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TORSION OF A CIRCULAR CYLINDER HAVING A SPHERICAL CAVITY*

BY

CHIH-BING LING

Aeronautical Research Laboratory, Taiwan, China

Abstract. This paper presents a torsion solution, based on the Michell-Foppl theory,

.for an infinite circular cylinder having a symmetrically-located spherical cavity. Nu-

merical values are also given to show, in particular, the effect of the cavity on the

maximum shear stress in the cylinder.

The general theory. Let (r, 6, z) be the cylindrical coordinates of a point. For con-

venience, r and z will be considered as dimensionless quantities each measured by a

unit of certain typical length a.

The solution of the torsion problem for a solid of revolution, requires a function \p

which satisfies .the following differential equation.1

+ a)dr r dr dz

in which the axis of revolution is taken as the z axis. The two non-vanishing stress

components are expressed by

_  M d±

Te' r2 dr' T" r2 dz' [ }

where fi is the modulus of rigidity. The condition that the surface is free from traction

takes the form

ip = const. (3)

on the entire surface.

The constant for \p at the internal surface will henceforth be taken as zero as no

generality is lost in doing so. The terminal couple acting on the cylinder is then equal to

T = 2irfj.a\pe , (4)

where \pe is the value of ip at the external surface.

The above theory is due to Michell and was rediscovered by Foppl.

Solutions in cylindrical and spherical coordinates. If we put

\p = r2<fr (5)

w here Mms a function of r and z, the preceding differential equation becomes

d2<P . laf 4* d2* ...
H Z " T~2 — 0- (6)

dr r dr r dz

Let us assume a normal solution of Mr in the form

sin kz

M> = Fir) . (7)

cos kz

*Received April 11, 1951.
'See A. E. H. Love, Mathematical theory of elasticity, 4th edition. Dover Publications, New York,

1944, pp. 325-326.
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It then appears that the function F satisfies Bessel's equation

? + ®

This equation is satisfied by I2(kr) and K2(kr) which are modified Bessel functions of

order two, of the first and second kinds, respectively.

The above solution holds for any value of k. A more general solution of \p is therefore

expressed by the following four integrals:

I2{kr) sin kz

>P = r2 I J(k) X dk, (9)
0 K2(kr) cos kz

where in each integral / is an arbitrary function of k.

Now we proceed to find the solution in the spherical coordinates (p, 0, 6) which are

connected with the cylindrical coordinates by

z = p cos <t>, r = p sin <f>, 6 = 0. (10)

Consequently, the differential operators are transformed to

d , d sin </> d— = COS   —,

az dp p d<j>

d d , COS <b d
— = sm 4> — + —•
dr dp p d<t>

(11)

The differential equation for * becomes

d2* 2d* 1 d2* cot <£d* 4*
a 2 ~T „ "T" 2 „ ,2 "r 2 a , 2 -2 , — (J (1^)op p ap p a<p p dtp p Sin <p

Assume a normal solution in the form

* = G(0)p". (13)

It follows that the function G satisfies the following equation

^ + cot * % + {n(n + 1} ~ s"h? = °- (14)

This equation is known as Legendre's associated equation and is satisfied by Pi (cos <£)

and Ql (cos 4>), which are Legendre's associated functions of degree n and order two, of

the first and second kinds, respectively.

It is noted that the same Legendre's associated equation is obtained if we assume

instead

* = (15)
P

Since the preceding solution is valid for any integral value of n including zero, a

more general solution of ip is expressed by the following four series :

P2(cos 4>) p"

X , (16)
"=0 ,Q2( cost) P"n_1

where A„ are parametric coefficients. Note that P\ vanishes when n = 0 or 1.
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Method of solution. Now, consider an infinite circular cylinder of radius a (i.e.,

r = 1) having a symmetrically-located spherical cavity of radius \a (i.e., p = X), which

is under torsion by terminal couples about the axis of the cylinder. For convenience,

the centre of the cavity will be placed at the origin.

The method of solution is to assume \p as being composed of two parts as follows:

i , (17)

where \J/0 is the solution of a corresponding cylinder without a cavity, while 4>x is an

auxiliary solution which vanishes on the surface of the cylinder. The latter is added to

yp0 so that the remaining boundary condition on the surface of the cavity is satisfied

by adjusting the parametric coefficients involved in the function. The function \f/0 is

io = bar*, (18)

where r is a constant. Since \pt vanishes on the surface of the cylinder, it follows that

the terminal couple is equal to |x/ira4.

