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STEFAN-LIKE PROBLEMS*1

BY G. W. EVANS II, E. ISAACSON, and J. K. L. MacDONALD2 (New York University)

Introduction. Consider the recrystallization of an infinite metal slab, as for example,

the change from a to /3 crystals when iron is heated through the temperature 1643°F.

Accompanying this change of crystalline form is a latent heat of recrystallization. If

the slab is originally of uniform crystalline structure and is heated from the front face

through the critical temperature, new crystals appear at the heated face. If the front

face is planar and is heated uniformly and the back face is insulated, the interface

between the two types of crystals is planar. For the determination of stresses occurring

in the metal, it would be necessary to determine the history of the interface as it moves

inward. To determine the history (a space-time curve) of this interface, it is necessary

to solve the heat equation, in this case, a linear homogeneous parabolic equation, with

appropriate boundary conditions and with a suitable discontinuity in the first order

space derivatives across the unknown interface.

In each of the several problems to be discussed here, we will consider the recrystalli-

zation of a metal slab of uniform thickness, L, bounded by the planes x = 0 and x = L.

We assume that a uniform heat source covers the front face, x — 0, and that a perfect

insulator covers the back face, x = L, if L is not infinite. Thus, the problems will involve

only one space dimension. Furthermore, the coefficient of thermal diffusivity, a, is

assumed to be a constant for a given type of crystal, and recrystallization is assumed

to take place at a temperature u = 0. Since in each problem the object is to find the

propagation of the interface through the slab, the choice of the critical temperature as

zero in no way affects the results.

To determine the type of discontinuity across the interface, assume that the recrys-

tallization has already occurred to a distance x where 0 < x < L. The subscript 1

after a symbol will be used to indicate that the symbol refers to the region of the original

crystalline form and the subscript 2 to indicate that the symbol refers to the recrystallized

region. The equation of heat balance across the interface as it moves a distance dx then

is, after division by dt,

Pi H x (<) = (Jc2u2x — &M,) |x = x(t), (1)

where x = x(t) is the space-time curve along which the interface moves, x (t) = dx/dt,

p is the density, H is the latent heat of recrystallization, and the k( are the coefficients

of thermal conductivity. The notation used is dUi/dx = u(m for i = 1,2. The temperature

distribution in each region is given by the differential equation

uit = a<w<„ (2)

*Received Oct. 14, 1949.

■a) The term "Problem of Stefan" has recently been used for problems similar to the ones treated

here by L. I. Rubinstein, A. B. Datsev, and others.

b) The authors express their indebtedness to the members of the Institute of Mathematics and

Mechanics and especially to Professors R. Courant, B. Friedman, and J. Keller.

^Deceased. The practical results of this paper were obtained prior to the untimely death of our inspir-

ing co-author J. K.L. MacDonald. The surviving authors shall endeavor to complete, in the mathematical

sense, the material covered in this note.
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1. The first problem to be considered will illustrate a method of solution for all.

In this problem the slab has any thickness L, 0 < L < . The slab is considered to have

been heated uniformly to the critical temperature, 0, and then a constant heat source

is applied to the front face of the slab. This may be represented by the following mathe-

matical problem:

Find x = x(t) where the temperature distribution satisfies the equations3

u, = auxt forO < x < x(t), (3)

u = 0 for all x > x(t) (4)

with the boundary conditions

A x{t) = ux[x(t), t] (5)

a;(0) = 0 (6)

ux(0, t) = g, (7)

where g is a constant. The condition (5) is a consequence of equation (1) where A = pH/k.

We obtain a power series representation for x = x(t) about t = 0 by assuming u

expressible in a power series about x = 0, t = 0 for all u in the region 0 < x < x(t), i.e.,

any discontinuities in the derivatives of u are assumed to occur only on crossing the

curve x = x(t).

By differentiation of (4) and (5) along the curve x = x(t) and of (3) in the region

0 < x < x(t) and use of (7), all derivatives of x(t) may be determined at the origin.

x(t) may then be written as the following Taylor series:

r(f\ _ JZ. f _ J_ 93 f , A g5
~ A 2! a2A3 3! a*A5

(8)
51 g7 4 827 g" 5

4!*M7 + 5!

The coefficients of the series have not been calculated beyond those given. They may

be found from the following relations:

CD 00

Let u — aax't' an(i x= 53 C,<', then,
<,|-0 t=0

it d + l)o4+ll<( £ CJ"\ <'«=AE(n + l)Cn+1f, (9)
t, j — 0 \n = 0 ' n = 0

± aj £ CJ")' f = 0,
t, j-0 \ n = 0 /

(10)

1 (j "f" 1) / l 1\
ai+2-< ~ a2 (t + m + 2) a<>,+1 { '

with ali0 = g and C0 = 0.

3We have adopted the convention of using the letter u without subscripts when the temperature is

identically 0 in the region 1 (i.e., to the right of the discontinuity).



