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A METHOD FOR THE SOLUTION OF THE DIRICHLET PROBLEM
FOR CERTAIN TYPES OF DOMAINS*

BY

BERNARD EPSTEIN
University of Pennsylvania

1. Introduction. It is our purpose to present a method for solving the first boundary-
value problem of potential theory—frequently called the Dirichlet problem—for a class
of domains which may be considered as limiting cases of those domains for which the
so-called "alternating procedure" of H. A. Schwarz [2, p. 264] is applicable. As is well
known, the Schwarz method enables us to solve the Dirichlet problem for a domain
which is the sum of two1 overlapping domains, for each of which it is known how to
solve this kind of problem. In this paper we consider the case where the given domain
is the sum of two domains which are adjacent, rather than overlapping, and for each of
which it is known how to solve the Dirichlet problem.

As will be explained in detail in Sec. 2, the underlying idea is that the problem would
be essentially solved if the values of the desired function could be determined at the
points common to the two component domains, for the complete solution could then
be found by solving Dirichlet problems for each of the component domains. Assuming
that the boundaries consist of sufficiently smooth arcs, we derive an integral equation
which governs the values of the solution on the boundary arcs common to the two
domains. A method of successive approximation is presented for the solution of this
integral equation, so that the original problem is essentially solved.

The connection between the Schwarz procedure and that which is presented here
becomes particularly clear if we consider R. Nevanlinna's approach to the former [4],
He shows that the original problem of determining a certain harmonic function of two
variables can be reduced, whenever the Schwarz procedure is applicable, to the problem
of solving an integral equation for a function of one variable, and then solves the in-
tegral equation by a method similar to that described in this paper. However, it should
be emphasized that the method by which the integral equation considered here is derived,
is quite different from that employed by Nevanlinna, and that these two integral equa-
tions arise in two entirely different problems, the one considered here being a limiting
case of that considered by Schwarz and Nevanlinna.

2. Statement of the problem and derivation of the integral equation. We consider a
plane domain S of finite connectivity, whose boundary is composed of a finite number
of smooth arcs. We suppose that, by the addition of a finite number of smooth arcs to
the boundary, the domain S is divided into two adjacent domains whose Green's func-
tions are known. For the sake of definiteness we shall consider the domain shown in
Fig. 1, but it will be evident how our method can be applied to other domains.

•Received Nov. 3, 1947. This paper is a condensed version of a thesis submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy at Brown University, June, 1947.

^The Schwarz method can be immediately extended to domains consisting of three or more over-
lapping domains [2, p. 264], Similarly, the method described in this paper can be generalized to the case
of more than two component domains. Also, we shall consider only the two-dimensional case; the exten-
sion to three or more dimensions is quite evident, as in the case of the Schwarz procedure.



302 BERNARD EPSTEIN [Vol. VI, No. 3

Referring to Fig. 1, we assume that the functions2 7ix(s), h2(s), h3(s), h4(s) are pre-
scribed on ABC, ADC, and the upper and lower edges of EF, respectively. Moreover,
we assume that each of these functions is bounded and possesses at most a finite number
of discontinuities. We are then assured [3, p. 22] of the existence of a unique solution
to the Dirichlet problem, i.e., a function u{P), P = (x, y), which is bounded and har-

Fig. 1.

monic in the interior of S and which approaches the prescribed boundary values at
every point of continuity.

Now suppose that by the addition of the smooth (or piecewise smooth) arcs AE
and FC the original domain S is divided into two domains <SX and S2 whose Green's
functions, (?i and G2 respectively, are known. On these added arcs the function u(P)
becomes a function /(s) of the arc-length. It is clear that the problem of determining
u(P) would be essentially solved if the function /(s) could be found, for the value of
u{P) at any point of S not lying on the added arcs could then be expressed in terms of
the boundary-values, the function/(s), and the Green's functions Gx and G2 . Indeed,
the value of u at any interior point P of Si could be expressed as follows:

«<« - h{L Ws) f •*+/„ S *+L« m f 4 <2-i)
where d/dn indicates differentiation in the direction of the inward normal and the
Green's function Gi is evaluated at the pair of points (P, Q), Q describing the boundary
of Si . Similarly, when the point P is taken in S2 the value of u(P) is given by

»<p>=i {L m S*+L "•« f *+L« «8) f 4 (2-2)
The first two integrals appearing in each of the two above equations define a certain
function throughout the interiors of Si and S2 . If this function is designated in both
domains as w(P), then Eqs. (2.1) and (2.2) can be written as a single equation:

u(P) = w(P) + ~ [ m~ds, (2.3)
"AE + FC OW

where G is taken as Gi or G2, depending on whether the point P lies in Si or S2.
Now let P be any inner point, temporarily fixed, of arc AE or FC, and let R be a

positive number such that the interior of CR(P)3 lies entirely inside S and its circum-

2The variable s always measures length along the arc under consideration.
3Cb(P) is used to indicate the circle with the center P and the radius R.
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ference meets the boundaries of Si and S2 (including the added arcs) at only a finite
number of points. (For example, if part of arc ABC coincides with part of the circum-
ference of it is necessary to choose R < Ii'.) Upon exclusion of these points
the circumference of CR{P) divides into a finite number of open arcs each of which lies
entirely inside Sx or entirely inside S2 . Now let the point Q describe the arcs AE and
FC, let P' describe the circumference of CR(P), and let the point P correspond to
s = s0 . Then the mean-value property for the harmonic function u at the point P may
be expressed as follows:

f(so) = ~ J*' u(P') de

where 6 is the angle between PP' and some fixed direction, say the positive direction of
the z-axis, and G is taken as (?i or G2 , as explained following (2.3).

