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ON THE PLANE PROBLEM OF A PERFECT PLASTIC BODY'

BY
HILDA GEIRINGER
W heaton College

In the equilibrium problem of the isotropic ideal plane plastic body it is assumed
that the state of stress is restricted to a one-dimensional variety F(s, , 0,) = 0 where
a:(z = 1, 2) denote the principal stresses; moreover, the two equilibrium conditions hold.
This problem may be derived in several ways from the complete three-dimensional
problem of the perfect plastic body; in particular the assumption ¢; = o, = 0,9 ---/9z =
0 leads to it without the need for consideration of any three-dimensional relation be-
tween strain-rates and stresses. However, as long as F(s, , 0,) is not specified the
relation of the plane problem to the three-dimensional problem need not be considered.

Important particular assumptions for the yield condition, F(s, , d,) = 0, are the
v. Mises condition of constant shear energy and the Saint Venant condition of constant
maximum shearing stress. For the first, F is given by

o — a0; + o3 = 4K7, 1
the second states that |7 |mex = |01 — 02 |/2 = K, if ¢, and o, have opposite signs,
while otherwise either o, = 2K, or ¢, = 2K. Hence

| oy — o5 | = 2K, if g0: =0,
2

=4K — | o1 + o2 |, if o0, = 0.

These forms of F are derived from corresponding three-dimensional conditions by
means of the afore-mentioned assumption of ‘“plane stress”, o3 = 0,9 ---/9z = 0.

The problem most widely investigated is that with the yield condition (s; — @,)® =
4K? as in the first Eq. (2). It is distinguished by its comparative mathematical simplicity;
moreover, this same yield condition appears in “plane strain’, as both v. Mises’ and
Saint Venant’s condition.

The general plane problem defined by the two equilibrium equations and some yield
condition has been considered by Sokolovsky [6a, b] for the two conditions (1) and (2);
and for general yield conditions by v. Mises [4a], Geiringer [1], and the Brown Uni-
versity group, (see P. G. Hodge [2], Chap. VIII). As in the case of “plane strain” one
can—in several ways—derive from the basic equations a linear system by a change of
variables, somehow analogous to the Chaplygin transformation in the theory of com-
pressible fluids; the plane of the new independent variables called “stress graph” by
v. Mises, corresponds then to the hodograph plane, the yield condition to the “adiabatic”
condition. It is intended to follow up this analogy in several directions.

First we establish linear differential equations of second order for certain magnitudes
which may serve as coordinates in the physical plane; such an equation is amenable to
well-known analytic methods. The coefficients depend, of course, on the yield condition;

1Received Oct. 13, 1950. The main results of this paper have been communicated in a talk given at
the Second Symposium on Plasticity, Providence, April 1949, and later briefly summarized in three
abstracts of papers presented by title at the October 1949 meeting of the A.M.S. [1].
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we consider particularly conditions (1) and (2) and the new ‘“parabola condition”
recently proposed [4a] by v. Mises. Next the characteristics are investigated, in general,
and for the afore-mentioned yield conditions; here most of our results while definitely
more simple are essentially identical with corresponding results of Sokolovsky [6a],
v. Mises [4a], Hodge [2]. Finally, stmple wave solutions are considered. The stress dis-
tributions are determined and discussed; cross characteristics and lines of principal stress
are computed. In each of the indicated directions one can go much further, this paper
thus being of an introductory character; solutions of concrete problems have not been
included.

1. The stress graph. Following v. Mises we express the plasticity condition in terms
of an appropriate parameter, s:

F(a1,0) =0, a1 = a.(s), oy = 03(s). (3)

Let us assume from now on that ¢, = o, . It is often convenient to take for s the average
stress (o, + ¢,)/2K. Denoting by 6 the angle between the positive x direction and the
£ direction, i.e., the (positive) first principal direction, we take s and 6 as new variables
which determine the stress tensor at each point. The plane in which s and 6 are polar
coordinates is called stress graph by v. Mises. Denote by 9 ---/0¢ and 9 ---/dn the
directional derivatives in the first and second principal direction, respectively, then
equilibrium conditions are equivalent to the system (3):

3o, 30 do, a6

35“ = (0'2 - 0'1) 5;", a7 = (0'2 - 0'1) aE- (4)
With the use of (3) and the abbreviations, de,/ds = {(s), ete.,
(02 = 0)/ol = f(8), (o2 — &)/oz = ¢(s), ®)
(4) yields the reducible equations
s a0 as a6

