).

By an entirely similar process, it can be shown that (51) can be simplified to

E = ,42[1 - /no(2m,)] (120

which is equation (53).
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