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A NON-PLANAR BOUNDARY PROBLEM FOR THE WAVE EQUATION*

BY

GEORGE K. MORIKAWA

(Hughes Aircraft Company, Research and Development Laboratories)

1. Introduction. Notwithstanding the relatively recent outburst of activity on the

part of aerodynamicists concerning problems dealing with the wave-equation, some

problems with radiation type conditions still deserve attention. An important class of

problems of this type are those with non-planar, non-axially-symmetric boundaries, in

particular, wing-body problems in linearized supersonic flow. For slender wing-bodies

[1], where variations in the flow direction are small, the stationary three-dimensional

problem is reduced to a two-dimensional potential (Laplace) problem in the cross-flow

plane. For conical wing-bodies [2], where the surface is generated by linear elements

passing through the vertex, a reduction from three to two-dimensions is evident, and a

transformation (Chaplygin) further reduces the subsequent elliptic problem to a two-

dimensional potential problem. However, for more general type boundaries, the problem

is relatively difficult. One of the first attempts in this direction has been made by

Ferrari [3], using an iteration procedure which is also discussed by Lagerstrom and

Van Dyke [4], In this paper the problem, which the author considers to be the funda-

mental wing-body problem for stationary linearized supersonic flow, is discussed. An

approximate solution is obtained and expressed in terms of the pressure, a quantity of

interest to aerodynamicists.

2. Formulation of the problem. Consider the wing-body configuration shown in Figure

1, where the body is an infinitely long, circular cylinder (normalized to radius = 1)

and the wing is a semi-infinite flat plate with the leading edge normal to the free-stream

direction defined by the velocity W, i.e., zero sweep-back. W is the uniform flow (nomi-

nally in the z-direction) far upstream and away from the body and the dashed lines

from the leading edge-body junction are elements of Mach cones indicating supersonic

leading edges. The problem considered here is the case where both body and wing are

at a small angle of attack, a, with respect to the uniform flow at — ; the more general

case, where the body is at a and the wing has an arbitrary angle of attack distribution,

can be handled as easily. Since the leading edges of the wing are supersonic, the flow

field upstream is known everywhere and the boundary conditions are of the first kind [5],

where one component of the velocity, namely, v = <py , is known everywhere in the

plane* of the wing (x,z plane) and on the body. By a simple super-position procedure

made possible by the linearization, the original problem with both body and wing at a

*Received July 19, 1951. This paper is part of a thesis submitted'in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy at California Institute of Technology, June, 1949, and a

subsequent report, "The Wing-Body Problem for Linearized Supersonic Flow", Jet Propulsion Labora-

tory, California Institute of Technology, Progress Report No. 4-116 (Dec. 19, 1949), written under

U. S. Army Ordnance Contract No. W-04-200-ORD-455. A more complete description of the physical

problem (and related aspects) than given in this paper is presented in the report, hereafter referred to as

the "JPL report". The author wishes to thank Professors H. J. Stewart, P. A. Lagerstrom, A. Erdelyi

and C. R. DePrima for their suggestions and criticisms.
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can be replaced by an equivalent problem* with body at zero angle and wing at angle of

attack a, plus an apparent twist imposed by the original flow upstream of the leading

\

Fig. 1. Wing-body Configuration.

edge. Then the boundary conditions in cylindrical polar coordinates, in terms of the

perturbation velocity potential, are:

^ <pt(r,0,z) = —Wa(\ + "*), 2 > 0, <Pr(M,2) = 0, (la)

where <p satisfies the wave equation

AV — <Pzz = <Prr + ~ <Pr + ^2 <PS6 ~ <f>„ = 0. (lb)

For arbitrary Mach number M, the coefficient of is — (M2 — 1), but there is no

loss in generality in taking M = 21/2, since, by a simple similarity transformation [5]

(linear), the arbitrary M case results. The initial condition (z is a time-like direction)

for the equivalent problem is taken to be

<p(r,0,0+) = <p.(r,0,0+) = 0. (lc)

Actually, <pj,r, 0, 0+) ^ 0, that is, <pz ̂  0 if z = 0 is approached from positive z in

the x, z plane, but this condition causes no difficulty here.** Then this radiatioit type

problem given by Equations (la), (lb) and (lc) is a natural problem for the methods

of the Laplace transformation; f and subsequently it will be evident that these methods

lead to an approximate solution of an inherently complicated problem.

