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NON-UNIFORM SUPERSONIC FLOW*

By

A. ROBINSON

University of Toronto

1. Introduction. The forces which act on an aerofoil in a non-uniform main stream

have formed the subject of a number of papers (refs. 1-5). In all these investigations,

incompressible flow only is considered. References 1-4 are concerned with the effect

of non-uniformity of a two-dimensional main stream, while reference 5 deals with the

effect of non-uniformity in spanwise direction. Much of the work mentioned was done

in connection with wind tunnel problems, but that application may be less important

in supersonic flow. However there are other cases of non-uniform supersonic flow which

may be of practical interest, such as the flow around jet vanes.1 In any case, the physical

significance of the problem appears to warrant its investigation.

In the present paper, we shall analyse the problem of accelerated supersonic flow

for the two-dimensional case on the basis of linearised theory. According to that theory,

the effect of any small curvature in the main flow would be regarded as equivalent to a

curvature of the aerofoil in opposite direction and there is therefore no need to consider

the problem further. To be sure, acceleration will be associated with curvature some-

where in the main stream, but in order to consider the problem of acceleration in isola-

tion one may suppose that the aerofoil has been placed in a plane of symmetry of the

main flow so that the velocity component of the main flow in a direction normal to

that plane vanishes throughout.

The acceleration of the main flow can be measured conveniently in terms of the

variation of the static pressure. We shall derive closed analytical expressions for the

pressure distribution around the aerofoil in the particular case of linear variation of

the static pressure in the main stream. Simplified formulae will be given for sufficiently

high Mach numbers. These do not apply to Mach numbers near unity, but in that

region the entire theory, like the theory of uniform flow, will be less reliable in any case.

2. Linearization. As stated in the introduction, we assume that the aerofoil is

placed, approximately, in a horizontal plane of symmetry of the flow, and we take the

x-axis along the direction of the main stream in that plane, and the y-axis in a direction

normal to it. Let U(x,y), V (x,y) be the velocity components of the main stream, and

U(x,y) -f u(x,y), V(x,y) + v(x,y) the velocity components in the presence of the aerofoil.

Both the main flow and the flow induced by the aerofoil are supposed to be irrotational

(at least within the approximation adopted) so that

= o, (2.1)
dx dy

and

f- ~ f = 0. (2.2)dx dy

'Received Nov. 23, 1951.
'This remark is due to a referee to whom I am indebted also for some further suggestions.
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We infer the existence of an induced velocity potential 4>(x,y) such that

u--f, V- -f. (2.3)dx dy

In addition, the equation of compressible flow must be satisfied both in the presence,

and in the absence, of the aerofoil so that

(2.4)\ a / dx \ a / dy a dy

and

(i - (U + UA W + ") i ^ 1   (V+.d(V + v)
V a2 ) dx + V a2 ) dy

(2.5)
2(U + u){V + v) d(U + u) = Q

a2 dy

where a2 = dp/dp is the square of the velocity of sound, p being the pressure and p the

density. Strictly speaking, a is a function of (U + u)2 + (F + v)2, but we shall assume

that the proportionate changes of pressure and density are small so that a may be re-

garded as constant.

Expanding (2.5) and taking into account (2.4) we obtain

((i - _ (2Uu , "!Y| §U _ (2Uu ,iAdu,(. _
\\ a) \ a2 + a2// dx \ a2 + a2) dx + \ a7 dy

(2.6)
_ M _ 2^1 du _ (2Uv 2uV 2u»\(dU du\ _

\ a2 + a2)\dy + dy) a2 dy \ a2 + a + a2 A dy + dy)

We suppose that U is of the same order as a, so that U/a is of the order unity, but

that U/a differs from unity numerically to the extent that 1 — U2/a2 also is of order

unity. Furthermore, we suppose that F, u, v are small compared with U and a. Regarding

(2.6) as a linear form of the derivatives du/dx, ■ • • , dV/dy and omitting from the co-

efficients terms which are small compared with other terms still included, we obtain

11 _ Hi) §» _ 2C^m dU to _ 2Vv + V2 dV _ 2 UV du_2Uv(dU du\
\ a2) dx a2 dx dy a2 dy a2 dy a2 \ dy dy)

Moreover, although that assumption may break down locally, we suppose that the

relative orders of magnitude laid down above persist for the derivatives, so that we

may omit the terms

2Vv + v2 dV 2UV du , 2Uv du

a2 dy' a2 dy' 911 a2 dy'

Then

(A U2\ du 2Uu dU . dv 2Uv dU ^ -

V a2) dx a2 dx + dy a2 dy ^ '