Now, by Fubini's theorem [5, p. 77], it is legitimate to invert the order of the iterated
integral appearing in (2.4), so that the latter equation may be rewritten as follows:

><«■> - i f »(p,) de + fM{& f d°)d" ■ (2'5)
If there is now chosen for each point P interior to the arcs AE and FC a quantity

R(s0) subject only to the restriction mentioned above, the first term on the right-
hand side of (2.5) defines a certain function of P, henceforth designated gR(s0), while
the inner integral of the second term defines a function KB(s0 , sQ) for every pair of
inner points P and Q of the arcs AE and FC. (The subscript R serves as a reminder
that the functions g and K depend on the choice of the radius R(s0) over which the
averaging is performed.) Thus, (2.5) becomes an integral equation of the second kind
for the values of u(P), the solution of the Dirichlet problem, along the added arcs.
If s0 is replaced by s and sQ by s', Eq. (2.5) becomes

/(s) = gB(s) + [ f(s')KB(s, s') ds'. (2.6)
JAE+FC

The solution of the original Dirichlet problem has now been reduced to the solution of
the integral equation (2.6).

Before we discuss the problem of solving (2.6), it would appear desirable to sketch
briefly the nature of the kernel KB(s, s'). As can be seen from (2.5), the kernel

= i<2-7>

is equal to the mean value over the circumference of the circle CB{P) (where P corre-
sponds to the parametric value s along the added arcs) of l/2x times the inward normal
derivative, at the point Q corresponding to the parametric value s' along the added
arcs, of the Green's function of the domain, Si or S2 , within which the point P', which
describes the circumference of CB{P), and which is to be taken as the pole of the
Green's function, lies. If we take account of the relationship existing between the
Green's function and the harmonic measure [3, p. 30], and again use Fubini's theorem
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to justify the inversion of the order of integration, we find that the kernel function
admits the following simple interpretation: The integral / KR(s, s') ds' taken over
any portion of the added arcs is equal to the mean value over the circumference of the
circle CR(P) of the harmonic measure, evaluated at the point P' which describes the
circumference, of that portion of the added arcs, the measure being taken with respect
to the domain Si or S2 within which P' lies.

We shall show in Sec. 3 that the integral equation (2.6) can be solved by a method
of successive approximation, provided that the kernel satisfies a certain condition.
However, it is of interest to note that it is possible to obtain from (2.6) lower and upper
bounds on the solution /(s), quite independently of whether the method of solution
which we shall describe in Sec. 3 is or is not applicable. Let/0(s) be any function which
is known, from any considerations,4 to lie below the solution /(s). If f(s') is replaced
on the right-hand side of (2.6) by /0(s')> it follows from the non-negative character of
Kr(s, s') that the resulting value of the right-hand side, which we shall designate /x(s),
also lies below/(s). If /, (s) is somewhere or everywhere larger than/0(s), then the func-
tion max (/0(s), /i(s)) will constitute an improved lower bound for/(s). Similarly, it is
possible to obtain improvements in upper bounds. Cf. Theorem 4.3.

3. Solution of the integral equation (2.6). It is clear that the integral equation (2.6)
is, for fixed s, singular for two or more values of s', namely for those values of s' corre-
sponding to the points at which the circumference of CB{P) meets the arcs AE and FC.
Therefore, the Fredholm theory of linear integral equations [1, Chap. 3] is not applicable.
However, the existence of at least one solution to (2.6) is assured by the existence theory
for the Dirichlet problem.

We recall that the normal derivative of the Green's function (taken inward to the
domain) is always positive, except perhaps at certain exceptional points, and, for any
interior point Q of the domain, that

the integration being taken around the entire boundary of the domain. Thus,

o < f K„(s, s') ds' = ~ f { f" dG(Q' pr) del ds'
Jae+fc 4ir Jae+fc {Jo dnP■ J

(3.2)
i fif *jmjndAde<irde = l

4tt J0 Wae+fc dnp/ J *'o

Now suppose that the function R(s) can be so chosen that (3.2) can be replaced by
the stronger inequality

0 < f KR(s, s') ds' < p < 1 (3.3)
"AE+FC

for all points P interior to the arcs AE and FC, where p is a certain positive constant.
We have not been able to prove the possibility of so choosing R(s) in the general case,
but in Sec. 8 we shall show that this can be done for the class of domains considered
in Sec. 6, and it will be shown in Sec. 5 that this can also be done if the domain and

4For instance, /0(s) might be taken identically equal to the minimum of the boundary values.
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"the added arcs satisfy certain conditions. In the present section and in Sec. 4 it is assumed
that R(s) has been so chosen that (3.3) is satisfied.

The importance of the condition (3.3) is two-fold. First, as we shall show imme-
diately, it guarantees the uniqueness of a bounded5 solution of (2.6). Therefore, if we
succeed in obtaining one solution, we can be certain that it is the function which provides
the solution to the Dirichlet problem, and not some other function which, while it
satisfies (2.6), may be entirely unrelated to the original problem from which (2.6) was
derived. Secondly, the condition (3.3) makes it possible to solve equation (2.6) by a
method which will be described in the present section.

We now prove that (3.3) guarantees the uniqueness of the bounded solution of (2.6).
If there were two bounded solutions, f(s) and F(s'), their difference, which would also
be bounded, would satisfy the homogeneous equation

F(s) - f(s) = f (W - /(«'))**(«, s') ds'. (3.4)
JAE+FC

From the'inequality (3.3) there would follow

max | F(s) — /(s) | < p max | F(s) — f(s) |, (3.5)

from which the identity of /(s) and F(s) is evident.
The unique bounded solution of (2.6) can be obtained by a method of successive

approximation, as shown by the following theorem.

