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MINIMUM WEIGHT DESIGN AND THE THEORY OF PLASTIC COLLAPSE*

By

J. FOULKES

Engineering Laboratory, Cambridge University

Summary. This paper examines the problem of assigning economical sections to

the members of a structure whose geometrical form is given. The criterion of failure is

taken to be that of the plastic theory of collapse, and the criterion of minimum weight

is employed to determine the best design. A geometrical analogue of the equations in-

volved is used to clarify their significance, and such proofs as there are in the text, are

cast into geometrical terms. A method of solution is suggested at the end of the paper,

but the primary concerns of the paper are the general features of the problem.

1. Introduction. The problem which this paper considers may be stated as follows:

given the geometrical form of a plane frame, together with a set of static loads which

bear upon the frame, what cross sectional dimensions must the members be given in

order that the loads may be just sustained and the weight of the structure as a whole

be as small as possible? The members are assumed to have constant cross sections

throughout their length.

In order to decide whether or not a frame will just sustain the loads, a criterion of

strength must be assumed, and the criterion employed here is that of the theory of

plastic collapse [1].** This theory is applicable to framed structures of ductile material

which derive their strength from a bending action, e. g. rectangular building frames,

pitched roof portals etc. It assumes that the bending moment in a member tends to a

maximum limiting value as the curvature becomes indefinitely large. This limiting

value of the bending moment is called the fully plastic moment, and if this moment is

attained at a particular cross section a plastic hinge is said to have formed there. A

plastic hinge allows a finite change of slope to occur at the cross section where it forms,

and the fully plastic moment resists any further rotation of the hinge.

If the collapse of a structure is now defined as the condition when deformations

increase indefinitely under constant loads, then, assuming that instability effects can

be ignored, it can be shown that collapse occurs when a sufficient number of plastic

hinges have formed to transform structure, or any part of it, into a mechanism. A load

factor X is usually employed to determine the correct collapse mechanism. Suppose, for

instance, that a frame, whose members i have sections such that their fully plastic

moments are /3, , is subjected to the loads Wk acting at the points k. (The notation used

omits a summation symbol; all small suffixes should be read as repeating ones, capital

suffixes refer to particular variables or equations). Then, if an arbitrary mechanism

Y is assumed, an equation of virtual work may be written down

XyWtSiK = PidiY

where bkY are the displacements of the loads and 6ir are the hinge displacements of the

members, relevant to the mechanism F. This equation determines the value of \Y and

*Received Feb. 25, 1952.
**Numbers in square brackets refer to the Bibliography at the end of the paper.
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it can be proved that \Y > \c where Xc is the load factor for the correct collapse mechan-

ism C of the frame. [2], It can be seen that if the frame is to withstand the loads Wk

the /3, must be such that Xc > 1 and thus \y > 1. This briefly is the concept of strength

used in this paper, so the assumptions above are inherent in all that follows.

J. Heyman has already suggested a method of solving specific problems of this type

[3] but the purpose of this paper is to clarify the nature of the problem, and to identify

it with the problem of "activity analysis" or "linear programming" which occurs in

Economics [4].

The text is divided into three sections. The first states the general problem and the

second introduces a geometrical analogue of the equations involved which helps to

clarify their significance. The last section suggests a method of solution, but this is

included for the sake of completeness, it is not recommended as a practical design pro-

cedure.

I. The problem. Suppose it is required to design for minimum weight, a frame

whose members i have lengths U wheti it is subjected to the loads Wk acting at the points

k. If sections are assigned so that the fully plastic moments of the members are /3, it

will be assumed that the weight, G, of the frame as a whole may be represented by the

expression

G = .

The assumption here, of course, is that the cross sectional area A of a member is

proportional to its fully plastic moment. In fact A °c (3l/n where 2 > n > 1 for most

sections, but the assumption 'that n — 1 does not seriously restrict the theory which

follows and its implications will be pointed out at the end of the paper.

Now suppose that with these values of a collapse mechanism Y is assumed for the

frame. The equation of virtual work for this mechanism is

XyTFk8kY = PidiY

and if the frame is not to fail in the mode Y,

\y > 1

"■ Wttr**1

This condition may be rewritten,

a

aY$i > 1, where aYi =
Wk8k"kY

and, since the equation is one of virtual work, all terms are positive, and so all the a's

are positive.