Finally, we suppose that the variation of U in the direction of the y-axis is small

compared with the variation of U along the chord, dU/dy « dU/dx so that we may
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regard U as a function of x only. Since dU/dy = dV/dx = 0 in the plane of symmetry,

this condition must be satisfied at least in the neighbourhood of the aerofoil. In con-

sequence, we shall neglect (2Uv/a2)dU/dy while retaining (2Uu/a2)dU/dx. Equation (2.7)

then becomes

/, U2\ du 2U w . „iU , bv

dx U dy

Or, in terms of the induced velocity potential, <£,

(ul _ A** , WdUd* _ av _ n
\ a2 ) dx2 + a2 dx dx dy2 ~ 0< " 'ay

Let a = a(x) be the local incidence at a point on the surface of the aerofoil, taken

as positive when the slope dy/dx is positive. Then the boundary condition is

V + v = (U + u) tan a(x).

We shall assume, as usual, that this condition is satisfied at the projection of the

point on the z-axis so that V = 0. Hence, for small a,

v = U(x)a(x) (2.9)

at the aerofoil.

To calculate the pressure, we have Bernoulli's equation,

/ ^ + | l(U + u)2 + (y + v)2] = H (2.10)

where H is constant throughout the medium. Or, neglecting terms of second order of

smallness,

f^ + l(U2 + 2Uu)=H. (2.11)

Let p0 , p0 , U0 , u0 be pressure, density, and longitudinal velocity components at

an arbitrary but fixed point. The proportionate changes of p and p are small, by as-

sumption, so that if

P = Po(l + s),

then p = kpy 4= kp\ (1 + ys) = p0( 1 + ys), dp = p0y ds, and so

I" dp _ £o7 I" ds ^ goTs _ Po(l + ys) — Pa = V — Pa

" Vo P Po J0 1 5 Po Po Po

Accordingly, (2.11) may be rewritten in the form

P~Po= [(t/2 - Ul) + 2(Uu - C/oWo)]. (2.12)

It should be observed that we cannot now neglect Uu compared with U2 since the

difference Uu — U0u0 is not in general small compared with U2 — Uo .

At a point upstream of the wing ua = 0, and so

V ~ Po = -f [U2 - Ul + 2Uu]. (2.13)
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When the aerofoil is absent,

V - Vo = -f [U2 - ul],

so that the static pressure is a function of x only, within the approximation adopted

here. More particularly, we shall assume that the main stream static pressure is a linear

function of x. Assuming that p0 , p0, U0 correspond to the origin, we then have

V = Po + qx.

Hence, using (2.13),

U2 = Ul + - (p - Vo) = Ul — — x = Ul + Xx, X =
Po Po Po

Thus, X > 0, q < 0 for accelerated flow and X < 0, q > 0 for decelerated flow.

3. Accelerated flow. Let M = U/a be the Mach number of the flow, and /3 =

y/M" — 1, so that M and /3 are functions of x only. Then (2.8) may be rewritten as

C r* + f <w ? - - o- »■»dx ax dx dy

Taking first the case of accelerated flow, X > 0, we introduce a new variable r by

r = p = yj/3l + \ x, r > 0. (3.2)

Then

and

_ _ «L /c
X ~ 4a2 X A '

dr 1 2 a

dx I ' \ Xr

Hence

Also

and so

d<j> _ d<f> dr _ 2a" d<f>
dx dr dx Xr dr'

d_ i d_( Ul + Xx _ , _ A
rfx dx \ a2

aV = 2al i. /2a^ d(A _ 4a4 d2cf> 4a4 d<j> _ 1 Zdjfr _ 1 30\
3a:2 Xr 3r \ Xr dr) ~ \V dr2 X2r3 dr /32 V dr2 r dr/'

Substituting in (3.1)

xt + if-iH-O. (3.3)dr r dr 3?/
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Now consider the partial differential equation

= o f,41
d? df- dy2 ( '

This may be regarded (amongst other things) as the linearised equation of steady

supersonic flow for a Mach number a/2, where the main stream is directed along the

£-axis (compare refs. 6, 7, 8). Particular solutions of (3.4) are obtained by means of

source distributions over the £, f-plane, £ > 0, thus,

I ff . J-\ 1 ff Cr(fo J fo) dtj0 d£0 /r, r\

»■» - 2t v(t - w - 7 - a - fj- (3'5)
where the area of integration on the right hand side is given by (£ — £0)2 — y2 — (f —

f0)2 > 0, £ — £0 > 0. The source strength cr(£0, fo) is connected with the normal deriva-

tive of ir at the £, f-plane by the relation

(3.6)