Theorem 3.1. Let /0(s) be any bounded continuous6 function defined on the arcs
AE and FC, and let the sequence of functions {/„(s)}, n = 1, 2, 3, • • ■ be defined by
the recursion formula

/»(«) = 9r(s) + [ fn-i(s')KR(s, s') ds'. (3.6)
J AE + FC

(The function It(s) is assumed continuous, or at least such that (3.6) has meaning for
all n and all s.) Then the sequence {/„(s)( converges uniformly to the unique bounded
solutionis) of (2.6).

Proof. Let the functions yn(s) be defined by the equations

Vn(s) = Ms) - f(s), n = 0, 1, 2, 3, • • • . (3.7)
Then (3.6) may be written as follows:

Vn(s) + /(«) = g*(s) + [ Vn-xCs')Kb(s, s') ds' + f f(s')KR(s, s') ds(3.8)
Jae+fc jab+fc

'Since f(s) satisfies (2.6), (3.8) simplifies to

Vn(s) = [ Vn-i(s')KR(s, s') ds'. (3.9)
•> AE + FC

5As demonstrated in [4] by means of an illustrative example, it is entirely conceivable that an integral
equation such as (2.6) may possess an unbounded solution in addition to its unique bounded solution.

6It would suffice to require that /0(s) be bounded and integrable, but it seems unlikely that it would
.ever be practicable to choose for /0 a discontinuous function.
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Designating7 max | r?„(s) | by Mn , one obtains from (3.9)

Mn < pMn., , (3.10)

and, by repeated application of (3.10),
Mn < pnM0 . (3.11)

Thus, no matter how poor the original estimate/0(s) may be,8 the sequence of functions
{ j/„(s) } converges uniformly to zero, and therefore the sequence {/„(s)J converges
uniformly to/(s). This completes the proof of Theorem 3.1.

Although it is possible according to Theorem 3.1 to choose the initial approximation
/0(s) with almost complete arbitrariness, it might be expected that it is desirable to
choose /0(s) in such a manner that it joins continuously with the prescribed boundary
values, whenever such a choice is possible. A certain justification for this view is found
in the following theorem, which we state without proof.

Theorem 3.2. Let the prescribed boundary values and the initial approximation
/0(s) (which is assumed bounded) join continuously at any one of the end-points of the
added arcs. Then the next approximation/j(s) also joins continuously with the boundary
values at that point.

It is important to note that the procedure described in Theorem 3.1 is by no means
restricted to the integral equation (2.6). It is easily seen that this procedure is applicable
to any integral equation:

/(«) = 9(,s) + f K(S, «')/(«') ds' (3.12)
J a

for which the following conditions are satisfied9:
(1) the equation possesses a (bounded) solution, and
(2) Jt | K(s, s') | ds' < p, a < s < b, where p is any constant <1. It will be seen

that Theorems 4.1 and 4.2 are also applicable, while, if the kernel is non-negative,
Theorem 4.3 also holds.

4. Estimation of accuracy of approximation. In Sec. 3 a procedure was presented
which in principle yields the solution of the integral equation (2.6), and therefore
provides the solution of the Dirichlet problem from which (2.6) was derived. Equation
(3.11) provides an upper bound for the maximum error Mn at the n'th stage of the
approximation procedure in terms of the maximum error M0 of the initial estimate f0 .
The principle of maximum and minimum for harmonic functions shows that the solution
of (2.6) must lie between the maximum and the minimum of the prescribed boundary
data. Thus, for example, if these bounds are a and b respectively, and if the initial
estimate is chosen to be (a + 6)/2, then M0 , the least upper bound for | rj01, does
certainly not exceed (a — b)/2, so that by (3.11) one immediately obtains for all further
stages of the approximation procedure the estimate

7The term "max" is to be understood as signifying the least upper bound. That all bounds are finite
follows from the boundedness of the solution and of /0.

8This means, no matter how large Mo may be. -An upper bound on Mo can always be obtained from
the fact that /(s) must lie between the minimum and the maximum of the prescribed boundary data.

9If g(s) and K(s, s') are both continuous for a < s < b, a < s' < b then, by the Fredholm theory,
condition (2) implies (1), since, as we showed earlier in the present section, (2) assures the non-existence
of a characteristic solution.
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■ I (a - b)pn
I Vn I < 2 •

However, from the practical (computational) point of view such estimates are of little
or no use in determining the accuracy that has been attained at any stage of the pro-
cedure. For example, in one of the numerical illustrations to be presented in Sec. 8,
a = 1, b = — 1, and p = .75, so that if /0 is chosen = 0, the upper bound M0 = 1 is
obtained10 for \ y0\, and therefore, in order to be certain that the error is everywhere
less than .01 in absolute value, it would appear necessary, according to (3.11), to perform
about 16 successive approximations,11 since (.75)16 = .01. It is necessary to have a
more delicate criterion than (3.11) for estimating the accuracy of the approximations,
and also to have a method for determining a suitable initial approximation f0 . In this
section a better estimate than that given by (3.11) is obtained (Theorem 4.1), as well
as two theorems of lesser importance, and in Sec. 7 the choice of a suitable f0 will be
discussed.

Theorem 4.1.12 If max [/„ — fn+l \ = A, then Mn = max | | < A/{\ — p).

