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the wall and moves outward. Professor L. Howarth has mentioned to me that he is

working on this more complex aspect of the problem. [Ref. added Oct. 1, 1951: L.

Howarth, Some aspects of Rayleigh's -problem for a compressible fluid, Q. Jour. Mech.

and iVppl. Math., 4, pt. 2, 157 (1951)].
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THE QUARTER-INFINITE WING OSCILLATING AT SUPERSONIC SPEEDS*

By THEODORE R. GOODMAN (Cornell Aeronautical Laboratory, Inc.)

Introduction. In the April, 1951 issue of the Quarterly of Applied Mathematics, two

papers appeared. One, by H. J. Stewart and Ting-Yi Li1 purports to extend the method

of J. C. Evvard2 for solving supersonic wing tips to the case of the oscillating wing.

The other by J. W. Miles3 solves the problem of the oscillating rectangular airfoil by

the Wiener-Hopf technique. In an application of their method to the rectangular airfoil,4

Stewart and Li obtain results which disagree with those of Miles. Moreover, Stewartson5

has treated the problem independently, and his results agree with Miles'.

The raison d'etre of this note is to add yet another independent solution to the list

of those which agree with Stewartson's and Miles'. In view of the fluxive state which

this problem is in at the moment, it is felt that this would be of current interest.

The Gardner method. The method presented by C. S. Gardner6 will be used to obtain

the solution. Let x, y, z represent rectilinear space coordinates, x in the direction of the

free stream, and y in the "spanwise" direction. Denote by U the freestream velocity, c

the velocity of sound, M the Mach number and t the time. Let z = f(x, y, t) describe

the surface of the wing, g = Ufx + /, , /3 = (M2 — 1)1/2, x' = x/fi, t' — (Mx — p2ct)//3.

Then in terms of x', y, z, Gardner's method for the rectangular airfoil consists in

*Received July 25, 1951.
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6Gardner, C., Time-dependent linearized supersonic flow past planar wings, Com. on Pure and Appl.

Math., 3, 33-38 (1950).
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solving the following two boundary-value problems in succession: (The primes on x'

and t' have been disregarded).

I) For £ > 0: x*x — Xi< — Xu = 0. (1)

For £ = 0: x = g(x, y, t). (2)

For x < 0: x = 0- (3)

II) = 0. (4)

For y > 0: lim2_0+ i, = lim„0_ = x(f, y, 0- (5)

For £ > a;: \p = 0. (6)

The velocity potential, p, is determined by setting £ = 0 in the solution ip.

The first problem. The value of g is taken to be independent of y, and in terms of

physical x — t variables is given by

g = va{x) exp (iwt). (7)

In terms of the transformed variables, this becomes

g = v0(x) exp [iv(Mx — <)], (8)

where v = uM/pU.

t, = t - ( X - X, )

X,

Fig. 1. "Wing" Problem in x — t Space.

Let x = ; then a may be determined by integrating sources over the shaded region

shown in Fig. 1.

1 r~(
<r(£, x, t) = — / v0(x,) exp (ivMxi) dxi

IT J o

, + [(._.l)._l.1./. exp (-«*,) dtx (ci.

' [(® - x,)2 - « - uy - f]W2' { )
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If the substitution t — ti = [(x — xt)2 — £2]1/2 cos 9 is made, the inner integral is

recognized as a Bessel function. Then after some manipulation, Eq. (9) becomes:

<r(£, x, t) = — exp [iv(Mx — £)] [ v0(x — X) exp {—ivMX)J0[v(X2 — f)W2\ dX. (10)
h

The second problem. The author has obtained elsewhere7 some general relationships

which arise in using Gardner's method for the rectangular airfoil. In the two-dimensional

region

tp = —c(0, x, t). (11)

Hence,

V = exp [iv(Mx — <)] f v0(x — X) exp { — ivMX)J0iyX) dX. (12)
*>0

In the tip region

(p = — tr(0, x, t) + 7T~V/2 [ a(£, x, t)(£ — y)~U2 d%/%. (13)
* V

Hence,

tp = exp [iv(Mx — £)] f v0(x — X) exp (— ivMX) Jn(yX) dX
Jo

— x~y/2 exp [iv{Mx — <)] f (£ — y) 1/2
J v

■ f v0(x - X) exp (~ivMX)J0[v(X2 - t)U'2} dX. (14)

The wing and regions are depicted in Fig. 2.

TWO DIMENSIONAL REGION

MACH LINE

Fig. 2. Diagram of Wing

'Goodman, Theodore R., Aerodynamics of a supersonic rectangular wing striking a sharp-edged gust,

J. Aero. Sci. 18, 519-526 (1951).
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The spanwise integral of the velocity potential. Let 7 represent the integral of tp in the

spanwise (y) direction from the tip to the semispan s:

7 = s exp [iv(Mx — t)] f v0(x — X) exp (-*■ivMX) Ja(vX) dX
Jo

— 7r"1 exp [iv{Mx — t)] f yn dy I (£ — y)~1/2 d£/t;
J 0 J y

■ f v0(x - X) exp {-ivMX) J0[v(X2 - ff'] dX. (15)
h

Consider only the triple integral appearing in the last term. Denote this by I. Upon

interchanging the order of integration, there is obtained:

I = [ dit P v0(x - X) exp {-ivMX)J0[v{X2 - f),/2] dX [' [y/Q - y)]1/2 dy. (16)
JO J £ J 0

After integrating with respect to y, there is obtained:

/ = tt/2 P di F v0(x - X) exp (-ivMX)JMX2 - f)U2] dX. (17)
J 0 «/£

Interchanging the order of integration once again:

I = tt/2 P v0(x - X) exp {-ivMX) dX [ J0[v(X2 - f)W2] d£. (18)
Jo Jo

After letting % — X cos 6, the last integral will be recognized as a Struve function.8

Hence,

I = tt/2 P v0(x - X) exp (-»¥I)F.1/2(rI)(1t/2pX)1/2 X dX. (19)
Jo

But9

tf_1/2(vX) = (2/irvXy/2 sin vX. (20)

Hence, finally there is obtained for 7:

7 = s exp [iv(Mx — <)] f vo(x — X) exp (— ivMX)[Jn(yX) — (sin vX)/2sv] dX. (21)
Jo

If account is taken for the difference in notation, it will be seen that this solution

agrees with Miles'10 and Stewartson's.11

'Watson, G. N., A treatise on the theory of Bessel functions, Macmillan Company, 1945, p. 374, Eq. 3-

Hbid., pp. 328-338.
l"loc. cit.

Hoc. cit.


