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A NEW TREATMENT OF THE LIFTING-LINE WING THEORY, WITH
APPLICATIONS TO RIGID AND ELASTIC WINGS*

BT

W. R. SEARS
Cornell University

1. Introduction: the Prandtl airfoil theory. The approximate theory of three-dimen-
sional airfoils known as the "lifting-line" theory was formulated in 1918 by L. Prandtl.1
It has been in general use since then, and a number of different techniques have been
developed for the numerical solution of the equations involved. Notable among these
are the methods of Glauert,2 Lotz,3 and Multhopp.4 The first two of these are based
upon the use of trigonometric series, while the third involves solution of an integral
equation by successive numerical approximations. In the present treatment, the Prandtl
theory is formulated in terms of an integral equation of a classical type, and a practical
solution in terms of its eigenfunctions is carried out. It is believed that certain advantages
are offered by this procedure.

In the Prandtl theory the wing is assumed to be at rest in an incompressible fluid
of infinite extent, whose velocity is uniform far upstream. The effects of viscosity are
neglected, except as they are required to explain the presence of circulation about the
wing. The wing is then replaced by a single vortex filament, or "lifting line", having
at any spanwise station a strength equal to the circulation about a contour enclosing
the wing at that station. There extends downstream from the lifting line a discontinuity
surface, called the trailing-vortex sheet; hence the region is multiply connected. It is
assumed that all the velocity components induced by the vortex filament and the
vortex sheet are small in comparison with the undisturbed stream velocity; the vortex
sheet may then be assumed to be approximately plane and to lie in the direction of
the undisturbed velocity vector, at least for purposes of calculating certain induced
velocity components at the lifting line.

The remaining approximation of the Prandtl theory is required to relate the circula-
tion r about any section of the wing to the geometry of the wing at that section and the
induced velocity at the same point on the lifting line. Let us select a coordinate system
such that the distance along the span is denoted by y, as indicated in Fig. 1; let U denote
the undisturbed stream velocity, c(y) and a(y) the chord and angle of attack of the wing
at y, and w(y) the z component of the induced velocity at point (0, y, 0) on the lifting
line. The relation assumed by Prandtl, by analogy with the production of circulation
about an airfoil in two-dimensional flow, is

| Ucm(a - jjJ, (1)F = 2 Ucm\

where m{y) is a number that is characteristic of the airfoil profile at y, namely the slope
of the lift-coefficient curve for two-dimensional flow.

The most important practical problem of three-dimensional airfoil theory is the
determination of T(y) when the geometrical properties a, c, and m are prescribed
functions of y; this requires tbe calculation of w(y) in terms of T(y). The strength of
the vortex sheet, which according to the approximations stated above does not vary
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with x, is given by — dT/dy. Prandtl calculated w by integrating over the sheet; how-
ever, a treatment that is more convenient here is the one employed by Trefftz,5 who
considered conditions in a transverse plane far downstream where the effects of the
lifting line are negligible. In such a plane the induced flow is steady and two-dimensional,
and by symmetry the induced velocity components in the y and z directions are twice
as great as at the corresponding points in the plane of the lifting line.

Fig. 1. Diagram showing notation.

Let <p(y, z) be the velocity potential of the induced flow in Trefftz' plane. The jump
in the value of <p at the discontinuity surface is seen to be equal to T(y)] i.e.

r (y) = <p{y, +0) - <p(y, -0)
(2)

= 2<p(y), say.

Hence the problem represented by Eq. (1) can be replaced by the following two-di-
mensional boundary-value problem:

d2 «\2f a. d * - n
09 = W + a? ~

(except on the slit 2 = 0, —2a^y^2a),

2<P = | Ucm(a + ~ &), for z = +0,

= -±Ucm(* + -L|), for 2 = -0.

r(3)



1948] A NEW TREATMENT OF THE LIFTING-LINE WING THEORY 241

It should be noted that, whereas the velocity potential has equal and opposite
values on the two sides of the discontinuity surface, the z component of the velocity
is continuous at this surface.

2. Formulation as an integral equation. It is convenient at this point to employ
the transformation

y + iz = a(f + r1)
by which the region exterior to the trace of the vortex sheet is mapped on the region
outside the unit circle in the £ plane. Here 4a denotes the span of the wing. If f = re,e,
the second and third of Eqs. (3) are replaced by the equations

]z Ucrria + -—jy--—-2 \ 4a U sin 0 dr/ forr = 1, 0 ^ 0 ^ 2r

forr =1, 0 2ir. (4)

2V ~ 2 Ucm\a +

<p{6) = — <p(2ir — 0),

or, after rearrangement of terms,

. sin 6 1 d<p tt4 ip — — — = Ua sincm 4a dr

<p(d) = —<p(2ir — 9), ,

If we introduce the notations

m ^ W»sin(/ = /(2x _ e)cm

g(d) = U(cm)o a sin 6 = g(2t — 6),

I = (cm)0/4a > 0,

where (cwi)0 is the value of the product cm at a convenient reference station, say at
y = 0, then we have the boundary-value problem in the form

0 g 0 g 2?r
(5)

Atp = 0 for r > 1,

4f<p - = g for r = 1,

<p(d) — —ip(2tt — 0).