*Actually, the equivalent problem consists of two problems, the second consisting of the body alone

at angle of attack a; but since the pressure component <pz is the quantity of usual interest, the second

problem contributes nothing.

**A necessary condition for uniqueness is the condition of outgoing waves.

fSeveral British workers have recently applied Laplace transform methods to supersonic flow

problems; see, e.g. [6,7].
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Assuming that the solution is twice differentiable and that the second derivatives

have Laplace transforms, the equivalent problem, given by Eqs. (1) becomes the trans-

formed problem

Ai/' — s2^ = 0 (2a)

with the boundary conditions

i h(r,0;s) = - V (l + ?)' = °' (2b)

where

<P(r,9;s) = [ e~"<p(r,d,z) dz (2c)
Jo

is the Laplace transform of <p with respect to the free-stream direction, z, and s is the

transform variable. (A convenient notation is to write \p = £{<p; s} and the inverse

Laplace transform <p = z}; then the pressure p = —pW<pz , where p is the free-

stream density and <p, = z\). For convenience in presentation, since none of

the essential features are lost, the sweepback is taken equal to zero. The differential

equation (Eq. 2a) is the two-dimensional modified Helmholtz equation with the param-

eter s(Re s > 0) and the transformed problem is an elliptic boundary-value problem in

the r, 6 plane. For strong conditions [8, 9] on \p exterior and on the boundary of the region,

i.e., is twice continuously differentiable in (r, 0), the solution is expressible as an integral

in terms of ■</< and the outward normal derivative \pn on the boundary by application of

the Green's theorems. But and \f/n are related on the boundary C and the solution

takes the form

«r.»»--s/„(*5F <3a)

where G is the sum of a singular and a regular function in the region. If G is chosen

such that dG/dn = 0 on C

(3b)

where G is called the second Green's function. The Green's function is then characterized

by the following conditions:

1) G(r,d;r',d') = G(P;Q) satisfies Equation (2a) for P(r,&) ^ Q(r',d');

2) G(r,d;r',6') has the proper singularity at P(r,9) — Q(r',d')] ^

3) ^ = 0 on C.
dn

A consequence of the first two conditions is that G(r, 6; r', 6') = G(r', 8'-, r, 6) symmetric

in (P; Q). Weaker conditions, e.g., the condition that \pn may be discontinuous, but

integrable on the boundary, are permissible for Eq. (3b) as in potential theory [10].

The fundamental solution of the modified Helmholtz equation (Eq. 3b), i.e., the

solution independent of 6 and singular at the origin, is K0(sr), the modified Bessel func-
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tion of the second kind of zero order [11], For a fixed point P(r, 9) with a variable point

Q(r', 6'), the fundamental solution may be written immediately as K0(sp) since the

differential equation is invariant under translation; p = [r2 + r'2 — 2rr' cos (6 — d')]1/2

is the distance between P and Q. This solution may be interpreted as the Green's function

for the entire x, y plane, since it satisfies the required properties (Eq. 4).

In determining the Green's function for a region with a given boundary, the function

sought will always have the form

G(P; Q) = K0(sp) + h(P; Q), (5)

where h(p; Q) is regular in the region. Since K0(sp) is symmetric in (P; Q) then h(P; Q)

must also be. The invariance properties of the differential equation will be helpful in

determining h(P; Q) and give some intuitive meaning to it. The Helmholtz equation

(Eq. 2a) can easily be verified to be invariant under the following transformations:

1) translation, (x, y) = (x + a, y + b),

where a and b are constants;

2) reflection on the axes, e.g., on the a;-axis, (6)

(ix, y) = (x, —y) or reflection on any straight line;

3) rotation, (f, ff) = (r, 8 + c) where c is a constant.