In (3.4), introduce new variables r, \p by means of

£ = r cosh x//, t] = rsinh \p. (3.7)

(3.4) then becomes

dr2 r dr r2 d^2 dy2 ' ^ ^

while (3.5) may be written as

<£(r cosh y, r sinh \f)

_ J_ ff  o-(rn cosh \p0 , ra sinh ^0)r0 dr0 d\{/0 

2t J J y/ (r cosh \p — r0 cosh \f/0)2 — y2 — (r sinh \J/ — r0 sinh 4>0)2,

or

* cosh f, ,,rsinh *)-%-[[ ?'JC"f *A , (3.9)
ait JJ a/r -4- rn — 2rrn nosh (\L — — nVr2 + r20 — 2rr0 cosh (^ — i/-0) — y~

where the area of integration is given by

r cosh — r0 cosh \f/0 >0, r2 + r20 — 2rr0 cosh — xp0) — y2 > 0.

Suppose now that a is independent of \f/0 , <r = f(r0).

Then (3.9) becomes

<t>(r cosh \f/, y, r sinh \f)

= ~ f f(r0)r0 dr0 f . d^° =
2"" J J y/r + r0 — 2rr0 cosh (<p ~ to)

(3.10)

y~

We denote the integral with respect to \f/0 on the right hand side by J. Substituting

o> — ij/o — ^ in that integral, we obtain

J = f / 2 . a f" . =5 (3.11)J \r + r0 — 2rr0 cosh co — y~
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where the range of integration is given by

r2 + ro — 2rr0 cosh u — y2 > 0

i. e.,

cosh a < T +or" ~ V . (3.12)
2rr0

Hence J is independent of J = J(r,y,r0). If follows that the function 4>, which is given

by (3.10), i. e., by

<t> = ^ f J(r, y, r0)f(r0)r0 dr0 (3.13)

is independent of 4'■ Now«all integrals (3.9) satisfy (3.8), and so 4> as given by (3.13) is a

solution of (3.3). Moreover, by (3.6),

(S) ="|fW- (3.14)
\Oy/v-+ 0,r.>0 ^

This suggests that we may solve (2.8), for the case of uniformly accelerated flow

and for the boundary condition (2.9), by a suitable choice of f(r0). However, in addition

to satisfying (2.9), the physically correct solution of (2.8) must vanish ahead of the

Mach lines (characteristic curves) which emanate from the leading edge of the aerofoil

in a down-stream direction. The equation of the characteristic curves of (2.8) is

(-^1 - l) dy2 - dx2 = 0 (3.15)

so that the characteristic curves which emanate from the leading edge in downstream

direction are given by

I - (v "') for »> °-

for s<0-

(3.16)

The corresponding curves in the r, y-plane as given by (3.2) are characteristic curves

of (3.3). They have the equations

y — ±r + const. (3.17)

In particular, if the leading edge of the aerofoil is at the origin of coordinates in the

x, ?/-plane, then the corresponding value of r is r = (2a /X)/30 and so the two Mach lines

in question are given by

y = ±(r — r') where r' = /30 . (3.18)
A

To satisfy the condition that <t> vanishes upstream of these curves we only have to

assume f(r0) = 0 for r0 < r' or

<t> = ^ J J(r, y, r0)f(r0)r0 dr0 . (3.19)
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To carry out the integration in (3.11) we introduce the variable

t = cosh^, du = —j==. (3.20)
■<2 v t — 1

Then

r2 + rl — 2rr0 cosh w — y2 = (r + r0)2 — y2 — 4rr0 cosh2 -

= ((r + r0)2 - y2)(l - k2 cosh2

where

= (r + tv (3-21)(r + r0) — y

We observe that, for r > 0, r0 > 0,

(r + ra)2 > 4rr0

so that, given r, r0 , the right hand side of (3.21) is positive but not greater than 1 for

sufficiently small | y |, and we may assume 0 < k < 1. For such y, (3.11) becomes

J = —S /— y~ Ji
dt

V(r + r0)2 - y2 h V(? - 1)(1 - k2t2)

(3.22)

4 K'W = /, , 4 „ —o
V(r + r0)2 - ?/2 V(r + r0)2 - ?/2

where 2£", A'' are the complete elliptic integrals of the first kind, and the complementary

modulus, k', is given by

7,2 _ , 4rr0 _ (r - rn)2 - y2

(r + r0)2 - y2 (r + r0)2 - if

In particular, for y = 0,

4
J

r + r0

But

jc(r ~ r°\ = 4 *71 - Cn,/r)\
\r + rj r + r0 \1 + irjr))'

by Landen's transformation, so that, for y = 0,

J = (3.23)

Substituting this expression in (3.19), we obtain

</, = rJ'.{(r°)?K{?)dr° (3"24>
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The function f(r) is given by (2.7) and (3.14),

f(r) =2 Ua. (3.25)

Now

b^3'2'

and, for any modulus k, K'(k) = K (v 1 — k2), so that (3.24) may be replaced by

o> - % !1. «(#=?)-dm <326>

where

Mo = U0/a, M = TJ(x)/a.