Proof: Since/,, — fni i = rjn — r]n+1 , the hypothesis may be written as follows:

| Vn ~ Vn + 1 | < A. (4.1)

Adding | ?y„Tl | to both sides of (4.1), and recalling the triangle inequality, one obtains

| Vn | 5= A + I Vn+\ !• (4.2)

Since | Vn+i | < pMn , (4.2) yields

I Vn ] < A + pMn . (4.3)

Since the right-hand side of (4.3) is independent of the point at which r;„ is evaluated,
| ??„ | can be replaced by Mn , so that one obtains

M„( 1 — p) < A. (4.4)

Dividing both sides of (4.4) by the positive quantity 1 — p, we obtain the statement
of the theorem.

Theorem 4.2. If max | /„ — fn+1 \ = A, then M„ = max | Vn \ > -4/(1 + p).

Proof. Given any « > 0, there can be found a value of s, say s = s0 , for which

| /n(So) /n + l(So) | — I fn(So) 1» + l(So) I ^ A €. (4.5)

Now, since | jj„(s0) — ??„+,(s0) | < | Vn(s0) \ + | i)„+i(s0) |, one obtains from (4.5) the
further inequality

I Vn(.S0) I + I Vn+1 (s0) | > A — e. (4.6)

But I Vn(s0) i < Mn ,\ Vn+i(sn) | < M„+1 < pM„ . Therefore,

10If any other choice of /o is made, the best upper bound that can be given for Ma entirely on the
basis of the principle of maximum and minimum will exceed 1.

"Here the additional difficulty is overlooked that at each stage of an actual computation it will
almost certainly be necessary to approximate /„ by a simpler function in order to evaluate the succeeding
function fn+i, thus increasing the best bound that can be given for the maximum error.

12In Theorems 4.1 and 4.2 the term "max" stands for "least upper bound", as in Sec. 3.
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Mn( 1 + p) > A - e. (4.7)

On account of the arbitrariness of the positive number t, (4.7) implies that

MJ1 + p) > A. (4.8)
Dividing both sides of (4.8) by 1 + p, we obtain the statement of Theorem 4.2.

Theorem 4.3. If /„ < /„+1 everywhere, then for m > n, fm < fm+l < /.

Proof. The hypothesis may be written in the form

Vn — Vn+t < 0. (4.9)

From (3.9) it is apparent that

Vn+l — Vn+2 = J (Vn — Vn+l)KB ds'. (4.10)

Since KR is everywhere non-nega'tive, it is clear that rjn+1 — )jn+2 < 0, and hence fn+J <
/n+2 . By repeating this argument, one obtains /„ < f„+1 for m > n. Since fm —* f, it
follows that each estimate fm lies below /.

This theorem obviously holds also with the inequalities reversed. Therefore, if two
initial estimates /"' and/o2' are chosen such that f'01} < /J" and /o2) > /{2), the solution
/ of (2.6) is "squeezed" between the terms of the sequences {/"'} and {/"'}.

***

5. Discussion of the inequality (3.3). In Sec. 3 a procedure was presented for the
solution of the integral equation (2.6). The discussion was incomplete in one respect,
for it was necessary to assume that the function R(s) can be so chosen that the in-
equality (3.3) is satisfied. In Sec. 8 it will be shown, by an explicit computation, that
(3.3) can be satisfied in the particular case of a domain bounded by any finite number
of collinear slits. It appears, however, that in order to extend this result to more general
types of domains it is necessary to impose certain restrictions upon the given domain
and on the added arcs. Rather than attempting to state very general conditions, we
shall here consider a rather restricted type of domain, but it will be apparent from the
argument how one might proceed in the investigation of other domains.

It will be recalled from Sec. 2 that the integral / KR (,s, s') ds', extended over the
added arcs, is simply the mean value over the circumference of the circle CR(P) (where
P is the inner point of the added arcs corresponding to the parameters) of the har-
monic measure of the added arcs.13 If the function R(s) is continuous on each of the
added arcs, as we shall assume, then the above integral is also a continuous function
of s, and is less than unity, for the harmonic measure of the added arcs is never actually
equal to unity (except possibly at the finite number of points where the added arcs
meet the circumference). Therefore, in any particular case it is only necessary to show
that the mean value is bounded away from unity in some neighborhood of each end-
point of the added arcs.

We shall now assume that the original (bounded) domain S and the added arcs
CD and EF, as shown in Fig. 2, are such that the tangent to the added arc at each point
P has no points in common with one of the two subdomains (S2 in the figure) and meets

13The harmonic measure is taken, we recall, with respect to the subdomain in which the variable
point on the circumference lies, not with respect to the original domain.
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the boundary of the other subdomain (»S\) only at two points A and B (in addition to
the point of tangency P). The points A and B will vary, of course, with the point P.
Now, the mean value of the harmonic measure of the added arcs CD and EF will surely
be bounded below unity as P varies along these arcs if the mean value on the semi-
circle lying in the region14 SP bounded by the segment APB and the arc AGB is bounded

Fig. 2.

below unity, for the least upper bound of the mean value on the other semi-circle cannot
exceed unity. Also, the harmonic measure of the added arcs at any point of the former
semi-circle15 is less-than that of the curve BCDEFA, which, in turn, by the so-called
"principle of extension" [3, p. 63], is less than that of the line segment AB with respect
to the domain SP ; the latter harmonic measure, furthermore, is less than that of the
segment AB with respect to the entire half-plane (containing SP) determined by ex-
tending AB to infinity in both directions. Now, we make the additional assumption
that, as P —> C, R can be chosen = cPB, where c is a sufficiently small positive constant.
(This would not be possible, for example, if the arcs CD and CJF meet at C under
zero angle.) Then, as is shown in Sec. 8, the mean value on the semi-circle of the har-
monic measure of AB with respect to the half-plane will be bounded below unity.16
Therefore, the inequality (3.3) holds as P —> C.

