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A PROBLEM OF FINITE BENDING OF CIRCULAR RING PLATES*

BY

ERIC REISSNER

Massachusetts Institute of Technology

1. Introduction. We consider axi-symmetrical transverse bending of a circular ring

plate under the action of transverse edge forces. Let a be the inner radius of the plate

and a + b the outer radius. If b is sufficiently small compared with a and if the condi-

tions of support permit it it is generally considered allowable to obtain deflections and

stresses in the ring plate by beam theory rather than by plate theory.

The purpose of the present note is a more detailed analysis of this problem. We

shall show that the question of whether beam theory and plate theory give essentially

the same results depends not only on the ratio b/a but also on the magnitude of the

deflections of the plate.

Briefly, let <f>0 be a quantity of the order of magnitude of the deflection of the plate

according to beam theory divided by the width b of the plate, and let n be a dimension-

less parameter of the form [12(1 — i>2)]'/2 b2/ah, where v is Poisson's ratio and h the thick-

ness of the plate.

We find that beam theory is applicable as long as « 1. When 0,,/x = 0(1) then

plate theory must be used and the appropriate equations are those of finite bending.

We find further that when <f>0n » 1 a boundary layer effect is encountered.

In order to have a continuous transition between finite bending of beams and finite

bending of plates we must use a system of equations for bending of plates which is more

general than the equations of Kirchhoff and von Karman for small finite plate bending.

A more general system of this nature, applicable to axi-symmetrical bending of circular

plates has recently been given.**

The results which are obtained in what follows may be of some direct practical sig-

nificance in connection with the analysis of expansion joints and of corrugated cy-

lindrical shells.

2. The equations of finite axi-symmetrical transverse bending of plates of constant

thickness. The differential equations which must be solved are of the form**

<£" + -<£' \ cos <t> sin 0 = sin <j> — (rV) cos <f>], (1)
r r L)r

q," I ^r' _ — cos2 (f, — - (j,' sin <j)
r \_r r J

C r ^ n (r2p„y
= — Icos <t> — 1J ^ vpH COS <t>

D+ I ^ cos <t> sin <f> + v-(j)' cos <f> (rF) + - sin <f>(rV)'. (2)

*Received Oct. 22, 1951. The present paper is a report on work done under the sponsorship of the

Office of Naval Research under Contract N5-ori-07834 with Massachusetts Institute of Technology.

**E. Reissner, On finite deflections of circular plates, Proc. Symp. Appl. Math. vol. 1 (1949) pp. 213-219

and On axisymmetrical deformations of thin shells of revolution, Proc. Symp. Appl. Math. vol. 3 (1950)

pp. 27-52.
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In equations (1) and (2) r is the radial distance of a point of the middle surface of

the plate before deformation, <f> is the sloping angle of the deflected middle surface, ,1/

is a stress function, pH the horizontal load intensity, F the vertical stress resultant,

primes indicate differentiation with respect to r, and D and C are defined in the usual

way by

C = Eh, D = £7j3/12(1 - v2). (3)

Stress resultants and couples and displacements of the points of the middle surface

of the shell are given as follows

rV = — J rpv dr, rNr = ^ cos </> + (rF) sin <£,

rQ = —sin <f> + (rF) cos <£, Ne = V + rpH

Mr = — ^ sin J, M
(l . \ (4)

= — DI - sm </> + v4>' J

u = -jj (Ne — vNr), w — J sin <t> dr.

The well known equations for small finite deflections follow from (1), (2) and (4)

by writing sin <£ ~ <f>, cos 4> ~ 1 — , by omitting third and higher power terms in

the dependent variables <j> and XI' and by omitting terms containing F in equation (2).

3. Bending by transverse edge forces. In what follows we assume that

Vh = 0, pv = 0. (5)

We write further

rV = Pa, (6)

so that P is the transverse edge load at the boundary r = a of the plate, per unit of

circumferential length.

We introduce dimensionless variables in (1) and (2) by writing

r = a + bx, <f> = 4>0f(x), V = *0g(x). (7)

This gives

r
b2 Lf"+ v+Txr ~ I1 ~ blf + •••)*

(l - 14>lf + •••)/» — DJl bx) (l - | f +•■•), (8)D(a + bx) \ 6 I D{a + bx)

5[o \ ..it I   , _ b2(l — 4>l.f + • • •) _ yb«/>o(l — +
b2 L a -\- bx (a + bx)2 (a + bx)

C <t>lf
a + bx 2!-[i -+ •••]

|~4>a.1, | t-o/(l ~ t<ftof + ' ' ') , P0o/'(1 ~ h<t>lf2 + ' ' ')
(a + bx)2 b{a + bx)

_l_ v<t>0f(l — g<t>0f + • • •) "1p /g)
+ (a + bx)2 J ' {)

where primes now indicate differentiation with respect to x.
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We now assume that the ratio b/a of width to inner radius of the plate is negligibly

small compared to unity.* With this assumption equations (8) and (9) may be written

in the form

f" = ^{1 ~ + '")fg ~~ blf2 + "•)' (10)

2,2
,, _ 1 Cb%Q

2 *na \ 12
1 - + en)

Inspection of (10) and (11) indicates that the assumption b/a « 1 implies that the

equations of beam theory can be used for the solution of the ring-plate problem in the

linear, small-deflection range.