4. Approximate treatment. The elliptic integral K in (3.26) can be expressed in

terms of the hypergeometric function F, as follows

J IM2 - m2\ _rJll. M2 - m2\

W M2 — 1 ) 2 \2' 2' ' M2 - 1 /' ( )

so that

J \M2 - m2\ , 1 M2 — m2\
k\\JF=i) - 211 + 4 -W^Yh <4'2)

except for higher powers of (M2 — m2)/(M2 — 1). With this approximation

* = 2x~ {L T m2 dm + (M2 - 1)3/2 L a(m2 ~ m<) (4-3)

and so

60 _ d4> dM
)x d

U(x)a(x)

U dx dM dx

~ VW^l + Vm2 - 1 W2 - 1) L am* dm

+ 4(M2'- l)2 L a(m2 ~ m,) dW} (4-4)

Assume now that a is constant in the interval 0 < x < c. For points in that interval,

the expression in the curly brackets on the right hand side of (4.4) equals, approximately,

( 5aM2 ,3a(M* - 1 M2 ...
\4(M2 - 1) + 4(M2 - l)2 Y 2 a M2 - 1 °^

Hence

'--jOfcT(1-J) (4'5)
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where

M{M — M0)
2(M - 1) ' ( bj

We observe that — U(x) a/ V M2 — 1 would be the value of u if the theory of uniform

flow applied at the point under consideration, so that h may be regarded as a correction

term. The approximate formula (4.5) applies only provided M — M0 is small compared

with M and M0, and provided these Mach numbers are not too close to 1. For example,

if M0 = 1.4, M — 1.6, then h = 0.10.

An alternative expression for u is obtained by writing (4.5) in the form

( M M2
U~ aaWM2 - 1 2(M2 — 1)3/2 Mo))'

and expanding the right hand side at M0 . Then

( M0 2 +Ml ... ..\
U~ Hvi!-] 2(M"o — 1)3/2 Mo)) (4.7)

except for higher powers of M — M0 .

The following expressions for the pressure are then obtained by substituting (4.5)

and (4.7), respectively, in (2.13).

V = po - f (u2 - ul) + P„ (1 - h) (4.8)

and

V = Po - f (u2 - Ui) + P„ + PoU0(ux 2(^ ~ t4)a/2 (M - Mo). (4.9)

It will be seen from (4.8) and (4.9) that for given constant a, p depends only on the

local Mach number and on the leading edge Mach number and (free stream) pressure

but not on the absolute rate of acceleration. In other words, p is the same for points x

and x' = n x on two aerofoils at incidence a if the main stream velocity and free stream

pressure at the leading edge are the same in both cases, while the rate of change of the

square of the main stream velocity, d/dx(U2), along the second aerofoil equals l//i times

the rate of change of the square of the main stream velocity along the first aerofoil.

The same conclusion is reached if we express the pressure in terms of the more exact

formula (3.26) for the velocity potential.

Assume now that the local incidence at the top surface is a for 0 < x < c/2 and —a

for c/2 < x < c. For 0 < x < c/2 the pressure is then still given by (4.8) or (4.9), while

for c/2 < x < c we now have instead of (4.5),

(4-10)

where

h, _ M[(M - M.) - (Mi - M0)1
2(M2 - 1) ' C4-11)
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being the Mach number at x — c/2, M = U(c/2)/a.

Similarly, (4.7) is replaced by

(M0 Ml + 2 ,,, ,,, , Ml ,,r
U ~ 2Wl ~ 1)3/2 ( o) + (Ml - 1)3/2 (Ml Mo)j"

Accordingly, the two expressions for the pressure are now

(4.12)

P = Po - § (u2 - ul) - P„ (1 - h') (4.13)

and

p-*-f I.V - VS - ,Tk-\f-iM ~

~ PoUla , lf°1)572 (A/. - M„).