314 NOTES [Vol. VIII, No. 3

In the event that the heat input, g, is no longer a constant but an analytic function

of time, g = g(t), we find in a similar way the interface curve to be:

where

X{t) = c, t - e + ^ g  , (12)

r g(0)
A '

C2 — 2 A 3
(o) £i0)

A

V(0) 6 g (0)g2(0) g" (0)
63 - A3 A

51g (0) 75 g (0) g (0) 10 g (0)g2(0)

4 a6 A7 a4 A5 + «* A3

15 [fir (0)]2 g(0) _ g (0)

A3 A
H 2

= 827 g"(0) _ 1438 g (0)g6(0) 175 g"(0)g4(0)
a8 A9 a6 A7 a4 A5

525 [g'(0)]2g3(0) _ 15 g"\0) g2(0)

+ a4 A6 «2 A3

15 [g'(0)]3 60 g'(0) 17 "(0) g(0) g""(0)

a2 A3 a2 A3 A

The series of Eq. (12) reduces to that of Eq. (8) for g(t) a constant, <7(0) = <7.

2. To generalize the treatment of Sec. 1 to cover the case of non-analytic boundary

and initial conditions, we employ Laplace transformations. Furthermore, we believe that

the questions of uniqueness and existence will be answered by these methods. In this

part, we derive the integral equation which is satisfied by the interface curve x — x(t).

To this end, the discontinuity curve is considered in the form t = f(x), and for greater

generality we consider the heat input, g = g(t), to be a function of time. The problem

is to solve the differential equation

u,(x, t) = au,t(x, t) for t > f{x) (13)

with the boundary conditions

u{x, t) = 0, for t < f{x) (14)

w»(0, t) = g(t), (15)

/CO) = 0, (16)

ux[x, f(x)] = , (17)
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where/' = df/dx.
The Laplace transform for u(x, t) is defined as

f* CO /» CO

un(x, s) — I u(x, t) e~" dt = / u(x, t) e~" dt.
J 0 Jf(z)

Application of the transform to (13) furnishes the transformed differential equation

Til _ ±
L dx2 a2.

un=-Ae~"M (18)

with the boundary conditions:

m?(0, s) = gn(s), Lim{w D(a:, s)} =0.
x—»oo

The solution of Eq. (18) is

u°(x, s) = fo exp {-s/(£)} exp j- | x - £ || + exp j- S— (x + |)jj rff

S1/2 eXP\ a

and the inverse transform of this equation is

1u(x, t) = 4^ ^

+ exp

At ~ /(€)]}1/2

~(s + f)!

m

V[<- /(0]JJ^ (19)
«>/(£)

f ~ r) /-st'l. ,
-"i. wrexpte/'ir-

Once t = /(a:) is known, Eq. (19) gives the temperature distribution in that region which

has been recrystallized. Now, applying the condition (14) in the form u[x, fix)] = 0,

Eq. (19) becomes

1 <*E
J /(*)>/(£)

[/(*) - mW2 L8XP U«2[/(x) - /(£)]

~(x~

+ exp
-(» + i)2

4a* [f(x) - /©]

(20)

Equation (20) is an integral equation for the determination of t = fix). To solve Eq.

(20), we return to the designation x = xit). To do this let t = fix), r = /(£), x = xit),

and £ = x(r). This change is permissible if t = fix) is monotonically increasing. After

making these substitutions in the right hand side of Eq. (20), replace t — r by r' and

replace r' by t in the right hand side. Equation (20) becomes

/: ^ -p * - * [^ [-p

•)]:

+ exp
-[xjt) + xjt — t)]'

4 a2r
dr .

J T> 0

(21)
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A power series solution for x = x(t) of equation (21) may be determined as follows:

Let

x(t) = Cit -f- C2t2 ■("•••, (22)

and assume g(t) a constant, g. The coefficients Cx and C2 are determined by using (22)

to expand the integrands of equation (21) in powers of t (i.e., x(t — r) is expanded about

r = 0). We find that in the limit, as t tends to zero, equation (20) becomes

C = ■
A

Now, replacing x(t) by gt/A + C2f and x(t — r) by

x(t — r) = x{t) — rx (t) + t
2 X (t)

21

in equation (21) and expanding about t = 0, Eq. (21) becomes

igt- _ ^, + _ 491,.

which yields

16A r - 2^U21 4- 11 -£
+ 3 2 aA 3 A2a

r - 1 g3
2 a2A3

It is noticed that the coefficients determined in this manner are the same as the first

two of equation (8). Similarly, when g(t) is an analytic function of t, the first two co-

efficients, Cx and C2 , of equation (22) have been determined and agree with those of

equation (12). The determination of the remaining coefficients by this method becomes

extremely tedious.

