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NOTE ON A SUFFICIENT CONDITION FOR THE STABILITY OF GENERAL,
PLANE PARALLEL FLOWS*

By MARTIN LESSEN (The Pennsylvania State College)

In reference 1, Synge derived sufficient conditions for the stability of plane Couette

motion and plane Poiseuille motion. In the present note, it is demonstrated that similar

conditions exist for any parallel flow with either finite or infinite boundary conditions

or both. Although it can be shown that parallel two-dimensional motion must be of

either Poiseuille or Couette type, it has been assumed, for purposes of stability con-

siderations, that boundary-layer flows are substantially parallel in nature and Synge's

treatment has therefore been extended to cover these flows.

The equation describing the stability of parallel flows for small disturbances is the

Orr-Sommerfeld equation (reference 2):

O — d){ip" — a<p) — w"<p = — ~ (,pIV — 2aip" + a<p), (1)

where x is the coordinate in direction of the flow, y the coordinate perpendicular to this

direction, t the time, w = w(y) the velocity of steady flow, ip(y)e'a'x~ci' the disturbance

stream function; c the disturbance phase velocity, a the disturbance wave number, R

the Reynolds number of steady flow.

*Received July 2, 1951.
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If the boundaries (finite or infinite) of the flow field are at yx and y2, the boundary

conditions on the disturbance amplitude function <p are given by

<p(Vi) = 0, <p(y2) = 0,

v'iyi) = 0, <p'(y2) = 0.

If Eq. (1) is cleared of fractions, multiplied by <p dy, integrated over the flow field,

and the resulting equation added to its complex conjugate the following inequality

corresponding to Eq. (11.16) of Ref. 1 is obtained.

«Bc,(l\ + all) < otRqhh - {II + 2a2I\ + a4/2), (2)

where

Io — w> dy, I\ = / <p'<p' dy,
Jyx Jyx

I\ = <p'V dy, q =<„ , Ci = Im c.

It should be noted that the values of all the integrals specified are convergent for

infinite boundary conditions. This can be seen by considering the asymptotic properties

of <p at y —» ± in the integrals.

<p(y —»± 00) = constant X (e""y)

For a discussion of the asymptotic properties of <-p, see reference (3).

The following inequality is now considered in place of (11.17) of Ref. 1 because the

latter cannot be used for boundary conditions at infinity.

rJ V\

<p + %tp' + W I dy > 0

t] are real, arbitrary constants. It follows that

v2ii > (2V - t)H - n. (3)

If the inequality (3) is substituted into the inequality (2), the following relation results.

aRCiri\l\ — a2/o) < allqr) lnlx — 7?(217 — £2 + 2a rj2) — Il(a*J72 — 1).

If Ci > 0 then

((xRqif)2 > 4(2)7 — £2 + 2a2r?2)(a4?j2 — 1), (4)

where

2V - f + 2a2r,2 > 0, cl T] - 1 > 0.

The sufficient condition derived for stability of general, plane parallel flows is a very

weak one but it has the advantage of being extremely simple. The condition derived is
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weaker than the one obtained by Synge but it has wider application. Such two-dimen-

sional, parallel flows as boundary layers, jets, and wakes can be quickly considered

preliminary to more detailed investigation.

Consider Eq. (4) as applied to the laminar boundary layer between parallel streams

(Ref. 3).
Let 7) = K/a, f = 0. Equation (6) then becomes

(.Rqf > 8(l + ^ ^ ^ 3 J""

If the right hand side is maximized with respect to K, the corresponding value of K is

K = 3. The value of q for the problem under consideration is

q = 0.2000.

Therefore, for certain stability

R < 15.8a2.

It is interesting to note that, although no lower branch of the stability curve is

obtained by the above method, the actual calculations to a second approximation for

the free boundary layer also do not yield a lower branch of the neutral curve.
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GENERALIZATION OF A PROBLEM OF RAYLEIGH*

By STANLEY CORRSIN (Department of Aeronautics, The Johns Hopkins University)

Emmons has recently published a note [1] giving dissipative temperature distribu-

tions for Rayleigh's classic problem of the incompressible viscous flow set up by an

infinite plate suddenly moved at constant velocity in its own plane [2], This suggests

sufficient interest to warrant exposition of a particular solution of the problem for a

compressible fluid. This was worked out several years ago as a simple pedagogical

demonstration of some characteristics of the compressible boundary layer, much as the

Rayleigh case is often used to introduce students to the incompressible boundary layer.

We shall restrict the problem by taking low Mach number, v/u « 1, insulated wall,

Prandtl number unity, perfect gas, p. ~ X ~ T3/4 and c„ = constant. The plate lies on

the plane y = 0 and moves in the ^-direction; u is velocity along x, v is along y, cp , p,

X, p, T are specific heat at constant pressure, viscosity, thermal conductivity, density and

absolute temperature, respectively.

*Received July 5, 1951.