There appears to be no simple invariant transformation with respect to inversion on the

unit circle, as there is for Laplace's equation. Such a transformation would be helpful

in obtaining an intuitive notion on constructing the Green's function for the circle [12],

For the transformed wing-body problem given by Eqs. (2) the solution can be con-

fined to the upper half-plane and the complete solution obtained later by using the

known symmetry conditions on the solution with respect to the x, z plane. Then the

boundary is that given in Fig. 2. The Green's function for the upper half-plane is

Gi{P-,Q) = K0(sp) + K0(8Pl), (7a)

where

Pi = D-2 + f'2 ~ 2rr' cos (6 + 0')]1/2

is the distance between P and the reflection of Q on the x-axis. The Green's function

for the unit circle is easily obtained by using the addition theorem [11] for K0(sp):

K0(sp) = I0(sr)Ko(sr') + 2 £ In(sr)Kn(sr') cos [n(9 - 6')], r < r' (7b)
n— 1

with r and r' interchanged for r > r', where In and Kn are modified Bessel functions

of the first and second kinds, respectively, of the nth order.

For r < r' consider h(P; Q) of the form

CO

h(P;Q) = A0K0(sr) + £ AnKn(sr) cos [n(8 - 6')], (7c)
n= 1

where A0 and A „ are determined to satisfy the boundary condition

<mp-,Q) _ n.
dr
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then

4o = ~ kB) Ko{sr,)' An= ~2E§j K"(sr,)' (7d)

where the primes on the Bessel functions denote differentiation with respect to r and

]
G,(P;Q) = K0(sr')

+ 2 X X„(sr')[^(sr) - X.(«r)] cos [n{6 - 6')], r < r> (7e)

with r and r' interchanged for r > r'.

P(r,9>

Q(r',-e')

Fig. 2. Boundary for Transformed Problem.

The Green's function for the boundary given in Fig. 2 is obtained simply by using

the reflection property on the z-axis with the results for the circle (Eq. 7e) and

G(P-,Q) = 2K0(sr')[lo(sr) ~ |||

+ 4 £ Kn(Sr')[/„(Sr) - Kn(sr) cos nd cos nd', r < r' (8a)

with r and r' interchanged for r > r'. A convenient equivalent form to Eq. (8a) is

' m
G(P)Q) = K0(sP) + Ko(sPl) - 2 K,^ K0(sr)K0(sr')

+ 2 f] Kn(sr)Kn(sr') cos nd cos nd'
n = 1 J

(8b)

With the determination of the Green's function the transformed problem is formally

solved. There follows, for each solution of specific problems, the interpretation by the

inverse Laplace transformation into the solution of the original physical problem; some-

times this is a formidable task.

Some intuitive meaning may be given to the Green's functions for the transformed

problem. For example, the inverse Laplace transform of the fundamental solution

K0(sp) represents a supersonic source singularity in the unobstructed physical space.
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3. Splitting of the transformed solution ip. Since on the circle — — \pr = 0, the

transformed solution by Eqs. (2b) and (3b) is

t(r,0;s) (l + ^p)[G(r,0;r',ir) + G(r,6;r',0)] dr'. (9a)

Using the second form of the Green's function (Eq. 8b)

i(r,9]s) = — [ (l + -Tsjf-K'oKr2 + r'2 - 2rr' cos 0)1/2]
ITS J i \ T J

+ K0[s(r2 + r'2 + 2rr' cos 0')l/2]} dr' - — f (l + 4)
ITS J i \ V J

K0(sr)K0(sr')

+ 2 2 K2n(sr)K2n{sr') cos 2nd dr'

= + im. (9b)