We now turn to the case when P —* D. Since the distance (in the usual point-set
sense) between CR(P) and the arc EF is bounded away from zero, we may disregard
the harmonic measure of this arc, and consider only the mean value over the semi-
circle lying in SP of the harmonic measure of the arc CD (with respect to SJ. We now
assume that the arc CD is continuously curved in a neighborhood of D, so that the
length of the segment DH of the perpendicular to AB from I) satisfies, for some suffi-
ciently large positive number o- and for P sufficiently close to D, the inequality

DH < crPH2. (5.1)

We assume further that the point P and the entire arc DEF lie on opposite sides of the
line determined by D and //. Then, by the aforementioned "principle of extension",
the mean value over the semi-circle lying in SP of the harmonic measure of the arc
CD with respect to Si is less than the mean value of the harmonic measure of the broken
line segment BHD with respect to the three-quarter-plane determined by extending

14The subscript P serves as a reminder that this domain depends upon the point P.
I6For this semi-circle the harmonic measure will always be taken with respect to Si .
16The fact that the segment AB changes direction as P varies obviously causes no difficulty. The

change in length of AB can be eliminated from our considerations by considering the harmonic measure
of a (finite) segment, beginning at B, whose length exceeds the maximum length of AB. The considerations
of Sec. 8 are then immediately applicable.
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HB and HD beyond B and D respectively to infinity. See Fig. 3. This mean value, in
turn, is majorized by the mean value of the harmonic measure (still with respect to the
three-quarter-plane) of the entire half-line HB °° plus that of HJ, where HJ is equal

Fig. 3.

to the right-hand side of (5.1).17 (As pointed out previously, we may assume PH so
small that (5.1) holds.) We now assume that R is chosen as follows:

R = y PH, (5.2)

where y is some positive constant <1. Then, from similarity considerations, it is ap-
parent that the mean value of the harmonic measure of IIB co remains constant (and
therefore certainly <1) as P approaches D. It also follows from similarity considera-
tions, together with (5.1) and (5.2), that the contribution from HJ, and therefore that
from HD, diminishes to zero as P approaches D. Therefore the mean value of the har-
monic measure of DHB is certainly bounded away from unity. From the chain of in-
equalities which we have established it follows a fortiori that J /vK(s, s') ds' is bounded
away from unity as P approaches D.

Finally, we note that the discussions of the cases P —> E and P —> F are entirely
parallel to those for P —» D and P —> C respectively.

While the discussion presented here deals with a rather specialized type of domain,
it seems likely that attempts to prove that the inequality (3.3) can be satisfied for a
given domain must in almost all cases proceed along the lines used here—i.e., of re-
peated use of the "principle of extension"; for in only very few cases (of which that
considered in Sees. 6 and 8 is one) is it possible to evaluate the integral J KR(s, s') ds'
in closed form.

6. Specific application to "slit case". In this section the method described in the
first part of this paper will be applied to a rather special type of domain which is, how-
ever, of considerable interest.

Let the domain S for which the Dirichlet problem is to be solved consist of the entire
(x, ?/)-plane except for a finite number, n, of collinear slits, which constitute the boundary
of S. Without loss of generality (since the Laplace equation is invariant under rotation
and translation) these slits may be considered to lie on the x-axis. Also it may be assumed
that the "point at infinity" is an inner18 boundary point of S, for this can always be
realized by performing an inversion in a circle with center at any inner point of any
one of the slits. (The two-dimensional Laplace equation is invariant under inversion

nThe orientation of the boundary of the new domain will vary with P, but this does not cause any
difficulty.

18That is, the slits extend to infinity both on the right and on the left.
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as well as rotation and translation.) The portion of the x-axis consisting of the slits
will henceforth be designated as C and the remainder as D (which consists of the n
intervals (a! , 6j), (a2 , b2), • • • , (an , bn)). There is now defined on C a function19 h(x),
which is assumed to be bounded on each slit and continuous except perhaps at a finite
number of points. The theorem referred to in Sec. 2 from the Nevanlinna treatise is
directly applicable, so that we are assured of the existence of a unique function u(P),
P = (x, y), which is harmonic and bounded in S and approaches h(x) whenever P
approaches a point of C at which h(x) is continuous.

Now, it is clear that the problem would be essentially solved if the values of u{P)
could be determined along each of the intervals (di, &0, (a2, b2), • • • , (an , b„) consti-
tuting D, for then the values of u{P) could be determined at all points not on the x-axis
by the Poisson integral formula:

u(P) = hd (y ̂  0)_ (61)

Letting u(x, 0) on D be designated as the function/(x), we may rewrite (6.1) in the form

U{P) = 2 + J-2-l f f®# „ (y * 0). (6.2)
T Jc (£ — X) + y T JD {£ — X) + y

Let (x, 0) be any point, temporarily fixed, interior to D, say inside the interval (ak , bk)
and let R be any positive number subject only to the condition

R < min (x — ak , bk — x); (6.3)

then the mean-value property for u(P) at the point (x, 0) may be expressed (on account
of the evenness of u{P) in y, which is apparent from (6.1)) as follows:

/(x) = - f u(x + R cos d, R sin 0) dd. (6.4)
7T J o

Now, for 0 < 6 < 7r, equation (6.2) may be written in the form

, , „ „ m R sin 9 f h(£)u(x + R cos 9, R sin 6) =   / 77 v ' ' x Jc (£ - x - R cos 9)2 + R sin 9
(6.5)

+ R sin 9 r  /fe) d£
ID ft — x —R cos 6) + R sin"

We now proceed as explained in Sec. 2. The integrand of (6.4) is replaced by the
right-hand side of (6.5), the order of integration is inverted, and the inner integration
is performed. In this manner, we obtain

"More generally, different functions could be prescribed on the upper and lower edges of C. (In the
discussion of the more general case in Sec. 2 this possibility was considered.) If different boundary values
A+(x) and hr{x) were prescribed on the upper and lower edges of C respectively, the problem could easily
be reduced to one of the type considered here by dividing it into two problems, one with boundary values
i(h+(x) + hr(x)) on both edges of C, and the other with boundary values \{h+{x) — h~{x)) and \Qt(jx) —
h+{x)) on the upper and lower edges respectively. For the second problem the solution must obviously
vanish on D (by symmetry considerations), so that by using the Poisson formula for the upper and
lower half-planes in turn the second problem would be solved, leaving only a problem of the kind con-
sidered here.
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fix) = f HQK(x, R, Q dt + f f®K{x, R, Q di, (6.6)
J C J D

where
' " " ° ' (6.7)

K(x, R, Q = (*>(£ - a:))"1 log £ — x + R
£ — x — R

(When £ = x, K(x, R, f) is to be taken equal to 2/ir2R.)
Now, fox- each value of x interior to D let a positive R be chosen, subject only to

the restriction (6.3); i.e., a function R{x) is chosen. Then the first term on the right-
hand side of (6.6) becomes a definite function of x, defined in the interior of D. This
function will be designated gR(x), the subscript R indicating, as in Sec. 2, that this
function depends on the choice made for the function R{x). For £ interior to D, the right-
hand side of (6.7) becomes a definite function of £ and x, with x also assuming values
in the interior of D. This function will be designated Kk(x, £). Thus, there is obtained
for fix) an integral equation (or, in a sense, a family of integral equations, one for each
possible choice of the function R(x)):

fix) = gR{x) + f Kr(x, £)/(£) (6.8)
J D

In Sec. 8 we shall first show that the function Rix) can be so chosen that condition
(3.3) is satisfied, so that the method prescribed in Sec. 3 for the solution of (6.8) (or,
more generally (2.6)) is applicable, and then shall illustrate our method by means of
two numerical examples. Before this, however, we shall present in Sec. 7 a brief dis-
cussion of the problem of choosing a suitable approximation with which to begin the
procedure described in Sec. 3.

7. Choice of an initial approximation. Although the sequence of functions {/„(s)}
obtained by the procedure described in Sec. 3 converges to /(s), the solution of the
integral equation (2.6), regardless of whether/0(s) is a good or poor approximation to
/(s), it is essential from the practical viewpoint to be able to select a suitable initial
approximation, for with a poor choice of f0(s) the number of succeeding functions
fiis),f2is), ■ ■ ■ which would be necessary to provide a sufficiently accurate approximation
to /(s) might be so large as to make our procedure useless for computational purposes.
For simplicity we shall restrict ourselves to the consideration of domains of the type
considered in Sec. 6, and, correspondingly, to the problem of solving the integral Eq.
(6.8), whose kernel is defined by (6.7); it will be apparent, however, that the basic idea
which we shall employ is also applicable in the general case.

It is obvious that Eq. (6.8) may be expressed in variational terms as the problem
of finding a function fix) for which

/ (/(z) - gz(.x) ~ J fi£)KRix, £) d^j dx = minimum, (7.1)

where the class of admissible functions may be taken as that of all functions which
are bounded and continuous in the interior of each interval of D. Now, following the
method of Rayleigh-Ritz [1, pp. 149-151], we would replace fix) in (7.1) by a function
Fix, a, p, y, ■ ■ ■) of x and a number of parameters a, /3, y, ■ ■ ■ (and correspondingly
replace /(£) by F(%, a, p, y, ■ • ■)), and then choose the parameters so as to minimize
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the left-hand side of (7.1). The function obtained with this choice of parameters is then
the best approximate solution to (7.1) among the class of functions considered, and may
therefore reasonably be expected to serve as a good initial approximation for the pro-
cedure described in Sec. 3. Actually, from Theorems 4.1 and 4.2 it is seen that it would
be preferable to select the parameters so as to minimize

max
xsD

F(x, a, p,y, ■■■) - gR(x) - f F(£, a, 0, y, ■■ -)KR(x, £) d$
J D

(7.2)

but it is evident that this is in general a hopelessly difficult task. Whether or not the
initial approximation obtained by minimizing the left-hand side of (7.1) is actually a
good one can then be seen by evaluating the expression (7.2).