The auxiliary function 4*i may be constructed by combining linearly a set of functions

each of which satisfies the given differential equation and vanishes on the surface of

the cylinder. It appears that the set of functions can be derived from the following

particular solution for \p, namely:

2 f* co

\p* = ^3Pl(cos<t>) + r2 / f(k)I2(kr) cos kzdk. (19)
p J 0

It is obvious that the function so constructed satisfies the given differential equation.

Note that this function is even in z or cos 4> and, besides, it has a singularity at the origin.

According to the definition by Hobson,2 Pi (cos 4>) is equal to 3 sin2 <f>. Hence \p*

vanishes when r = 1 provided that

[ f(k)I2(k) cos kz dk = - 3 (20)
Jo (1 -(- z)

A Fourier transform gives

{(h, _2_3_ f" cos kz dz _ 2k2K2(k)

R) rrI2(k)J0 (1 + zy>* Th{k) 121>

The last result is a particular case of the integral considered by Poisson and

Malmsten.The function \p* is thus fully determined. It is obvious that differentiation

with respect to z gives functions with the desired properties on the surface of the cylinder,

but odd derivatives must be excluded since they are not even in z and cannot enter

into the required solution. The function \p* itself may also be included. The set of func-

tions is therefore

d2\l/* dV*
**< (22)

2See E. W. Hobson, Theory of spherical and ellipsoidal harmonics, Cambridge University Press, 1931,

p. 94. Also cf. E. T. Whittaker and G. N. Watson, Modern analysis, Cambridge University Press, 1927,

p. 325. The definition given in the latter is slightly different though it is also attributed to Hobson.

'See G. N. Watson, Theory of Bessel functions, 2nd edition, Cambridge University Press, 1944, p. 185.
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Since the use of any constant multiplier does not affect the desired properties, we

may write the set of functions as follows:

/* - 1 .
^2s (2s-2)! dz*«-* ^

the initial function being \p* = ip*.

To express the functions in terms of the spherical coordinates, the following relations

are useful.4

-,2s-2 ( 2

dz2s~2

and

{4 °22(cos *)} = 3r4 ^ (^) = (2s j;!?- P22s(cos «#.) (24)

I2{kr) cos fe = - £ (~ 1)" (2f|)2^, PL(cos 0). (25)

The latter expansion is valid in the neighborhood of the origin. Hence, it follows that

for s > 1,

. *   2 P2„(cos <ft)
■ E 2«2,P2„(cos0)p2", (26)

P n= 1

where

2/1 ~|- 2s\ (T2n + 2s2n / -<\n+sf I \ yj2n + 2s /QTN

a2s = (_1) V 2s — 2 / 2*"+^ ( }

in which, for s > 4,

_ ? fL. f b8 17 /OQ\

~ * 8l Jo J2(Jfc) ( }

Note that the asymptotic value of cr, is equal to unity.

By means of the above set of functions we construct

\p! = ra Z A2s\pf, , (29)
s = 1

where A2s are parametric coefficients to be determined; the factor ra being introduced

to render A2s dimensionless. The function ip is then equal to

i = T? p2^cos tip2 + mr2 i ("lb - P2" i 2na2sA2)p2Ucos 4>). (30)
n= 1 \p «=1 /

Hence the boundary condition that \p = 0 when p = X is satisfied if, for n > 1,

or (31)

A2, = X5®,.. + X4"+1 Z 2 a2»A28 ,
1 £ 3 — 1

where Sm,„ = 1 or 0, according as m = n, or m 5^ n.

4For the first relation see E. W. Hobson, Loc. cit., p. 105, formula 36. For the second relation, cf.

T. M. MacRobert, Spherical harmonics, 2nd edition, Methuen, 1947, p. 362, Ex. 63. Also see the recur-

rence formulas for Legendre and Bessel functions.
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The above system of linear equations may be solved by successive approximations

as follows. Write, for n > 1,

A2n = £ A<:' (32)
m = 0

where

Al°J = , ALm) = x4"+1 £ 2ncx,M?-v (33)
s = 1

The validity of the above solution naturally depends upon the convergence of the

series (32). To establish convergence, an inequality for the coefficients is needed. How-

ever, for the sake of brevity, no proof will be given here. From physical considerations

alone, it seems likely that there will be convergence as long as the boundary of the

cavity does not touch the surface of the cylinder or X < 1.