This transformed solution is confined to the first quadrant; the solution in the other

quadrants are obtained by symmetiy arguments. The solution given by Eq. (9b) is

written as two integrals, xpn> and ipi2), respectively, for two reasons: 1) each can be

given a physical interpretation, and 2) the difficult core of the solution, i.e., the second

integral \pl2), is separated from \p(l), the inverse Laplace transform of which can be

obtained simply. By inspection, it is evident that \pll) can be regarded as the transformed

solution for the equivalent problem (cf. first paragraph of Sec. 2) where the circular

cylinder (a = 0) is replaced by a flat plate (a = 0); thus i^(1) is called the "flat plate"

solution. Then the second part of the solution ipf2) can be interpreted as the correction

solution needed to satisfy the boundary condition of zero flow through the circular

cylinder, i.e., the circular cylinder is a stream tube; thus ipi2) is called the "body" solution.

The principal difficulties arise in attempting to perform the inverse Laplace trans-

formation of \p(2>.

4. The "flat plate" solution ip'11. The "flat plate" solution in terms of the pressure

component (cf. foot note following Eq. 2c) <pl'] on the surface is conveniently written

in Cartesian Coordinates. The transformed solution for ^ = £ ~1 {!1'; z} by Eq. (9b) is

stw(x,y,s) = ~f'( 1 + p){K<M* - £)2 + yY2]

+ K0[s((x + £)2 + y2)U2]) df. (9c)

The order of integration can be interchanged and the inverse Laplace transformation

is performed first:

^{KMix - + yY2]-,z}

= 0, $ < [x - (z2 - yy/2] and [x + (z2 - yY") < | (10a)

= [z2 - y2 - (x - £)T1/2, [x - (z2 - yY2] < $ < [x + (z2 - y2)U2]



1952] NON-PLANAR BOUNDARY PROBLEM FOR THE WAVE EQUATION 135

and

^{KoMx + + yy/2}-,z\

= o, [(z2 - y2)1/2 - x] < f (10b)

= [z2 - y2 - (x + a)2]'1'2, 0 < £ < [(z2 — y2)1/2 - x]

In addition, since the lower limit of the integral is 1, three regions of integration are

. MACH LINE

Fig. 3. Regions of Influence in the x, z Plane.

defined and have a physical interpretation (cf. Fig. 3, where these regions are shown

in the x, z plane):

Region I, (x — z) > 1: Region of influence of the Mach cones from the wing leading

edge

Region II, — 1 < (x — 2) < 1: Region of influence of the Mach cone from the wing

leading edge-body junction plus Region I.

Region III, (x — z) < — 1: Region of influence of the Mach cones from the opposite

wing leading edge plus Region I plus Region II.

The "flat plate" solution, <p[l\ on the wing surface (x, z plane) in these three regions is

given in terms of elementary functions (cf. JPL report) and is shown graphically in

Fig. 4 by dashed curves. For the chordwise pressure distribution (Fig. 4b) attention is

focused primarily on the body (a fairly complete description of the solutions is given in

the JPL report).

An additional solution which can be obtained immediately is important in the dis-

cussion of the complete solution. The "flat plate" configuration (cf. Sec. 3) is modified

now by inserting a semi-infinite plane barrier at x = 1, parallel to the y, z plane down-

stream from the leading edge-body junction. This modification does not affect the

solution <p(1) outside the Mach cone from the leading edge-body junction; but inside
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this region of influence for x > 1, the inserted plane simulates the limiting case of a

body with infinite radius. Thus, in this region, the solution (called the "modified flat

B
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plate" solution <p*) can be interpreted as an upper bound (at least in Region II) to the

complete solution. The pressure component is given by

1 <* - e'r"!«

-t /* (z—x + 2) / 1 \

+ ±J (l + p)[22 - (« - 2 + £TI/2 « (11)
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and is given in Fig. 4 by the light solid lines. Note that the first integral is the "flat

plate" solution in Region II (cf. JPL report) and the second integral can be interpreted

as the correction solution needed to satisfy the boundary conditions of zero flow through

the semi-infinite plane barrier (cf. interpretation of "body" solution in Sec. 3).