(6)

Several procedures have been suggested for the numerical solution of this non-
homogeneous boundary-value problem of the third kind. Lotz3 used trigonometric
expansions of the functions <p, f, and g; this leads to an infinite set of non-homogeneous
linear equations for the Fourier coefficients of <p. This set is different for each choice of
/ and g, i.e. for each wing planform and angle-of-attack distribution. Schroder6 and
Gebelein7 have set up the integral equation corresponding to the boundary-value prob-
lem, and Schroder has proposed a solution in terms of its eigenfunctions.

In the present treatment we formulate the integral equation by a somewhat different
process, and carry out the practical solution in terms of its eigenfunctions. It appears
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that this recourse to the underlying mathematical character of the problem leads to
certain essential simplifications, since the eigenfunctions and eigenvalues are charac-
teristic of a planform (/)—in fact, of a family of planforms—and do not depend upon
the angle-of-attack distribution (g).

In view of the antisymmetrical character of the problem, Eq. (6) can immediately
be replaced by an integral equation of the second kind by use of the Poisson equation
for this case:

1 f21<p(0)   / log
7T Jq

-sr*
8 — Tcsc —-—

csc

i r2T+ 7iL ̂ csc •

dfd rdr

/(r)<p(r) dr

6 — r g(r) dr. (7)

If we multiply both sides of Eq. (7) by [f(8)]1/2 and denote f1'2 <p by $, we obtain
a new integral equation involving a symmetrical kernel K(6, r) = K(t, 8) =
log | csc (8 — r)/2 | [f(0)f(r)]l/2; i.e. the equation

t»2 T

$(0) = X / K(8, t)$(t) dr + F{8), (8)
Jo

where we have also written — 4/irZ = X and

3. Solution of the integral equation. This integral equation [Eq. (8)] is of a classical
type, having a real, symmetrical kernel of bounded integral-square, and there are avail-
able for its solution the theories of E. Schmidt, D. Hilbert, and others.* The solution
of Eq. (8) is as follows:

(i) H6) = F(8) + X | ^(8) + $2(0) +•••}, (9)

where Xj, X2, • • • are the eigenvalues and $i(0), $>2(8), • ■ • the corresponding normalized
eigenfunctions of the homogeneous integral equation

$,■(0) = X,. K{8, dr- i= 1, 2, • • • (10)

and the definition of , F2 , • ■ ■ is given by

Ft = f Fie)#^) d8; i = 1, 2, • • • . ' (11)
Jo

Moreover,
(it) the homogeneous equation [Eq. (10)] has infinitely many real eigenvalues, and,

since the kernel K(8, r) can be shown to be positive-definite,** all of its eigenvalues are

*See, for example, Reference 8, pp. 527-535, also Reference 9, pp. 104-118.
**Reference 9, p. 105.
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positive;
(Hi) the eigenfunctions of the homogeneous equation are real functions of Q in the

interval 0 ^ 6 ^ 2t, and constitute a complete system; they possess the property of
orthogonality:

f $,(0)$,(0) de = 8{j; (12)
Jo

(iv) any arbitrary function y(d) can be represented in the interval 0 ^ d ^ 2x
by the series

y(6) = Cif>i(0) + c2$2(0) + • • • , (13)
where

f»2 T

y(0)9i(0) de- i = 1, 2,
J0

and the series (13) is absolutely and uniformly convergent in the interval; provided
that y(9) can be represented in the form

y{9) = K(d, t)z(t) dr. (14)
Jo

The function F(6) has been defined in the form (14); consequently it can be expanded
in the form of equation (13):

F(0) = *>,(0) + F2$2(0) + • • • . (15)

Thus a simpler form of Eq. (9) is obtained:

F^(0) + •■■ ■ (16)

Moreover, if the definition of F(0) is substituted into Eq. (11), one has

' --iU"uur*MdT- <-1>".-••• <">
Hence, the solution of the lifting-line problem can be found immediately, in the

form of a series expansion in eigenfunctions [Eq. (16)], where the coefficients are calcu-
lated from Eq. (17), provided, of course, that the eigenvalues and functions are known
for the planform under consideration.

After discussing briefly the physical meaning of the eigenfunctions, we shall consider
the problem of their numerical computation and present typical examples.