At every point where the Jacobian j = (s, 6)/4(¢, 1) is different from zero in (6) the
dependent and independent variables may be interchanged, to yield v. Mises’ linear
equations

9 _ oy 98 _ 01
90 - f(s) 887 EY] - g(s) as' (7)

2. Linear differential equations of second order. In Eq. (6) £ and  are not coordi-
nates; it is, however, possible to derive from (7) in various ways systems of equations for
quantities which may serve as coordinates in the physical plane. If, e.g.,

X = zcos 6 + ysin 4, Y = ycos§ — zsin 6, (8)
we find the system of linear equations of first order:

X

Yy Y X



1951] ON THE PLANE PROBLEM OF A PERFECT PLASTIC BODY 297

From (9) we obtain the equations of second order:

*X X
36° - fa—2 Fyci —X+ (f’g+ f—o,

(10)
’Y ’Y ay ,,
9 S g = Y+ Wi+ 9.

These equations’ are hyperbolic, or elliptic, according to whether fg 2 0 (see (5)) or:

20 ay
they are parabolic if either fg or its reciprocal value equals zero. If a solution X (s, 6)
of (10") has been found, the corresponding Y (s, 6) follows from (9°) and the coordinates
z, y follow from (8) in terms of s and 6 without further integration; thus s and 4 are
defined in terms of z and y.

Next, we satisfy the first Eq. (9) by a function (s, 6) such that

W__X 9 _ Y
ds gk’ a6  k(s) (12)
where k satisfies the condition g(s)k’(s) 4+ k(s) = 0. (12
Substituting ¢ into the second Eq. (9), we find
’y _ 32'// 3'P '
= SE =G - 1- 9. (13)
Also with
a Y i) X
£ = JONE — k) =0, (14)

3s _ f(h(s)’ 80 h(s)

the equation

T 2= g+ (15)
follows in the same manner.

For finding integrals of (10) or (13), or (15) two principal methods are available:
(a) Bergman’s operator method may be adapted to our problem; (b) the classical way
of expansion in series seems promising. In these ways regular solutions as well as solu-
tions with appropriate singularities may be obtained. Because of the linearity of (10)
solutions may be superimposed. On the other hand, the difficulties encountered in actual
boundary value problems, where the boundary conditions are given in the physical
plane, are well known.

3. Particular yield conditions. We consider v. Mises’ ‘“ quadratic” condition (1), the
the “hexagonal’’ condition of Saint Venant, and v. Mises’ new ‘‘parabola condition”.

1Equations (10) are simpler than Eq. (19) of v. Mises [4a] because X and Y rather than z and y have
been chosen as dependent variables. '
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In the ¢, — o,-plane (Fig. 1) the M<ises limit (1) is represented by the ellipse

s=gplto), (-2Sss+2),

oy = K[s + (4 ; 82>1/2:|, gy = K[s F (4 g sz>m], (16)

where the upper signs apply to the right, the lower to the left part of the ellipse. Then

4K23_ 2 — 2 4__ 2\ 2
olos = =3 4_:2, fg=("’,,"‘) =(3_882). (17)

020,

It is seen that fg > 0 for s> < 3, fg < 0 for s* > 3 while fg — =+ = as s* — 3. Since
we assume g, = g, We are concerned merely with the left part of the ellipse; the hyper-

bolic case corresponds to the interval — V3<s<+ 43 3;tos = + \/ 3ands = — \/ 3

2 =
- ,
i /
N, 09
s=-1 0_5,0 p /
v Vi 74 X
[ :?2K / Sz
1 7 0.=26 [ -
o 12 ~F-= -
§==2 s=-a
Fi1c. 1. Yield conditions. ,
correspond the “sonic points” o, = 20, = 4K/4/ 3 and o, = 20, = —4K/ \/5. In

the physical plane the ‘“‘sonic line’’ separates the domain of hyperbolic solutions from
the elliptic domain; its image in the stress graph is the circle about the origin with
radius s = /3. The representation of the “hyperbolic part”, for o, > o, is:

o = K[s - (4 g 82>1/2:|, = K[s + (4 - 82>m:|, Is| < /3. (16"

The complete Saint-Venant limit (2) is represented by a hexagon inscribed in the
ellipse (16). With s = (o, 4 0;)/2K, the representation of the “hyperbolic part’ of
this limit is

o = K(s - 1), 02 = K(S + 1), | S l < 1 (18)
and
olos = K2, fg = 4. (19)

The vertical and horizontal lines of the hexagon correspond to parabolic domains, where
either o, or o, are constant.