5. Remarks on the "body" solution <pw. From the comparison of the "flat plate" and

"modified flat plate" solutions in the previous section and the discussion on the splitting

of the complete solution in Section 3, it is evident that the "body" solution, in terms

of the pressure component tp'f, is effective only within the Mach cones from the wing

leading edge-body junction and is identically zero outside this region. The inverse

Laplace transform required in the particular case of pressure on the body, r = 1, is

where the contour r goes from (a — i- <») to (a + i- °°), a real, a > 0 in the complex

s-plane. By a well-known procedure, Eq. (12) leads to

£
i/g„(W) \ _ -jK3H(or')IU>r) ~ K'2n(a)I2n(<jr')\ da

\sK2n(s) 'J Jo I IKU*)]2 + AhMY

, y Res (12b)

The integral probably can be evaluated only by numerical methods, and the residues

of the function (although the singularities, which are in the left-half s-plane, are simple

poles) can be evaluated only after determining the location and number (which are of

the order of 2") of poles. The calculation complexity is then clear, even for this particular

case, r = 1, and an approximate method of solution is sought.

6. An approximate "body" solution <pw and the complete solution <p. The comparison

between the "flat plate" and "modified flat plate" solutions implies that the main

contribution to the pressure of the "body" solution will be found near the leading edge-

body junction, i.e., for small z. With this in mind, an approximation for large s to the

Green's function, G2(P; Q), given by Eq. (7e) for the region exterior to the unit circle

is constructed. Consider a Green's function of the form

G(r,6;r',6') = AT0[s(^2 + — 2rr' cos (6 — d'))in]

+ AK0 4f2 + ~ ~7 cos (0 ~ 0')) J> (13a)
r r

where A is to be determined. It is clear, from the invariance properties of the differential

equation (cf. Sec. 2), that the exact Green's function cannot be put in this form, since

the second function on the right side of Eq. (13a) is the fundamental solution (with

respect to P(r, 6)) placed at the inverse point of Q(r', 6') with respect to the unit circle.

But, by the addition formula (cf. Eq. 7b),

Kc s(r2 + ^2 ~ y cos (0 - 0')) ] = K0(sr)I0(^7j

+ 2 X) Kn(sr)In(-A cos [n(d — 6')], r > -7 (13b)
n-l V / r



138 GEORGE K. MORIKAWA [Vol. X, No. 2

Replacing this expression in Eq. (13a) and comparing with the exact Green's function

(Eq. 7e), such that the first term is exactly matched, the arbitrary function A becomes

Ii(s) K0(sr')

Then the approximate Green's function for the region exterior to the unit circle is

G2(r,0;r',6') = tf„[s(r2 + r'3 - 2rr' cos (6 - 6'))1/2]

, I'ojs) K0(sr')

+ K'0(s) I0{s/r') Ao
s(r2 + 4s — y cos (0 — 0')) J (13d)

This approximate Green's function satisfies the differential equation, Eq. (2a), with

respect to the point P(r, 6), but it is not symmetric in (r, 0; r', 0') and does not satisfy

the boundary conditions. However, comparing term by term, the difference in the

Green's functions occurs only under the summation sign, where

^ Kn(sr)Kn(sr') cos [n(0 - 0')] (13e)

in the exact Green's function (Eq. 7e) has been replaced by

HI W?j cos W - *')] (i3f)

in the approximate Green's function. Then for fixed r' and large s (for Re s > 0) terms

given by Eq. (13f) approach the exact terms given by Eq. (13e), using the asymptotic

expansions for the modified Bessel function [11],

The approximate Green's function for the region and boundary for the wing-body

problem (Fig. 2) can be written immediately

G(r,6;r',d') = {Z0[s(r2 + r'2 - 2rr' cos (0 - 6'))1/2]