4. Physical interpretation. The preceding formulation has been largely mathe-
matical. Although the theorems of the Hilbert-Schmidt theory tell us that the homo-
geneous Eq. (10) must have positive real eigenvalues, we have at present no insight
into their physical significance. Returning to our original notation, we have

X = —4/id = — 16a/x(cm)0 .
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It is clear that positive eigenvalues correspond to negative values of the profile param-
eter m0 , which is the reference value of the two-dimensional lift slope. Now, the
homogeneous problem [Eq. (10)] amounts to the determination of the circulation dis-
tribution of the wing in question when its angle-of-attack distribution a(y) is identically
zero. We see that this problem has non-trivial solutions only for discrete negative values
of the lift slope.

Physically, this result is easily understandable. The untwisted wing at zero incidence
can produce lift only when its induced velocities (downwash) act to reinforce the circu-
lation, and this can occur only when m is negative! That this can occur only for certain
discrete values also seems reasonable. The close analogy with the existence of self-
reinforcing free vibrations of an elastic system at certain discrete natural frequencies is
also obvious.

The eigenvalues are therefore the particular values of the parameter X for which
the wing planform in question, with no twist and zero incidence, has non-vanishing
lift distributions. The eigenfunctions represent these distributions.

5. Numerical calculation of eigenfunctions. So far, we have assumed implicitly that
the eigenvalues and -functions were known, so that the solutions represented in Eqs.
(16) and (17) could be carried out. We shall now consider the practical problem of
their numerical determination. There are numerous methods available for this calcu-
lation,* and a few of them have been tried out on this problem. One that is used in
vibration problems has been adopted, but no assurance can be given that it is the most
accurate or the easiest.

In this procedure, we resort to the approximate expression of the in finite trigo-
nometric series. The numerical calculation of each <£>,■ is then analogous to that proposed
by Lotz3 for the inhomogeneous case, but can be simplified by virtue of its homogeneity.

Returning to our original notation, as in Eq. (7), we have for the homogeneous case

<p(d) = X f log
J0

e -
CSC — <®M/(r) dr. (18)

Let <p(d) = j cn sin nO and f(d) — bn cos nO. Then, using a known expression for
the logarithmic kernel, we have

2 cn sin nd = X [ ^ sin md sin tot ^ ^ ^ ^ ^ cog ^g (19)
i Jo i m i o

Under suitable conditions of convergence, which are assumed here, this leads to a system
of homogeneous linear equations for the cn . The system can be solved approximately
provided that the infinite series in Eq. (19) is terminated after the same number of terms
as the other trigonometric series involved. This approximation leads to a matrix equation
that can be solved numerically by a simple process of iterative multiplication:11

(20)

where {c} is the column matrix of c„'s, and [&] is the square matrix

*See, for example, Reference 10 and the references listed there.
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2b o 62 61 63 62 64

(6, - 60/2 (260 - 60/2 (61 - 60/2

(62 - 60/3 (6x - 60/3 (260 - 60/3

Numerical solution of Eq. (20) leads to an eigenvalue , and a corresponding matrix
{c(1>}, say, whose members are the Fourier constants of $]/(/)1/2 or <pi(d), say cj1',
Cj1', • • • . To determine the next eigenvalue and -function, the same numerical pro-
cedure is used, after eliminating the first set by one of the standard techniques, e.g.
by use of the orthogonality relation

X) mc'^c^ =0 if i j. (21)

This procedure has been employed to calculate approximately the eigenvalues and
-functions of a widely-used family of planforms, namely the family of "trapezoidal"
wings, whose chord length c(y) varies linearly from y = 0 to y = 2a. The results will
be presented below.

6. Examples. A. Elliptic planform.
This case is represented by

cm = {cm) a sin 6
or

/= 1.
Hence

d —K(0, r) = log CSC Y

and the eigenvalues and -functions for this case are*

X„ = n/ir) <£„(0) = x"1/2 sin nd.

The solution of an inhomogeneous lift-distribution problem for an elliptical planform
is therefore given by

$(0) = <p(0) — r/2 = 4:aU s"1 n0>
1

a--(*+Wb- m

Bn = J?/17 x f q(t) sin nr dr = - f a sin r sin nr dr.
U(cm)o J0 t J0

These formulas are well known.12
B. Trapezoidal planform. The planforms of greatest practical interest, in view of their

common use in aeronautics, are those represented by

*Cf. Reference 9, p. 130.
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cm = (cm)o ^ 1 — £ 3L
2 a -2a ^ y ^ 2a

or

where t is a constant.