In particular, we may take F(x, a, fi,y, ■ ■ ■) to be a polynomial in x whose coefficients
are the parameters a, /?, y, ■ ■ ■ (cf. Example 1, Sec. 8) or, more generally,
F(x, a, /3, y, • • •) may consist of different polynomials in the different intervals of D
(cf. Example 2, Sec. 8). As may be seen by performing the substitution

£ = x + Ru, (7.3)
the integral

f F(£, a, p, y, ■ ■ -)KR(x, Q d$ (7.4)
J D

can be expressed as a sum of integrals of elementary type plus a single non-elementary
integral, namely

1 + uJ u log 1 — u du, (7.5)

which can be easily evaluated by series methods. However, even when F(x, a, 13, y, ■ ■ ■ )
is of the simple form considered here, the minimizing of the left-hand side of (7.1) is
not a simple task, for the integration with respect to x involves non-elementary func-
tions. Nevertheless, the best values of the parameters a, 13, y, ■ ■ ■ may be determined
at least approximately by replacing the integration with respect to a; by a summation,
say by using Simpson's rule. This is the method which was employed in Sec. 8. In
Example 1, the interval —1 < x < 1 was divided into 20 equal subintervals, and in
Example 2 each of the intervals — 4 < x < — 1 and 1 < x < 4 was divided into 12 equal
sub-intervals.

The fact that very satisfactory initial approximations were obtained in Sec. 8 by
the method which we have described here suggests that the variational approach is a
suitable means for obtaining an initial approximation, and also that the approximate
method described in the above paragraph for obtaining the best values of the param-
eters yields values not differing appreciably from the correct ones.

8. Illustrative examples for domains bounded by collinear slits. In proving the
convergence of the approximation procedure in Sec. 3 we had to assume that the in-
equality (3.3) is satisfied. In this section we shall first of all show that, for the domains
considered in Sec. 6, it is indeed possible to assure, by a suitable choice of the function
R(x), that (3.3) holds.

The function R(x) will be chosen as large as possible. Therefore,

R(x) = min (x — ak , bk — x), (8.1)
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where x lies in the interior of the interval (ak, bk). In order to show that with this choice
of R(x) a constant p exists for which (3.3) holds, we consider the function

p(x) = [ Kr(x, £) d£ = 4 f (f - x) log ~—
J D 7T J D | §

£ — x -f~ R dt, (8.2)

defined for all values of x interior to D. If x lies in the left half of the fc'th interval,
(ak , bk), so that R = x — ah , we may write (8.2) in the form:

p(x) = A [ (£ - x) 1 log
7T J d

£ —

£ — 2 x + ak df. (8.3)

Since the integrand is positive everywhere, the right-hand side of (8.3) is increased
if the integration is extended over a point set containing D. Extending the integration
over all values of £ except for the segment of C immediately to the left of the fc'th in-
terval20 of D, we therefore obtain the inequality

p(x) < \ [ (I - xr1 log
7T «/_od

Q<k dt

1 rak
 2 ft - x) 1 log

""" " bk— i

£ - 2x + ak

Z — ak
£ — 2 x + ak

(8.4)
df.

Performing in (8.4) the substitution

£ = x + Ru = x + (x — ak)u, (8.5)

we obtain

p(x) < \ f u 1 log I U du — \ f u 1 log
7T J— m 1 11 7T J (bk— i—x)/(x—ak)

Now, it is known21 that

1 + u
1 — u du. (8.6)

\ f u 1 log
7T J_m

1 -f• U
1 — U

du = 1. (8.7)

Also, since the integrand of the second term on the right-hand side of (8.6) is always
positive, the entire right-hand side is largest when the lower limit of integration is as
large (i.e., as small in absolute value) as possible. This clearly occurs when x is as large
as possible, i.e., when x = 1/2(a* + bk), so that, for ak < x < 1/2(ak + bk), the following
inequality holds:

p{x) < 1 — \ [ u 1 log
"H" I2bk-i-(.ak + bk) ]/(.bk~ak)

1 + u
1 — u du. (8.8)

20If k — 1, the interval (— oo, ai) is to be excluded from the integration. In (8.4), 60 is therefore to be
taken as — oo.

21This can be seen without performing any computations, in the following way. By taking account of
the substitution (8.5), one sees that the left-hand side of (8.7) is equal to the first term on the right-hand
side of (8.4). The latter quantity, in turn, is, by the considerations of Sec. 6, equal to the mean value over a
certain semi-circle of the harmonic measure of the entire z-axis with respect to the half-plane y = 0.
Since the harmonic measure of the entire boundary of any domain is identically equal to one at all points
of the domain, (8.7) follows.
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Similarly, it is possible to obtain for p(x) an upper bound less than one in the right half
of each interval of D. If p is taken equal to the largest of the 2n upper bounds so ob-
tained, the inequality (3.3) will be satisfied.

A similar proof can be carried out for various other choices of R(x); e.g., one may
choose R(x) = c min (x — ak, bk — x), where c is any positive constant <1. However,
the value of p obtained with any c < 1 would be closer to one than with c — 1, so that
the choice c = 1 appears best. In the numerical examples to be presented here R(x)
is always chosen with c = 1, i.e., according to (8.1). In Example 1, we have p — .75;
in Example 2, p = .8387.

Example 1. The domain S consists of the entire (x, y)-plane cut by the slits (— =°, — 1)
and (1, oo) of the x-axis, on which the boundary values h(x) — — 1 and h(x) = 1 re-
spectively are prescribed.

The exact solution is easily found to be given, on the interval (—1, 1) of the x-axis,
by

2u(x, 0) = f(x) = - arcsin x; (8.9)
7r

however, in order to illustrate our procedure, we have taken three different initial
approximations, which we designate /"'(a), fo2\x), fo3>(z), and have determined the
corresponding succeeding approximations, which we designate fiv(x), fl21 (x), f[3)(x),
respectively. The results of these computations are presented in Table 1. (Only positive
values of x are listed, since all functions appearing are odd.)