The “parabola limit” consists of two branches of parabolas passing through four
corners of the Saint Venant hexagon:

oe— o _ 1| 2 _ (014 o)
K ‘ia[“ (2K )]’ (20)
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where a = 1 + /2, the plus sign applying to the left, the minus to the right branch.
The parametric representation for o, > ¢, is (with our parameter)

a1=Ks—-§a(a2—s’), 0'2—K3+ (a—s), |s| <a (21)
and

f=a-—s, g=a-++s, fg = a® — §. (22)

It is seen that, with the only exception of the points s = 4a, where fg = 0, the problem
is everywhere hyperbolic.

As an application let us consider the second order equations of the. preceding section
for the parabola limit, transforming them at the same time to standard forms. With

— = (a* — §)?, s=asiny, u = arcsins/a

and putting X (s, 6) = X(u, 6), and A(x) = (1 + 2 sin u)/cos u, Eq. (10) becomes

X X
—éroz—auz+XA(u)—0 ]u|<1§r.
1/2

Next with p(u) = [cos u(1l — sin w)]” ’*, where Ap — 2p’ = 0, it assumes the form

3z _ 2Z 1+2sinu=

30° +72 4 cos’ u (102)
This is an equation in standard form which may be treated in various manners.
Also, with Y (s, ) = np(u, 6), Eq. (13) takes the form
32'1' ll/ \lf 1 _
" ar T dwesu O (132)
and putting ¥(u, 6) = r(u)R(u, 6) where
2 1/2
r(u) = ('———1 + sin u) , 2 cosu—r=0,
cos u
we obtain
R IR 1 — 2sinu
0 " 0w T E ey O (13b)

Note the difference between (10a) and (13b).
As a second application, we give an example of particular solutions of Eqgs. (13). Set

¥(s, 0) = P(s)Q(6). (23)
One obtains in the usual way, denoting by A a constant, and using (22):
(@® — )P — (a + s)P' — AP = 0.

Introducing the new variables u and U by

s=a@u-—1, =% ¢L_ 200
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we find

U au
u(l — w) e Y U=0, (24)
which is a hypergeometric equation. Solutions of (24) are well known; with @ = C sin
n(0 — 6,), we may thus find solutions of the form (23), which may be superimposed.
4. Characteristics. The characteristics of the reducible equations (6) are easily found.
If o denotes the angle of a characteristic direction with the ¢-direction, we find by standard
methods:
d"] f 1/2
tan® ¢ = i) tanp = o = :l:(—) . 25
o= ¢ = p (25)
In the hyperbolic domain, f and ¢ have the same sign; thus, at each point of this
domain, there are two distinct directions making equal angles with the ¢-direction. We

ot

F1c. 2. Characteristics in physical plane and in stress plane.

denote by C*, (C7) the characteristics making the angles +¢, (—¢) with the &direction,
and by

a =0+ ¢, ad =6 ~9 (26)
the angles of C* and C~ with the z-axis (Fig. 2). TLen, with dy/dz for the direction
coefficient of a characteristic, we have

dy _ _
dx—tan(():l:go)—

tan 0 + (f/9)""*
1 F tan 9-(f/g)"*
the upper (lower) sign applying to C* (to C7). If a solution s = s(zy), § = 6(z, y) is
introduced into (26'), this becomes an ordinary differential equation for the determination
of the characteristic curves.

Note also that, according to (3), (5), and (25) with F; = 0F/do, ,

(26")

tan’p = % = -2 = —=* (25
a

depending merely on the yield condition: F (s, , 0;) = 0. For the “quadratic”’ condition,
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for example, this gives tan® ¢ = (¢, — 20,)/(20. — 0,), showing that along the “sonic
line” ¢ equals 0 or =/2.

From the general definition of characteristies it follows that a relation exists between
the derivatives of the dependent variables along a characteristic direction. To find this,
multiply the first term in the first Eq. (6) by cos ¢, the second by (g/f)'/* sin ¢; in the
second Eq. (6) multiply the first term by sin ¢, the second by (f/g)'* cos ¢ and add.'
Thus,

gg cos ¢ + sm¢ = (fg)'”*- (6: cos ¢ + —osm ¢>

Denoting by 9 - - - /3l differentiation in a characteristic direction, we obtain the desired
relations:

12960

al’ al'
These relations between the derivatives of s and 6 along C* or C~ do not depend on the
validity of the transformation (7).