In order to see to what extent the linear small-deflection theory applies we may

proceed as follows. We set

and we take account of the fact that in non-linear plate theory non-linear terms both

in (10) and (11) are important by setting

b2 = Wo

Da a ' (13)

From (12) and (13) follows

and

^ ^ T K]{' , /I 4N
</>» D, *0 [12(1 — v')]x/2 ' ''

<>«>

PHo = L !lA nn
9 [12(1 — »'2)]1/2 b (U>)

We set as an abbreviation

M = [12(1 - „2)r £ (I?)
ah

and take account of the fact that always h/b « 1 and <j>0 = O (1). Equations (10) and

(11) then reduce to the following system

f" — — 2^2 "t" *•') + ~ g<t>lf + •••jfg, (18)

g" = M</>o(l - ~ <t>lf + • • -)/2. (19)

This is equivalent to saying that the leading terms only are retained in a development of the solution

in powers of b/a.
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The following conclusions may be drawn from equations (18) and (19).

(1) The condition for beam theory to be applicable is of the form

H<t>o « 1. (i)

(la) When in addition

</> o « 1, (m)

then linear beam theory is applicable.

(2) When

n<i> o = 0(1), (Hi)

the governing equations are those of non-linear plate theory no matter how small

$o by itself may be

(2a) Applicability of the Kirchhoff-von Karman theory of small finite deflections of

plates requires satisfaction of (ii).

Let w0 be a measure of the transverse deflection of the plate. We may set w„ = </>„&.

Condition (i) becomes

„ b la, /VN
W° <K M ~ {12(1 - /)]l/2 b h' (i}

indicating that for the present plate problem linearity does not require that the de-

flection be small compared with the thickness of the plate.

4. Perturbation method for moderate values of n4>o • In order to see for specific ex-

amples to what extent the non-linearity for small ^</>0 manifests itself the following series

developments may be used

/ — /o + (m<£o)"/2 + (n^oYfi + • • • ,

(20)
g = fx4>0£/i + (m<£o)3<73 + • • • •

In what follows we shall for simplicity's sake assume that 4>l by itself is negligibly small

compared with unity so that the differential equations (18) and (19) may be taken in

the form

/" = -l + rto fg, g" = -Wo f. (21)

We take as example a plate of width b with horizontal slope at x — =t| and with no

horizontal edge forces. These boundary conditions correspond to what would be en-

countered if the ring plate were part of a corrugated cylindrical shell.

We have then as boundary conditions for the solutions (20) of (21)

/„(±4) = 0, <7„(±i) = 0. (22)

We find

f' - -I -1)*
1(6 5 4 . 15 2 111 /OON

= r240 V* ~4X +16X ~ 64/' (23)

1 / 10 135 8 15 6 _ 195 4, 495 2_ ^51^   5 \
~ 4800.9 V 56 * + 4 x 64 X + 256 X - 1024 14.1024/'/:
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The relative edge deflection S is given by

ra + b/2 /»1/2r>a + b/'Z pi/2

5=1 <t> dr = 2<j>0b / /
J a —6/2 JO

dx

— 2^>o^

From (24) follows

f 1/2 pl/2

/ /o dx + (m</>o)2 / /2 dz +
_ ^ 0 ^0

(24)

5 = [1 - 0.000059(W>o)2 + • • •]■ (25)

We see that while order of magnitude considerations require that yu^o « 1 in order that

there be no noticeable non-linear effect on load displacement relation the actual com-

putations show that this is numerically conservative and that actually can be ap-

preciably larger than unity before an appreciable non-linear effect occurs.