This equation is in effect a constraining condition on the possible values of the /?,

and similarly every conceivable mechanism of the frame will yield one such constraining

condition. Hence, if all conceivable mechanisms form a set of conditions j the constraints

of the problem can be expressed by the sets of inequalities.

a, Si > 1

Mathematically then, the problem is that of minimising the linear function

G = U3,
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when the variables /3, are subject to the restriction

Otjifii > 1

all terms in the expressions being positive or zero.

Considered as a problem in linear algebra, the problem is difficult for the reason

that the significance of the constraining inequalities is difficult to grasp, but if the problem

is translated into geometrical language their meaning becomes clear.

2. The analogue. The basis of this geometrical analogue is to give the variables

the significance of coordinate variables in an n-dimensional space. But before proceed-

ing to the general case it would be as well, perhaps, to examine a simple two variable

problem from this point of view.

Example. Let it be required to minimise the weight of the continuous beam shown

in Fig. 1(a) when it has to bear the loads shown. The loads, and the lengths of the spans,

in the problem have been divided by convenient factors in order to obtain simple numbers.

Let the left hand beam have a fully plastic moment of /3X and the right hand beam

one of /32 .

©i3 @ r

(b)

Cc)

(d)
Fig. 1.



350 J. FOULKES [Vol. X, No. 4

In this example there are four possible hinge positions, and there is one redundancy.

Hence there are three basic mechanisms [5], These are sketched in fig. 1, and it is easily

seen that six different mechanisms can be obtained by superposing these three in various

ways. There are thus six conceivable mechanisms in this example and the load factor

expressions for these mechanisms are as follows:

Xa = as in Fig. 1(b)

. 2/3] -f~ 4/?2 i v n
*B = —o I 1—, both beams collapsing,

O "T 1

Xc = left hand beam collapsing,

01 > 02

301

3 '
as in Fig. 1(c),

X* = t both beams collapsing,
3 + 1

0. +
1 '

right hand beam collapsing.

r 02 > 0.

V//////// ^ ///////////////s,
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Now if ft and ft are regarded as coordinate variables, the various load factor ex-

pressions:

<*„lft + <Xp2^2 =

will form sets of lines whose perpendicular distances from the origin will be proportional

to A„ and if the \v are set equal to unity, Fig. 1(e) is the result. Now since all load factors

must be greater or equal to unity, the values of ft and ft which will allow the loads to

be carried are given by points which lie above and to the right of all these load factor

lines, in the region marked "permissible". This permissible region is outlined by the

load factor lines which correspond to the most critical mechanisms for the beam, and

any load factor line which does not touch this region, e. g. X* and X* corresponds to an

impossible mechanism, a mechanism which, regardless of what values ft and ft are

given, will never occur. The reason for this is that modes such as X* always violate the

yield conditions, or, in mathematical terms, the inequality XJ > 1 is dominated by other

inequalities such as \c > 1.

The expression for the weight of any particular design,

G = 2ft + 2ft

is again a line on the diagram whose perpendicular distance from the origin is proportional

G and so the comparative weights of structures given by various points on the diagram,

can be judged by their perpendicular distance from the line through the origin

2ft + 2ft = 0.

It is clear then that a minimal beam is given by the point, or points, of tangencv

when the line

G = 2ft + 2ft

is tangent to the permissible region. In this case the single point M is this point of tan-

gency, and the values of ft and ft at this point are

ft = ft =

It is possible in some cases to have a line of tangency instead of a single point. This

happens in the example of fig. 2 and, in this instance a range of values of ft and ft will

give minimal frames.

It can be seen from the above figures that the permissible region is purely convex

toward the tangent weight line, there are no reentrant angles to the region, and hence

there is only one minimal position for the weight line.

3. General theory. In general if the ft are regarded as coordinate variables in an

n-dimensional space, the equations

<*, .ft = 1

will form a set of flats which will divide the positive section into a number of regions.

If the external side of a flat is defined as that side which does not contain the origin,

then a region can be defined, called the "permissible subspace," which is external to all

flats. This subspace contains all the points which assign values to the ft such that

a,ift > I?
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i. e. the points within or on the boundary of the permissible subspace represent struc-

tures which will bear the given loads.