It follows from equation (10) or (15) that for the fixed characteristics I' in the stress
graph:

172 30

al* = (f9) —(f9) @7

dé - de -
(%Y = s, 20— s, )
Writing;:
[ o7 as = P (28)
(with an adequate lower limit), we obtain the equations of the two families of fixed
characteristics, I'* and I'": .
6 — F(s) = const, 6 + F(s) = const. (28")

Equation (28) may also be derived from (7) in the same way as (24) was derived from
(6). Then (27) shows that (as always) the characteristics in the two planes which are
mapped onto each other (here the z, y plane and the s,  plane) correspond to each
other, here C* to I'*, C” to I'". We see from (28) that I'* and I'" make equal angles
+y¢ and —y with the radius vector and tan ¢y = sd6/ds (Fig. 2).

We consider here in general the hyperbolic case; let us, however, just say a word
about the parabolic case where f/g = o}/ is either zero or infinite. If ¢ = 0(¢] = 0)
the angle ¢ = 0, (¢ = 7/2) and the one existing characteristic direction coincides with
the direction of first (second) principal stress. In either case ¢ = 0, df/ds = 0. It follows
from (28) that in a parabolic region the characteristics ' in the stress graph are radii
through O’, and from (26’) by integration that the characteristics in the physical plane
form likewise a set of straight lines: y = z tan 8 + G(8) if o5 = 0.

5. Characteristics. Continuation. The I'-curves in the stress graph have been investi-
gated by v. Mises for the three yield conditions and sketched with s and 6 as polar
coordinates. The formulas are:

1In the hyperbolic case g/f is nowhere zero or infinite.
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Quadratic condition (v. Mises)

d_0 _ (3 — s2)1/2
s~ T 4-¢
(29)
=+ 6 = arctan [s(3 — §°)7V*] — %arctan [% B =8V 2] + const,
and for the C- characteristics:
_a\/2 _
tan o = :i:(12 3s°) s 30)

23 — 82)1/2

At the ‘“sonic points” tan ¢ is zero or infinite and ¢ = 0. The characteristics (29) are
congruent curves (like the epicycloids in our analogy). In rectangular coordinates, s and 6,
a I'" line is monotonously increasing e.g. from —/4 to x/4, showing central symmetry,
inflection points at s = 0, s = + /2, and d6/ds = 0 at s = + /3 (Fig. 3).

(-]
i
"V.S §r=\/§s

F16.3. 0 = F(s).

Saint Venant condition. Here d6/ds = =+1/2. The I'-characteristics in the hyperbolic
area in the stress graph are ordinary spirals 4=6 = s/2 + const, or straight lines in the
rectangular coordinates s, 6 (in the parabolic area the unique set consists of radii through
0);alsotan g = £1, @ = 0 + 7/4, &' = 0 — =w/4; it is thus seen that the characteristics
in the zy-plane coincide with the shear lines, a result well known in the classical theory.

Parabola condition.

de 2 2\—1/2 . 8

s = +(a® — s 0= :l:arcsm; + const. 31)
These are sine-lines s = =a sin (6§ — 6,) if interpreted in rectangular coordinates and
circles through the origin in polar coordinates. Here,

1/2
a—s
tan ¢ = :I:(a T s) . (32)

We finish this section by a remark on the approximate solution of the classical initial
value problems in the hyperbolic domain. In the Cauchy problem, on a smooth arc of
curve, K, values of s and 6 are prescribed (with continuous second derivatives) so that
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K has nowhere a characteristic direction, i.e. that (26") does not hold. These data assure
uniqueness of solution in the characteristic quadrangle determined by both, C* and C~,
at both endpoints of K. There exists certainly a solution in the neighborhood of K which on
K takes on the prescribed values. It can be obtained approximately by using the fixed
net of I-characteristics (adjacent to the image K’ of K) in order to find the (s, 6) values
for corresponding lattice points in the physical plane. In general, we may then be able
to continue in this way until the whole characteristic quadrangle has been filled. The
procedure may be refined in various ways. '

For the characteristic initial value problem of reducible equations, like (6), the data
which can be arbitrarily prescribed are not the same as in the better known linear case.
(This difference is often not appreciated, see [2], p. 197.) In the reducible case any arbi-
trarily chosen curve C : y = y(x) may be a characteristic, but along this C neither s
nor # may be arbitrarily prescribed, since along C one relation (26’) and one (28) (or
rather (27)) must hold. More generally, for a curve y = y(z) to be a characteristic, the
three functions y(x), s(x), 8(x) must satisfy two relations: one (26’), and one (28).

