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ON REISSNER'S THEORY OF BENDING OF ELASTIC PLATES*
By A. E. GREEN (Durham, England)

1. Introduction. The classical theory of bending of elastic plates has recently been
extended and improved by Reissner.1,2,3 His theory takes into account the transverse-
shear deformations of the plate and the equations of the theory are obtained by an
application of Castigliano's theorem of minimum energy. The object of the present
note is to show that Reissner's equations can be obtained directly from the stress equa-
tions of equilibrium and the stress-strain relations. Moreover, by consistent use of
complex variable notation, the form of the results is simplified. The equations are first
obtained for an isotropic material and are then extended to an aeolotropic material
which is transversely isotropic in planes parallel to the faces of the plates.

2. Fundamental equations for isotropic plates. Consider Cartesian coordinates
x, y, Z and let z = x + iy denote the complex variable with z = x — iy the complex
conjugate of z. Stresses connected with the coordinate Z are denoted by r„ , r„, , <r,
since there is no need to confuse the z in this notation with the complex variable. At-
tention is directed to stresses in plates bounded by the planes Z = ±h.

When body forces are absent, Stevenson4 has shown that the stress equations of
equilibrium can be expressed in the form

33> _i_ ae . n /i \■S + S + Sz"0' (Ia)

<9^ d(Tf + f + i-0- <Ib>
where a bar placed over a quantity denotes the complex conjugate of that quantity
and where

0 = <yx + <j-„ , $ = <rx — <r„ + 2irxv , ^ = r„ + . (2)

If u, v, w denote the Cartesian components of displacement and if D = u + iv, the
complex form of the stress-strain relations is

(1 - 217)0 = 2Mjv?(F (3a)

*Received Aug. 13, 1948.
'E. Reissner, J. Math. Phys. 23, 184-191 (1944).
2E. Reissner, J. Appl. Mech. 12, A68-A77 (1945).
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(1 - 2= 2Mi»/V?(F + F) + (1 - v) f§}, (3b)

$ = 16m ̂  (3c).
dz

5,-2'l(2l+4 <3d)
where

D = 4 —, v! = 4 — = ^ + (3e)
dz 3z dx dy

and where Poisson's ratio 17 and Young's modulus E are related to Lame's constants by

^ E r A \
M = Tin ; v (4)" 2(X + " 2(1 + ,)•

3. Change of axes. Stevenson has pointed out that the stress combinations 9, $, XI'
are particularly suitable to the problem of transformation of stress and his main results
are recorded here. Thus, if

©' = <x„ -f o-8 , = <r„ — c.s + 2irn, , = rnz + ir,s , (5a)

where

z' = n + is = ze~'a, (5b)'

then

9' = e, = e~iaV, D' = e~iaD. (5c>

4. Formulation of the problem. It is assumed that the faces of the plate are free from
applied shear stresses so that

= 0 {Z — dh K), (6a)

while the normal traction on the faces is such that

<7, = Tjp (Z = ±h), (6b)

where p is a given function of x and y.
Stress-resultants and stress-couples are defined by

rh
M /h /»A fh

Zax dZ, My = / Z(jv dZ, H= Ztxv dZ,
-h J-h -h

(7a)

Vx = [ TXt dZ, Vv = [ Ty. dZ,
J —h J-b

or, in complex form,*

*These definitions are different from those given by Stevenson [4], ,
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A — Mx -|- My = f ZQ dZ,
J-h

r = Mx — My + 2iH = [ Z$ dZ, (7b)
J-h

^0 = Vx + iVy — J
h

'! dZ.

By using the boundary conditions (6a) and (6b) and Eqs. (la) and (lb) it is found
that

ar . dA A
a?+ if • ■

^ + = o.
dZ dZ

(8)

The boundary conditions (6b) may be satisfied by taking

and then, from (lb),

*-4* I1 "©>••> (9b)
which gives zero shear stresses at the faces of the plate Z = ±h.

Weighted displacements are now defined by *

n* >. dF* n* 3
4— F'-w f ZFdZ,

J-h

= a r
4k i_,w* = -.t I ^1 — }w dZ.

(10)

Relations between these weighted displacements and the stress-resultants and stress-
couples can be found by multiplying Eqs. (3a) to (3d) by suitable functions of Z and
integrating with respect to Z through the thickness of the plate. Before carrying out
this process it is necessary to eliminate dw/dZ from Eqs. (3a) and (3b) in order to avoid
introducing further unknown quantities. Thus Eqs. (3a) and (3b) are replaced by

(1 - 17)0 - 2tia, = 2n(l + r,)Vl(F + F), (11)

and the remaining equation which involves dw/dZ is not used. Hence

*0 = (w* + 2F*), (12a)
dz

*The choice of a weighting factor Z for the displacement D is natural. Equation (3d) then shows
that w must be weighted with a quadratic factor in Z which vanishes at Z = ±/i, in order not to intro-
duce further unknown quantities involving values of F at the faces of the plate.
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r-s^a?, (12b)
dz