5. Decelerated flow. For decelerated flow, X < 0, we put

(4.14)

r = ~ V = ~~ yjti + 72 x, r > 0. (5.1)
X ^ X \TU 1 c

Then

X 2 a2 ^ dr 2a

as before. Thus the differential equation (3.3) still governs the flow, and we may adopt

the same procedure as in section 3. However, r now decreases with increasing x and so

the characteristic lines in the plane which correspond to the Mach lines (3.16) in the

physical plane are

y = r' — r for y > 0,

(5.2)
y = — (r' — r) for y < 0,

where r' = — 2a2/\ /30 • Accordingly, we now have instead of (3.19),

0 = 7^^ J(r, y, r0)f(r0)r0 dr0 (5.3)

where J(r,y,r0) is still defined by (3.11). Carrying out the integration in (3.11), we have

to take into account that r is now smaller than or equal to r0. We then obtain, for y = 0,

<5-4>

= f- JRZl!) fdm <5'5>
irX JM VV m — 1 / y/m2 — 1

and so
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Using the approximation

=1 (>+i t^f)' <5-®
and adopting the same procedure as in section 3, we find the same approximate formulae

for the longitudinal induced velocity and the pressure as given in section 3 for accelerated

flow.

6. Lift and drag. Consider now a thin flat aerofoil of chord length c at incidence

(Note that according to our definition, a is positive when dy/dx is positive.) Then the

pressure is given by (4.8) or (4.9) for points on the top surface and, by familiar considera-

tions of symmetry, by

V = Po - f (U2 - ul) - p„ (1 - h) (6.1)

or

V = Po - p0(U2 - ul) - P„ V^-T - PoUla 2M^°I2~_4l)3/-2 (M - Mo) (6.2)

for points on the bottom surface of the aerofoil. Hence the pressure difference between

top and bottom surfaces is

<0)

or

Ap = 2>- vfe + M - V-(6-4>
Using (6.4), we obtain for the resultant lift

Z, - Ap M ~ »Vh m "X

1 jT2 4a Tj2 Ml — 4 2M2 + M0 ,,f _ .
- 2 Pol oc _ 1 Pol oac Mo(M2 _ 1)3/2 3(a/-2 + Mo) (M2 Mo)

where M2 is the free stream Mach number at the trailing edge. Replacing (2M2 + M0)/

3 (M2 + M0) in the last term by 1/2, in harmony with the approximations adopted so

far, we obtain

L ~ 4 "ui vwM ('+ mMrh{M- ~ M,))- (6-5)
Thus

CL = tS=t (1 + v) (6.6)VMl - 1
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where

' - Jm- i) (M° - M"}- (6J)
The correction term, ij, changes sign for M0 = 2, and it is easy to show that for

larger values of M0, M„ > 2,77 remains negligible for reasonably small values of M2 — M0,

| M2 — M0 | < 0.2, say.

The wave drag corresponding to L is

D - — La. (6.8)

Next, we assume that the top surface of the aerofoil is at incidence a for 0 < x < c/2,

and at incidence — a for c/2 < x < c, while the bottom surface is at incidence —a for

0 < x < c/2 and at incidence a for c/2 < x < c. This is the case of a symmetrical double

wedge (diamond-shaped) aerofoil. The pressure at both top and bottom surfaces is then

given by (4.8) or (4.9) and by (4.13) or (4.14) for the front and rear halves of the aerofoil

respectively. The wave drag of the aerofoil therefore is

D = 2(f pa dx — [ pa dx)
\J 0 J c/2 /

- me/' - m> f+1 (i + 4^r_4 T) <*. - m.))

+ PoUlc | J-M, ̂ °1)3/2 {Mi - Mo)

where U is the free stream velocity at the trailing edge, U = M2 a. Now

Mi - M0 ^ M\ - Ml 1
M2 - M0 " Ml - Ml 2'

Hence

T, ] tt2\ a (Ml , 4a2 , SMl - 8 /w
D ~ 2 Po<"l_2 U/I V + VI/r-T V1 + SM0{Ml - 1) ~ Mo))_ (6.9)

and so

n a (Ml .\ , 4a (. , ml - 8
D 2 J + T V + 8M0(tV/o - 1) ( 2 o)/' (6 0)

We observe that in this formula a may also be interpreted as the maximum thickness-

chord-ratio of the aerofoil. More precisely, the latter is t = tan a.

For a positive angle of attack the lift on this aerofoil is the same as for a flat aerofoil,

while the wave drag is the sum of the drag at zero incidence as given by (6.9) and of the

drag associated with the incidence (6.8).
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