The following theorem lays severe restrictions on the possible forms of the permissible

subspace.

Theorem. If /3„ and /32 are any two points within or on the boundary of the permissible

subspace, then the straight line joining these two points lies wholly within the per-

missible subspace.

Proof. f3v and /3„ are external to all flats. If in proceeding from /3„ to /32 in a straight

line a flat X is crossed, a region is entered which is not external to flat X. Thus X must

be recrossed at least once more before the line proceeds to , for /32 is external to flat

X. A straight line, however, cannot cross a flat more than once, and thus the straight

line $y Pz cannot cross any flat, and so the theorem is true.

The statement embodied in this theorem is the mathematical definition of convexity,

and so, since (3,- > 0 and a;i >0 it can be shown that the permissible subspace is a convex

set contained in the positive sector. Further, by employing the fact that a > U > 0

it can be proved that there is always one, and only one, position of the weight flat in

which it is tangent to the permissible subspace. Hence there is always one, and only

one, minimal solution to a given problem. The solution may of course allow a range of

values for the /3, , in which case all the designs of the range have the same weight, and

all are minimal solutions.
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4. A method of solution. It would seem that any method of solution must involve

either a total, or a partial, guided exploration of the field of the positive sector in the

above analogue. The former mode of attack is the one employed by J. Heyman in his

inequalities method, and the economists also favour this line of attack. Any such method,

however, suffers from the serious disadvantage that all the constraining inequalities

<*> • ft > 1, i.e., all the conceivable collapse mechanisms of a frame, have to be accounted

for in algebraic terms. E.g. In the example of Fig. 1(a) all the conceivable mechanisms

could be accounted for by the formula

«(3ft - 3) + 5*(3ft - 1) + 5t(ft ~ ft) > 0,

where the 5*'s are Kronecker deltas which can have values of one or zero. If all the

possible combinations 8* = 0 or 1 are taken, all the constraining inequalities will be

accounted for. The task is thus not impossible, but prohibitively laborious in any but

the most simple cases.

The method to be described here involves a partial exploration of the field, which

discovers the constraining inequalities as it requires them.

Suppose Fig. 3 represents in diagrammatic form a section of the permissible region,

and suppose point P represents an assumed form of the frame . If the weight of this

'//////A

 -(Si

Fig. 3.
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form is GP and the collapse mechanism is Y, P is a point on the intersection of the two

flats

G = hp* , \y = ar<« = 1

Now if p* is given a small displacement S /3* in the flat GP in such a sense that | \Y \

is increased, P moves along GP in the figure to the point Q. A recalculation of the collapse

7^7

(d)

(<Z)

Fio. 4.
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mechanism and load factor will then move Q down to R. If 5 0* is too large, however,

the path P Q' S may result. But, in this case, a further operation S T R', will still result

in a lowering of the weight flat from GP to GR . If the operation P Q R or the whole opera-

tion P Q S, S T R' is referred to as a step, the method consists in making a series of such

random steps until the minimum is found.

Example. It is required to design the frame of Fig. 4(a) when it is subjected to the

loads shown. Let the ringed numbers designate the members of the portal.

Assume as a starting point that the sections of the members are in the proportions

01 — 1, 02 = 1> 03 — 1

The collapse mechanism can be determined as that of Fig. 4(6), [5], and for unity load

factor the sections are

_ 4 _ 4 _ 4
^ J 02 0 J 03 0

This is the point P referred to above, and it lies on the intersection of the two planes

GP = 20, + 02 + & ,

= + 102 + g03 = 1

Now a displacement 5 0* is required which will keep GP constant and will increase | \Y |.

There are various ways in which this can be done and what these various procedures

imply can be seen in Fig. 5. Any displacement takes P to P', PP' lying in the GP plane.

Fig. 5.
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The particular displacement chosen will specify the angle 6 that PP' makes with the

line of intersection of the planes UV. The method of giving displacements could be

systematised by specifying that PP' had to be at right angles to UV as PP[ is drawn,

and a succession of such defined steps will usually be fewer in number than a series of

random ones. Also, by further restricting the nature of a step the process can be guaran-

teed to be a converging one. But, the extra calculation required to ensure a particular

type of step invariably consumes much more time than the extra steps necessary in a

random search. A series of random steps is thus recommended, and the example will

be solved by such a method.