Having f0 , f2 and gx we may if we wish also determine the influence of small non-

linearity on bending and direct stresses in the plate. We obtain in particular

cr,B{±h) = 6 Mr(±$)/h2 = ±(3bP/h2)[l + 0.00005(m<M2 + •••],

<r„.D(±i) = Ne(±h)/h = ±(36P//i2) [0.0012 (1 - .3)1/1(^G) +••■]■

5. Boundary layer equations for large values of n4>n . In order to investigate the

character of the solutions of equations (18) and (19) when n<t>o » 1 we introduce new

dependent and independent variables by setting

x = \y, f = /<> F(y), g = g0 G(y). (26)

We have then as differential equations

F" = ~[l - \ MofF2 + ■ • •] ^ + \Wo[l - I (<Pofo)2F2 + ■■■ ]FO, (27)

G" = XWo fo [l - ~ (<Pofo)2F2 + • • • ]f2. (28)

We set

7- = 1, xWo^o = 1, X2m4>o = 1 (29)
Jo do

or

<1 — 1/4 t ( j. \~l/2
X = (m<£o) 1/4, Jo = (m<£ o) 1/2, 0o = (m</> o) 1 2- (30)

Differential equations (27) and (28) now read

F" = -[l - |^F2 + + [l - + ■••]«?, (31)

G" = -| + --Jf2. (32)
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The order of magnitude of the change of slope $ is now = \/<£o/m and consequently

we know that

<j>0/n = 0(1). (33)

Accordingly all coefficients of (31) and (32) are 0(1) and differentiation with respect to

y does not change the order of magnitude of the quantities which are differentiated.

Consequently significant changes of F and G occur over ^-distances which are 0(1).

But this is the same as saying that significant changes of / and g occur over x-distances

which are 0(X) = 0([n4>0]_1/4)- Since n<t>0 » 1 we have then the existence of a boundary

layer.* The actual width of the boundary layer with respect to the r-coordinate is

6(^o)"V4.

The question may be asked in which way the relative deflection 8 of the edges and

bending and direct stresses depend on <f>0 and fj. for the limiting case n<t>o > 00 •

We may, again for simplicity's sake, assume that <£0/m is negligibly small compared

to unity and restrict attention to the system

F" = -1 + FG, G" = —\F2. (34)

If we take the same boundary value problem as in the preceding section but now let

the edges of the plate be at x = 0 and x = 1, then we have at the inner edge

x = y = 0: F = 0, <7 = 0. (35)

At x = \ we have the symmetry conditions of vanishing F' and G' or with y as inde-

pendent variable

y = 2\ = I F' = °> G' = °" <36)

As X tends to zero the outer boundary y = fX"1 tends to infinity. We expect that for

sufficiently large values of X-1 we should be able to replace condition (36) by the limiting

condition

F'(co) = G'(oo) = 0, (37)

and the problem then is to solve the system (34) subject to the boundary conditions

(35) and (37).
We expect that F'(y), G'(y) are 0(1) and consequently bending and direct stresses

have orders of magnitude determined as follows.

.„-|Wr)-|E^F'«=ffCrW

or

1 / p \3/4 /^\1/4

-f- \ (s) [12<1 -"")r©
(38)

li - hbx G [V) ~ 6[12(1 - ,2)]1/2 M1/4 {J)

*Boundary layer solutions for quite different problems of finite bending of circular plates have

previously been discovered by Friedrichs and Stoker. See Am. J. Math. 63, 839-888 (1941).
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or

It is remarkable that now aer> and <xrB are of the same order of magnitude. Furthermore

we see that in this range the stresses vary with the three-fourth power of the applied

load and are independent of the actual width of the plate. They are inversely pro-

portional to the thickness of the plate and proportional to the fourth root of the inner

(or equally well average) radius of the plate.

In order to determine the relative deflection of inner and outer edge we must calculate

/»a + 6 /»1/2X ,\/A /»1/2A

5=1 <f>dr = 2 <t>0f0F(y)\b dy = 2b -§74 / F(y) dy. (40)
J a M ^ 0

Now, before letting A tend to zero we must know the behaviour of F(y) for large y.

It seems that one might reason as follows. Assume that for large y

F(y) = Cly", G(y) = c2ym, (41)

where both n and m are smaller than unity in order to satisfy (37). Equations (34)

then become

cxn{n — 1 )yn~? = — 1 + c1c2y"+m, c2m(m — 1 )ym'i = — %c\y*n. (42)

The first of these equations gives

CiC2 = 1, n + m = 0, (43a)

and the second gives

c2wi(m — 1) = — 5C1 , m — 2 — 2 n. (43b)

Equations (43) are satisfied by

2 2 /4\1/3 /9\1/3
m = -, n = —Cl = , c2 = . (44)

We have then for large y

/a\1/3 /q\l/3
H V~2/3> G(y)~ ; y2/3 (45)

If the first of these two formulas is introduced into equation (40) for 5 we conclude that

since (45) should be valid over a predominant portion of the interval of integration we

should have

,1/4 r\/2\ /a\1/3 ,1/4 / a\ 1/3/ , \ 1/3 /oX1/3 1 1 /3

8 ~ 2b f (-) y~2'3 dy = 2b ~in 3Q (^) = oQ b J75 (46a)

or

8 j2\1/3(P_\/3(a)
i~%) \M) U (46b)

Clearly, the argument beginning with equations (41) is not rigorous. The results how-

ever are not implausible, and one may hope that future more rigorous considerations

will confirm them.