3. Another problem which involves the determination of the curve of recrystallization

would be to prescribe an initial temperature distribution in a metal slab of infinite

thickness (L = co). The problem is then to determine the curve x = x(t) where the

temperature distribution is given by

u2l{x, t) = alu2„{x, t) for 0 < x < x(t), (23)

u[x{t), i] = 0, (24)

Ui,{x, t) = a\ui„{x, t) for x(t) < x < °° (25)

with the boundary conditions

k2u2x[x(t), t] — k!Ulm[x(t), t] = pH x (t) = B x (t), (26)

Uiix, 0) = 4>(x) where 4>(x) < 0 and <£(0) = 0, (27)

m2,(0, 0 = g(t). (28)
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In this problem g(t) is assumed to be the same as in the previous problem and 4>(x) is

assumed to be expressible in a Taylor expansion about x = 0 with an infinite radius of

convergence. The method of solution is again the same as that of Part I and the series

representing x(t) is given below through the second power of t.

x{t) = ^ [k2y(i)) - kst>'(Q)]t

+ ̂  {*,[- 4% m o) - wm2
(29)

+ </(0)] - (k2g(0) - fc^'(0))

+ aW"(,0)jj t2 +

This problem is reducible to the second problem of Part I by taking <t>(x) = 0, and the

coefficients in Eq. (29) then agree with those of Eq. (12).

Comments. The boundary condition (4), u = 0 for x > x(t), used in the first two

problems is not as specialized as may first appear. In most practical cases the metal is

initially at a uniform temperature, say room temperature. If a metal slab, initially at

a uniform temperature, is heated at one face and is insulated at the other, the temperature

gradient remains zero for sufficiently small L. That is, the temperature rises uniformly

until the critical temperature is reached providing the slab is thin. This result is seen

if one lets u = U > 0 be the critical temperature and considers the slab initially to have

the temperature distribution u(x, 0) = 0. One can then show that the temperature

distribution is independent of the space coordinate as long as u(x, t) < U. The tempera-

ture distribution in the slab of thickness L is given by the differential equation

it, = a uxx (30)

with the boundary conditions

ux(0, t) = g(t), (31)

ux(L, t) = 0, (32)

u(x, 0) = 0. (33)

The Laplace transform of (30) is the equation

the solution of which is

U°(x, s) = ~~2 vP(x, s),
a

vo(r a _ _ <*gD(s) cosh (L - s)s1/2A* ,
U {X, S) — 1/2 • 1 T 1/2 , (.<54)sv sinh Ls /a

for the transposed boundary conditions (31) and (32). Since the slab is considered thin,
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replace cosh (L — x) s1/2/a and sinh LsW2/a by the first terms of their expansions giving

un(x, s) = - ^ ga(s). (35)

In (35), vP(x, s) is the transform of u{x, t), gn(s) of g(t) and —a2/(sL) is the transform

of — a2/L; therefore, u(x, t) may be written as the following convolution

2

u(x, t) = - J jr g(y) dy.

This expression shows u(x, t) to be a function only of the variable t, and is therefore a

constant with respect to x.

Discussion of the curves of equations (8), (12), and (29). a) Figure 1 shows the degree

of agreement of the first five sums of the series of equation (8) where Xi(t) represents

O-l 0-2 0-3

THICKNESS IN FEET

Fig. 1.

the first term on the right-hand side of (8), x2(t) represents the first plus the second,

x3(t) represents the first three terms, etc. The calculations for this figure are based on

the following data: k = 25 BTU/(hr.)(sq. ft.)(°F/ft.), cp = 14 BTU/(lb.)(°F), P =
480 lbs./cu. ft., H = —6.76 BTU/lb., and g = — 65 BTU/(sq. ft.)(hr.). This data is
approximately that for a cast iron.

b) Figure 2 shows a comparison of the results of Eqs. (8), (12), and (29). For this com-

parison the boundary and initial conditions are taken in the following way. The curve

for Eq. (29) was drawn using the following data: p = 480 lbs./cu. ft., H = —6.76

BTU/lb., k2 = 25 BTU/(hr.)(sq. ft.)(°F/ft.), k, = 26 BTU./(hr.)(sq. ft.)(°F/ft.),
cPl = .12 BTU/(lb.)(°F), cv, = .14 BTU/(lb.)(°F). g(t) was chosen to be -117 e"

BTU/(sq. ft.)(hr.) and 4>(x) to be —50 t&n~1x °F. This choice of g(t) is such that the

heat added per unit time decreases with increasing time, while <f>(x) has the property

that the initial temperature at x = 0 is the critical temperature and the temperature

decreases with increasing x until it reaches 25ir°F below critical at x = °°. For the curve

of Eq. (12) the data is acquired from that for Eq. (29) in the same manner that the

solution (12) may be obtained from the solution (29), i.e., k2 = k, cv, = cv , <t>(x) =
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<f>(0) = 0. The data for the curve of equation (8) is deduced from that for Eq. (12)

similarly, i.e., g{t) = <7(0) = —117 BTU/(sq. ft.)(hr.). Since only two terms of the

solution (29) have been determined, all curves are drawn using only the first two terms

of each series. The straight line shown in Figure 2 represents the time it would take a

0-4 0-6 O-i

THICKNESS IN INCHES

Fig. 2.

slab of thickness x at the critical temperature to recrystallize uniformly with a constant

heat input of —117 BTU/(sq. ft.)(hr.).

According to (29), if t can be taken so small that all terms above the first are neg-

lected, recrystallization cannot take place if k-,4>'(0) > k2g(0). In fact, this condition

would represent decrystallization and the curve would be in the negative x half plane.
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