If we write the weight and load factor expressions as follows:

G = lifti , Xy = a-Yifli

where Y is the relevant mechanism at any stage, then the only rules required in making

a random step are:

(i) values ft with a large quotient aY/l are to be increased, those with a small one

are to be decreased.

(ii) The increments added or subtracted to or from the values ft are to be in the

ratio of the lengths I so that the weight is kept constant.

It is also advisable not to alter more than two variables in any step.

Proceeding by this method then, it is patent that ft has to be increased and ft de-

creased. Hence,

Step 1. Increase ft, by § decrease ft by f then

_ 5 _ 4 _ 2
ftx g! ft2 ^3 ^

A check shows that the mechanism is now that of Fig. 4(c) which gives the load

factor expression as

x = \ ft. +1 ft,+1 ft =1

Accordingly, the values ft remain as they are.

Step 2. The above load factor expression indicates that ft has to be increased and

ft decreased. Therefore, increase ft by § decrease ft by § then

_ 5 . _ 1— 3' — 3' ~~ 3°

These values give the mechanism as that of Fig. 4(d) which has the load factor ex-

pression

-I
and hence for unity load factor

,25 A
16' P2 16' Pi 16'
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It is now seen that the coefficients of the load factor expression are in the same ratio

to one another as those in the weight expression:

G = 2ft + ft + ft , X = | ft + | ft + | ft .

No further steps are thus possible and the operations have reached the minimal

solution. This has occurred in this particular problem because there existed a load factor

plane,

X = |ft + |ft + |ft = 1

which was parallel to the weight plane, and was not an impossible one. Clearly in the

tangential position, the weight flat will always adjoin those possible load factor flats

which are least inclined to the weight flat, and if there exists a possible load factor flat

which is parallel to the weight flat, the minimal solution is the range of values of ft

which lie on this flat within the permissible subspace. The interesting conclusion may

be drawn from these facts that for a frame with a particular geometry there are certain

mechanisms which the minimal solution will favour, e.g. In the case of a portal with

the relative proportions of that above, the mechanisms of Figs. 4(d) and (e) give load

factor flats which are parallel to the weight flat. So, if the loads will "allow" either of

these two mechanisms, that mechanism will be the minimal collapse mode. If both of

these are impossible, the minimal solution will probably be the line of intersection of

the planes relevant to mechanisms of the type shown in Fig. 4(c) and (6), i.e. the section

of the beam of the portal would equal the section of the right hand stanchion. The

plastic hinge required at the upper right hand joint may therefore form either in the

beam or in the stanchion, that is, the frame has two alternative modes of failure. In

general if there are n independent variables ft , a minimal solution will be a corner of

the permissible subspace where n flats meet. A minimal solution, not necessarily the

only solution, will therefore have n alternative mechanisms of collapse. This implies that

the members meeting at a joint must be proportioned so that the joint can fail in either

of two ways, as above, and/or that some members have to be proportioned so that their

failure or non-failure makes no difference to the value of the load factor.

Conclusion. This paper, it is hoped, has clarified to some extent the nature of the

problem of minimum weight design, when the theory of such design is based on the

assumptions of the theory of plastic collapse, and on the assumption that the weight

of a member is proportional to the product of its length and fully plastic moment. This

last assumption does not seriously limit the validity of the above theory, for the true

expression for the weight of a member merely converts the load factor flats above, into

slightly curved surfaces; the general features of the problem are not altered at all.

A more serious limitation on the above theory is the assumption, taken over from

the theory of plastic collapse, that instability effects can be ignored. For it sometimes

happens that the loading conditions of a frame will force the theory to choose long

slender columns which will obviously buckle. This occurs when a rectangular frame has

little or no sidesway loads, in ordinary cases quite reasonable sections are usually de-

manded. This danger can be offset, however, by stipulating certain minimum values

for the ft of the stanchions and setting the theory to work with these additional re-

straining conditions. This is easily done for instance in the method of random steps
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above. Another advantage of the method is that the calculator can stop his calculations

at any stage and still have a design which is adequately strong and lighter than his original

guess. The drawback of the method is, of course, the laborious and uncertain nature of

the calculations. However, the calculations involved in any other method to date have

to be programmed for calculating machines, and there is no reason why the method of

random steps could not also be similarly programmed.
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