For two intersecting characteristics, C*, C” the values of s and 6 at the point of inter-
section must satisfy both relations (26’); the relations (28), which merely connect dé
and ds leave the values at one point unrestricted (or, in other words, the constants in

Envelope

Fi1g. 4. Family of straight characteristics.

(28"") may be determined so that the four equations (26’) and (28") are satisfied at the
point of intersection). If in this way two intersecting characteristics are given, the
solution in the corresponding quadrangle is uniquely determined, and it may be found
step by step in a way analogous to that indicated above.

6. Simple waves. A simple wave region is a domain D in the physical plane mapped
onto one single characteristics, say I'; , of the s, # plane such that to each point on
I'; corresponds a straight line in D carrying constant values of s and 6 (and consequently
of oy, a5, ). In such a “forward wave’’ the straight lines are the C~ characteristics, and
6 — F(s) is constant for all (z, y) in D; all characteristics of the other family, the “cross
characteristics”, C*, are mapped onto I'y . The Jacobian, j, of this mapping vanishes,
of course. Similarly we define a ‘“‘backward wave”. Naturally, not all the above noted
properties are needed for the definition of a simple wave. The notion includes as particular
case that of constant stress tensor in D.

Here we start with the problem of finding solutions of Egqs. (6) such that the state of
stress is constant along each straight line of an arbitrary set of lines. Denote by & the angle
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of such a straight line, L, with the « direction (Fig. 4). Since o, , 0, , and # remain constant
along L, (4) yields

sin (6 — 6)%% = (o, — o) cos (0 — 6)%,
(33)
d .
vcos(0— 6)£= (62 — 0,) sin (§ — 6)%.
By division, we obtain
29— 5 = 92 _ ZF\(9)
tan’ (6= &) = 45, = Flo ©4)

as in (25). Next we multiply the first Eq. (33) by cos (§ — §), the second by sin (§ — &)
and add:

d(al + 0'2) _ Go — 01
- de "~ sin (8 — &) cos (8 — &) (35)
From (35) and (34) we then find easily our Eq. (28). In fact,
_ doi + a9) _ (doyda))*””

de sin (§ — &) cos (6 — )

0y — 03 o2 — 0,

do _ (olot)”*

¢ (35)

02 — 03

Thus, if a condition (3) and a I'; are chosen we find to each & the s and 6 by (28) and
(34). If, however, we want to find cross characteristics, C*, and lines of principal stress
we have to consider not only & but the whole set of straight characteristics. Let it be
given in the form

y = Bz + h(B), (36)

where 3 = tan 6 = tan (6 — ¢). The differential equation of the cross characteristics

is dy/dx = tan (8 4+ ¢) and since 6 and ¢ both depend in a given way on s, and s on 8
we have
d .
L =tan (0 4 ¢) = k(@) 37
From (36) we derive dy = z dB + B dx + h’d B. Substituting this in (37), we obtain
dx _z+ W(B) _
a8~ k@ — B’ (38)

Thus by means of quadratures z is obtained as a function of 8; this together with (36)
provides a parametric representation of the cross characteristics. For the principal
stress-lines the procedure is the same except that dy/dz = tan 6 is used instead of (37)
while the relation between s and g8 is the same as before. In case of a centered wave

h(g) = 0.

It is well known that simple waves are adjacent to regions of constant state; this is
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deduced immediately from the fact that a region of constant s, 6 is mappeed onto a
single point in the stress graph.

A simple wave can transform any state s = s, , § = 6. into another state s = s, ,
6 = 6, provided either 8§ + F(s) or 6 — F(s) (where F(s) is defined in (28’)) has the same
value for the first and second state. By combining a forward and a backward wave and
inserting a uniform state in between, any s, , 6, can be reached; in each wave the envelope
of the straight characteristics can still be chosen in various ways.

7. Examples of simple waves. Consider the quadratic yield condition (1) and the
forward wave, image of § = F(s). Using (28') and (29):

6 = F(s) = arctan [s(3 — §*)7'*] — —%arctan I:% 3 — 82)'”2]. (39

Here the C™ are straight lines, 6 = § — ¢, and as ¢, > ¢, , tan ¢ is given by (30) with
+ sign. Hence

SEE R rctan 5= — arctan (12 =35) "~ s
@B — )2~ M gaT A 2B — )7

To simplify, we introduce ¢ = +s(3 — s°)7'/* and obtain

0 = 0 — ¢ = arctan

6 = arctan ¢{ — %arctan% — arctan [% 4+ )2 — t],

which reduces to

6 = arctan { — Z, t = tan (6 + %) (40)
or, reintroducing s,
s = 4/3sin (a + Z) 9 = F(s). (41)

Here as s goes from — 4/3, to 0, to + /3, (¢ goes from — «, t0 0, to + «), 6 goes from
—x/4, t0 0, to +7/4 and & from —3x/4 to +=/4 (see Fig. 3). Hence in a “complete”’
wave, § varies by 180°. In actual problems a solution is given in such parts of the z, y
plane only where the straight characteristics do not intersect; thus parts of complete
waves may appear as solutions.