Effect of cavity on angle of twist. To investigate the effect of the cavity on the angle

of twist, we have for \//0

1 do)0 1 d^o fr.A\—= —3 ~1T~ = Ti (34)
a dz ar dr '

where co0 is the angle of twist due to \p0 alone. This implies that r represents the angle

of twist per unit length of a circular cylinder without a cavity. While for \, we have

1  L _ L V A d^* /q r\
a dz ar3 dr r3 2s dr ' { )

where is the angle of twist due to i/'i . Integration gives

coi = -^3 £ A2s — f \p*s dz. (36)

It appears that there is no contribution from except the integral part in ip* . The

latter gives

4raA2 d 2 f°° T" k2K2(k)I2(kr) . , „
wi = — r2 /  1cos kz dz dkM J 0 J 0irr dr J0 J0 I2(k)

4tclA2 r f° k3K2(k)Ii(kr) sin kz „
JjlKl I ~r / 7 \ 7 Cu/C

irr z_oo Jo I2\k) k
(37)

2raA2 L.m )k3K2{k)Il{kr)

r k—o I I'zik)

= —16raA2

i.e., owing to the presence of the cavity the angle of twist of the cylinder is increased

by an amount — 16tg^42 •

Numerical examples. Numerical examples will be given for several values of \. Values

of trs are given in Table I, which are computed by numerical integration with the aid

of Gregory's formula.5 The coefficients 2na2s are then readily obtained and shown in

Table II.

6See E. Whittaker and G. Robinson, Calculus of observations, 4th edition, Blackie 1948, p. 143.
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Values of A2, found by successive approximations are shown in Table III. The stress

at any point in the cylinder can now be readily computed. In particular, the shear

stress across the minimum section z = 0 is given by

.. = £ Ajfit-r + (2n+J!r" ~K(0)> (38)

where

Pirn -(-!)"■ (39)

This stress is shown in Table IV and also graphically in Figure 1, where the known

1.4

/ «.6 o.6 0.4. o. 2

Fig. 1. Shear stress across minimum section

result for X = 0 is also included. It appears that in the cylinder under consideration

the maximum shear stress always occurs on the external boundary across the minimum

section. Now, if we define the stress concentration factor K as the ratio of the maximum

shear stress to the constant shear stress across the same section which would give the

same couple about the axis of the cylinder, i.e.,

K = (r")mai (40)

then the following results are obtained.

n i a i 21u> 6> 3j 2j 3j i

K 1.333, 1.327, 1.292, 1.220, 1.139, 1

The value of K in the limiting case X = 1 can readily be visualized from physical

consideration of the cylinder. Figure 2 shows the results graphically.
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Fig. 2. The stress concentration factor K versus X.

Table I. Coefficient <rs

10 12

12.81758 4.15488 2.75876 2.20244 1.91108

14 16 18 20 22 24

1.73288 1.61286 1.52653 1.46174 1.41078 1.37056

Table II. Coefficient 2nai,

2s 2 n 2 n = 4 2ra — 6 2» = 8 2 ft = 10 2ft = 12

2 8.0110X10-1

4 - 9.7380X10"1

6 7.5435X10"1
8 -4.5167X10"1

10 2.3095X10-1

12 — 1.0587 X10-1

-6.4920X10"2

2.9080X10"1
-4.5167X10"1

4.3111X10-1
-3.1762X10-'

1.9708X10-1

1.0776X10"2
-9.6787X10"2

2.3095X10"1
-3.1762X10"1

3.1673X10"1
-2.5481X10-'

-2.1508X10-3

3.0794X10-2
-1.0587X10-'

1.9708X10-'
-2.5481X10"'

2.5755X10-'

4.6657X10""4
-9.6248X10"3

4.4791X10"2
-1.0810X10-'

1.7561X10"!
-2.1750X10-1

-1.0577 X10-4

2.9532 X10"3
-1.7819X10"2

5.4032X10-2
-1.0756X10-1

1.6022X10-1
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Table III. Coefficient A2n

2 n X X =

2 -1.0718 X 10"5

4 6.9045 X 10-"
6 -8.8434 X 10",s

8 1.3619 X 10"21

10 - 2.2796 X 10-*6

12 3.9873 X 10"29

-3.4407 X 10-4

1.1348 X 10"9
-2.3256 X 10~12

5.7307 X 10 15
-1.5347 X 10"17

4.2955 X 10"2»

-2.6710 X 10"3

3.3887 X 10-'
-3.5176 X 10"9

4.3912 X 10"11
-5.9586 X 10 13

8.4513 X 10"16

-1.2271 X 10~2

2.0889 X 10"6
-6.9068 X 10"7

2.7521 X lO""8
-1.1950 X 10"9

5.4393 X 10"11

Table IV. Shear Stress T^/pra Across 2 = 0

X = 0

X

+ IX
+ |x
+ JX
1

0.000
0.250
0.500
0.750
1.000

0.208
0.377
0.584
0.792
1.000

0.418
0.518
0.674
0.858
1.006

0.643
0.696
0.799
0.919
1.046

0.952
0.977
1.038
1.119

1.214