Table 1

x /o(x) fi(x) f0(x) fi(x) fo(x) fr(x) f{x)

0 0000000
.1 .1 .0589 .0600 .0624 .0600 .0652 .0638
.2 .2 .1268 .1215 .1281 .1215 .1317 .1282
.3 .3 .2042 .1860 .1935 .1860 .1979 .1940
.4 .4 .2894 .2550 .2613 .2550 .2665 .2620
.5 .5 .3819 .3300 .3317 .3300 .3375 .3333
.6 .6 .4820 .4126 .4069 .4126 .4113 .4097
.7 .7 .5920 .5041 .4907 .5041 .4977 .4936
.8 .8 .7072 .6062 .5885 .6062 .5976 .5903
.9 .9 .8388 .7203 .7098 .7203 .7250 .7129

1.0 1. 1. .8479 .8859 1. 1. 1.

The first initial approximation to be chosen was:

ft\x) = x. (8.10)
This function, although joining continuously with the prescribed boundary values, is
clearly a poor choice; nevertheless, as may be seen from Table 1, the succeeding ap-
proximation, f[r)(x), shows a very marked tendency toward the exact solution given
by (8.9).

The function /o2>(x) was chosen to be the "best" third-degree polynomial (in the
sense of Sec. 7). We thus obtained:
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f02\x) = .5974a: + ,2505a:3. (8.11)
This function is seen to be a rather good approximation to the exact solution except
near the end-points of the range, for it fails to join continuously with the prescribed
boundary-values. The succeeding approximation .fi2\x) is seen to be still closer to fix)
for most values of x, and the improvement near the ends is worthy of note.

The third choice of an initial approximation was made as follows: The function
(8.11) was retained in the sub-interval — .9 < x < .9, but for —1 < x < —.9 and for
-9 < x < 1 was replaced by second-degree polynomials joining smoothly with (8.11)
at x = ±.9 and continuously with the prescribed boundary values at x = ±1. In this
way the following choice was obtained for /o3)(x):

(a) f03\x) = -12.5230 - 27.4344a: - 15.9114a:2, -1 < x < -.9;

(b) /<3)(x) = .fo2\x) = .5974a; + ,2505a;3, -.9 < a: < .9; (8.12)

(c) f03\x) = 12.5230 - 27.4344a: + 15.9114a:2, .9 < x < 1.

The corresponding approximation /"' (x) is seen to provide a remarkably good ap-
proximation to f{x) throughout the range (—1, 1).

Example 2. The domain S consists of the entire (x, y)-plane cut by the slits
(— oo, —4), (—1, 1), and (4, oo) of the a:-axis, on which the boundary values hix) =
0, 1,0 respectively are prescribed.22

The exact solution to this problem can be expressed in terms of elliptic integrals. In
particular, on the interval (1, 4) of the a;-axis, the solution is given by

u(x, 0) = f(x) = \ - J° (! ~ t /81) ~ 1) * dt (8.13)
2 2 JJ (1 - <78ir4(l - dt

where

w = 3(X f. (8.14)x + 1

In the notation commonly used for elliptic integrals, (8.13) may be written in the form

x _ 1 _ K(arcsin w, 1/9) . .
n) 2 2K(l/9) ' 1 ^

(Since the solution is obviously even in x, it suffices to determine fix) in the interval
(1, 4).)

As an initial approximation we first tried

f?\x) — | (4 — | x |), (8.16)

which is seen to join continuously with the prescribed boundary values. (As in Example 1,
a superscript is attached to the approximation function in order to distinguish it from
another one which will be used later.) As in the case of the first initial approximation
considered in Example 1, this is a rather poor choice; nevertheless, as may be seen from

"That is, the problem is that of determining the harmonic measure of the finite slit.
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Table 2, the succeeding approximation /{"(a:) shows a strong tendency toward the exact
solution/(x), whose values are also given in Table 2.

Table 2

x f0(x) fi(x) f0(x) fi(x) f(x)

1 + 0 1. 1. .8985 .9239 1.
1.25 .9167 .8549 .7629 .7471 .7430
1.5 .8333 .7499 .6537 .6419 .6402
1.75 .7500 .6535 .5664 .5648 .5639
2.0 .6667 .5687 .4966 .5014 .5000
2.25 .5833 .4956 .4397 .4443 .4438
2.5 .5000 .4366 .3913 .3925 .3921
2.75 .4167 .3895 .3470 .3442 .3434
3.0 .3333 .3461 .3023 .3002 .2956
3.25 .2500 .2819 .2527 .2468 .2472
3.50 .1667 .2062 .1937 .1953 .1954
3.75 .0833 .1168 .1209 .1309 .1342
4-0 0 0 .0300 .0225 0

As in Example 1, we next obtained another approximation by the method described
in Sec. 7. The approximation was taken to be of the form

fo2\x) — a + bx + cx2 + dx3, 1 < x < 4;
(8.17)

fo2)(x) = a — bx + cx2 — dx3, — 4 < x < —1,

the coefficients a, b, c, d being unspecified to begin with. (From (8.17) it is apparent
that fo2)(x) is even, so that as before it suffices to determine f[2\x) for 1 < x < 4.) In
this manner the following values were found for the coefficients:

a = 1.7936, b = -1.2369, c = .3894, d = -.0476. (8.18)

With this choice of the coefficients, the values of fo2)(x) and /,<2> (x) listed in Table 2
were obtained. As in the eorresponding part of Example 1, these functions are seen to
be rather good approximations to the exact solution, except near the end-points. It is
almost certain that if /o2) (x) were modified near the end-points so as to join continuously
with the prescribed boundary-values, as was done in Example 1, both the initial and
succeeding approximations would constitute considerable improvements over the ones
which we have obtained.
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