+ K0[s(f2 + r'2 - 2rr' cos (0 + 0'))1/2]}

, m KM') IT,
+ K'Js) I„(s/r') r°

+ K0

(r3 + - y cos (0 - 0')) ]

s(r2 + h ~ vcos + e'^) ]}• (13g)

The approximate Green's function is a good representation for large s (and r' > 1);

this result implies, by a known theorem in Laplace transform theory [13], that the

solution obtained by using this Green's function is a good approximation near the leading

edge-body junction. The transformed approximate "body" solution is

,(2), „ n Wa r (, , 1\ Io(s) K0(sr') /T, \ ( 2 , 1 2r „\1/21
si (r,e,s) ~ T I (1+ r>2) R'q(s) jo(s/r') (#o[s(r + r,2 r, cos 6) J

+ K0 s^r2 + 4s + y cos oj J j dr'. (14a)
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The second term in the braces of Eq. (14a) corresponds to the reflected solution with

respect to the y, z plane (cf. "flat plate" solution, Eq. 9c). Now the solution for the

pressure component, <p{2), can be obtained in Region II (cf. Fig. 3) where the approxi-

mation is best (the reflected solution does not enter here). By the asymptotic expansions

for the modified Bessel functions

I fa) K0(sr') 1 / s(r' - 1)2\/, , Jl\\
- m mf) ~ vexp i—? a + °w/- (14b)

Neglecting the higher order terms

I'M K0(sr')

K'0(s) I0(s/r') Ao
s(r2 + h ~ 7 cos e) ]

~ 7 exP {- s(r / 1} }^°[s(r2 + 7* - 7 cos e) ]• (14c)

For simplicity, the solution is carried out for 0 = 0, i.e., in the plane of the wing only.

Applying the inverse Laplace transformation to the right side of Eq. (14c)

£"'{7 exP {- S(r 7 ^ V°(s r ~ 7 4 ~ °' r' > (« - r + 2),
1 1 ' J (14d)

= {[zr' - (r' - l)2]2 - (rr' - 1)2}'1/2, 1 < r' < (z - r + 2).

Then the approximate "body" solution in Region II is

^f'2) = I (l + 7^){[zr' - (r' - l)2]2 - (rr' - 1)V1/2 dr'. (15a)

As is to be expected, the integral vanishes for (r — 2) = 1, 2 0. This is an elliptic-

type integral which can be expressed in terms of the standard complete and incomplete

elliptic integrals of the first and third kinds by known methods of reduction [14]. For

example, in the particular case r = 1, Eq. (15a) reduces to

= I [ [1 + (1+ Zt)~2]{{ 1 - r)(l + 2t)[1 + (1 + 2)t - 2t2]j~1/2 dr. (15b)

The complete approximate solution, <p'z" <p"', is shown in Fig. 4 as heavy, solid lines.

This solution also approaches the correct asymptotic value for large 2, i.e., ipJWa = 1.

No estimate has been made for the error, although in the JPL report such an estimate

is indicated for a simpler problem, using the same approximate Green's function for the

circle (Eq. 13d). Also, additional calculations on the body have not been made; however,

it is clear that the complete solution approaches the correct asymptotic value very

rapidly in the downstream direction on the body and in the vicinity of the body on

the wing.*

*A comparison with experimental pressure distributions is made in [15] and results, obtained by

integrating the pressure over finite wings (including cases with swept-back leading edges), have been

used in [16] on supersonic wing-body lift.
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An estimate of the complete solution on the body (r = 1) for large z is readily made.

From Eq. (9b), setting r = 1, the Green's function for small s becomes

w+2 S +2 £
(16a)

Since K0(sr') is the. dominant term for small s (Re s > 0), the transformed complete

solution becomes

«*(M
- = 1 + ;^K0(sr') dr'. (16b)

Wot.

Taking the inverse Laplace transform of K0(sr'), the pressure component

».(M,rN ° " / 1 \ °'~2 - 1^1/2

and

W1-I II + *' -1 +1 <16c)
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