(1 - v)A = -| h2vp + (1 + V)V\(F* + F*). (12c)

Equations (8) are now satisfied if

A + ^ V\F* = ^ (w* + 2F*), (13a)

Vl(w* + F* + F*) = (13b)

5. Solution of the differential equations. If

F* = 4> + it, (14)
then, from (13b),

w* + 2<f> = ^ <{n'(z) + Q'(2)j + ^ V?P, (15)

provided that the applied pressure p can be expressed in the form

V = VtP. (16)
Also, from (13a),

and, from (12c),

9h2
= (17a)

A + ^ ^ (w* + 20), (17b)

(1 - „)A + | h'vp = ^ (1 + n)V^. (17c)

With the help of (15), (17b) and (17c), a simple calculation now gives

0 = ^327 kil{z) + + w(z) + 5®} + 3(18K^)P + (18a)

w* = - jzS2(z) + zfi(z) + co(z) + o>(z)j + |^'(z) + S2'(z)j

(18b)
3(1 - t?)P 3(2 - v)V\P

4ih3 n lOhfi '

A = (1 +3v)h* {fl'(z) + 0'©} - + (1 + vrV?P, (18c)
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„ 32/i/V d2 ,, , . ,sr = —~ —i (<t> + if), (18d)
3 dz

+ '2<t> + 2 it), (18e)
3 dz

D* - 4- (0 + #). (18f)
dz

The functions fi(z), &>(z) are arbitrary functions of 3. These equations for the weighted
displacements and for the stress-resultants and stress-couples are in a compact and
convenient form for applications. With them are used formulas for the transformation
of stress-resultants and stress-couples, which are easily found by integrating Eqs. (5c)
with respect to Z, after multiplication by a suitable function of Z.

6. Results for certain aeolotropic materials. Only small changes are needed in the
theory when the material of the plate is aeolotropic but is transversely isotropic in
planes parallel to the faces of the plate. The stress-strain relations (3a) to (3d) are
replaced by

0 = (cu + dOV?(F + F) + 2c13 f| (19a)

= cl3Vt(F + F)+ c33 H (19b)

$ = 8(c„ ~ c12) d\ (19c)
dz

+ (19d)

Since the details of the analysis are similar to those for an isotropic material only the
final results are given here. Thus

<t> = i6(j:3. c2j jzflfc) + 2fi(z) + Oj(z) + sao

I 3Ci3 V \P ,  3C33P 
10h(CiiCzz C13) 4/i (C11C33 C\z)f

W* = - 8(C11C3^33_ c2s) {«»(«) + zm + <o(z) + «©} + i Q'(z) + 0'(

(20a)

3 C33P , 3/j_ .+ . C'L c»Jv'p,
(20b)

2/i (C11C33 C13) 5h I/J44 C11C33

A = —■ (C3s(Cu + Cia) 7 2c'3}("/(g) + »'(*)
« I C11C33 c13 J ^

2h c13(cu Cia)p | £33(^11 ~H C12) 2ci3

5(ChC33 C13) ^11^33 C13

(20c)
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r = 16fe3(Cn ~ CiO l_ (4> + ixf/); (20d)
6 dz

- (w* + 2<t> + 2if), (20e)
* dz

D* = 4 - (<j> + i+). (20f)
dz

The function \p satisfies the equation

i - Cn ~ C'2 • % Vli = 0. (20g)
C44 u

SOME REMARKS ON THE FLAT PLATE BOUNDARY LAYER*
By J. A. LEWIS and G. F. CARRIER (Brown University)

1. Introduction. In a recent paper1, the Blasius solution for the boundary layer flow
past a flat plate was supplemented by an investigation of the character of the flow field
near the leading edge of the plate. In that paper, the leading edge solution (of the Stokes
type) was matched numerically to the Blasius solution. At first glance, therefore, it
would seem desirable to find the solution of the Oseen type and either verify or improve
this match. In the present paper we shall compute the exact solution of the Oseen
equations associated with the flow past a semi-infinite plate and shall present arguments
which verify our belief that this solution is physically not acceptable. However, we shall
introduce a modification of the Oseen linearization such that the exact solution of the
modified equations completes the flow pattern with a reasonable degree of accuracy.

We shall also indicate an iteration procedure from which the exact flow pattern
(i.e., the exact solution of the non-linear equations) can be obtained as the limit of a
rapidly converging sequence of functions. Since the actual calculation associated with
each step of this iteration would be very tedious, and since the solution given by Blasius1
and the present result give the most interesting information, we shall not complete the
integrations.

Finally, we shall indicate the "modified Oseen solution" for the flow past a flat
plate of finite length. Again, the interest does not seem to justify the necessary algebra
so that no numerical results are obtained.

2. The Oseen linearization. The equations which govern the flow of a viscous,
incompressible fluid

„ du,- _i jjp _ d\ m
' dXi P dx,- dx: dXi' ^ '

= 0 (2)
dXi

*Received Nov. 5, 1948.
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