The image of the I'y characteristic § + F(s) = 0 is a backward wave with rectilinear
C' linesand 6 = 6 + ¢ = —[F(s) — ¢]. Hence this I'" wave is the reflected I'* wave
considered above and § = w/4 — arctan ¢, etc. We see that in a foward wave as § in-
creases, the mean pressure as well as 6 increase in a monotonous way. In a backward
wave the opposite is true.

Next, we compute the cross characteristics for the backward wave § = —F(s),
= 7/4 — arctan {. With notations as in (26), (36), and (37), we obtain:
- - T _ _1-¢ _1-8
ﬁ—tan&—tan(4 arctant)—l_'_t, t—1+ﬁ'

£+i+2_ _+p+
f—t+2 28 +8+

tan (6 — ¢) = tanao’ = —
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We may then continue as explained above. For the particular case of a centered wave,
where h(8) = 0, 8 = y/z, the differential equation of the cross characteristics becomes

dy v+ zy + 27°
r - 2Jd . <L I 1 T
tan o’ = i~ 27 T oy + o (42)

which can be integrated easily. One finds, using polar coordinates, r, § (Fig. 5)

r? cos (g - 6) = const, (43)

Let us conclude this consideration of the quadratic condition by deriving a simple
characterization of the stress tensor which holds if at each point of the wave we use a

Y
A

F16. 5. Quadratic limit. Complete centered wave. Straight characteristics and cross characteristics. .~

coordinate system z’, ¥’ where z’ is the direction of the straight line through this point,
y' the perpendicular direction. The stress tensor is then given by o, , ¢,/ , 7..,» . Denote
by », , v, the two principal directions at a point and let o,, = o, 0,» = 7, 7,1y = 7}
then (w,) = § — 6 = ¢ and we find

¢ = o, cos’ ¢ + o, sin® ¢, T = (0, — 0,) sin ¢ oS ¢. (44)
Using primes to denote derivatives, we find from (1), (16), (34):
cos’ ¢ = o}/2K, sin® ¢ = ¢5/2K,

ok

1 d 1 d
o0 = 53 (6101 + 0200) = iK ds (o} + o3) = ik ds (0102)

i 4K® _2_I§ _21_{_ N V2]
dl:3(s 1)] s, 7—3(3 sHYVE,

N

(45)

Nl"‘
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Also,
E=—l(aa"+aa')=—li(0'o')=20'. (46)
2K 102 201 2K ds 102,

Hence under quadratic yield condition the following simple relations hold for the stress
tensor all over in a simple wave region

¢t =5k, =2 @n
Parabola limst. Using (31) and s/a = t, we consider the image of the I'” characteristic
= —arcsin ¢ = arccos { — % (48)

Fig. 6a. Parabola limit. Straight characteristics and cross characteristics.
Fig. 6b. Parabola limit. Lines of principal stress.

From

_ a — 1/2 _ 1_____t>1/2 _ (7_: g
ta‘n""(a+s) —(1+t = tan 4+2>’ (49)

we conclude that

and thus:

2 2
0=§<6—1—r), s=acos(0+1—2r>=acos1r-; 8. (50)
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Here the maximum interval for 6 equals 180° and for é it equals 270°; as 6 goes from
w/2 through 0 to —x/2, § goes from = through 0 to —=/2.

We compute now the cross characteristics for a centered wave. From (50), using polar
coordinates r and 6 we obtain (Fig. 6a)

rds
dr

20 +w
3

= —tan 2p = —tan (’—2' + a) = —tan (51)

-3/2

r = ro(sin 26 ;_ W) . (52)
We finally compute for the same example the principal stress lines. For the £-lines,
the lines that make the angle 6 with the z-direction, we have, in polar coordinates

(Fig. 6b)

erf = —tan (6 — §) = —tan (g + %) (53)
or
= n[sin 2] (54
and for the n-lines .
r = rOI:cos 2—6F]—3. (55)

These examples may suffice.
Simple waves are widely used in the solution of actual problems.
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