= sin 6 < <
•f i - t I cos e r

Table I
Eigenvalues for Trapezoidal Wings

Taper Ratio T 1 2 3 3.50 4.00

Xi .36726 .29665 .26553 .25537 .24722
X2 .8685 .61731 .51508 .48303 .45780
X, 1.3512 1.0031 .8480 .7982 .7585
X4 1.8286 1.3470 1.1305 1.0614 1.0065
Xs 2.2950 1.7230 1.4504 1.3632 1.2944
X6 2.7572 2.0728 1.7400 1.6336 1.5496
X7 3.3209 2.4511 2.0900 1.9847 1.9008
X8 3.8448 2.8165 2.3789 2.2568 2.1625
X9 5.0487 4.4275 3.2631 2.9394 2.7021
X10 5.7616 5.2158 3.7958 3.4008 3.1093

Table II
Fourier coefficients cm(n) of the functions fn(9) (Odd values of n)

T = 1 T = 2 T = 3 T = 3.5 T = 4.0

c3"
C5°
C7
C9°

(1)

+.59990-.04933
+ .00072
+ .00053
+ .00028

+ .54354-.01387
-.01100
+.00028-.00094

+.51446
+ .00644-.01279
-.00066
-.00119

+.50375
+ .01368-.01278
-.00110
- .00132

+ .49525
+.01974-.01247
-.00147
-.00145

c,®
c,®
c5<3)
c7«»
c9®

+.14955
+.60194-.21574
+ .03634
+ .00082

+ .02992
+.55224- .12402
- .03257
+ .00511

-.02691
+ .52148- .05528
-.04809
-.00068

-.04616
+ .50782-.03100
-.05003
-.00371

-.06183
+ .49537-.01099
-.05020
-.00635

cs"

Cr(f
c>(5)

+ .07860
+ .32339
+ .47680-.32639
+.10075

+ .06207
+.15086
+ .49449-.24570
- .02524

+.05736
+ .06048
+ .50181-.13417
-.07544

+ .05714
+ .02879
+ .49618-.09390
-.08500

+ .05760
+ .00268
+ .48866-.06070
-.08925

i(7)
(7)C3

C5('
C7°
c«'(7)

+ .04596
+ .20074
+ .43372
+ .39752-.35774

+ .02561
+.14254
+ .21269
+.39032-.34917

+ .00600
+ .11266
+.09220
+ .45196- .25385

+ .00043
+.10890
+ .05589
+ .46896-.20937

-.00365
+.10816
+ .02895
+ .48042-.16527

ci
Cst!
c5
C7's

c9'

(9)

(9)

(9)

+ .00815
+ .06094
+.22312
+ .49177
+ .58651

+ .05221
+.16744
+ .32499
+ .44450
+ .51959

+ .03918
+ .11292
+ .24314
+ .31287
+ .49923

+ .03555
+ .09307
+.21699
+ .25698
+ .49608

+ .03294
+ .07569
+.19688
+ .20307
+ .49456



1948] A NEW TREATMENT OP THE LIFTING-LINE WING THEORY 247

Table III
Fourier coefficients of the functions <pn(6) (Even values of n)

T = 1 T = 2 T = 3 T = 3.5 T = 4.0

c2w
C4m
c«<2'
CgO)
Cio®

+.62793-.13722
+ .01264
+ .00163
+ .00064

+ .54543-.07127
-.01852
-.00003
-.00099

+ .50380-.03155
-.02355
-.00268
-.00122

+ .48897-.01798
-.02384
-.00385
-.00147

+ .47651-.00694
-.02345
-.00481
-.00175

c2™
c4<4)
c,w
cs(4)
c10(<

+.25463
+.54549-.28016
+ .06867-.00381

+ .11692
+ .52247- .19186
-.02812
+ .00828

+ .04780
+ .50865-.10477
-.05609
+ .00044

+ .02407
+ .49960-.07303
-.06100
- .00417

+ .00467
+ .49017-.04686
-.06282
-.00836

c2<«
c4<6'
c,<«
c8<«
Cio<®

+.14045
+ .37005
+ .40287-.35825
+.13026

+ .09593
+.19703
+.43699-.30691
-.00235

+ .07476
+.10285
+.47565-.18484
-.07443

+ .06899
+ .06753
+ .47671-.13793
-.08973

+ .06557
+ .03825
+ .47605-.09959
-.09808

c2w
C4™
c,<»
c8»>
Cio«

+.07570
+.24065
+ .45828
+.35072- .36860

+ .06768
+. 17700
+ .24371
+.32604- .38416

+ .03750
+.12625
+ .11728
+ .41322-.29392

+ .03002
+ .11791
+ .07741
+ .43762-.25128

(10)
c2y
c4'
C6<10
C8»
Cl0°

+ .00688
+ .06776
+ .24126
+.50300
+.58052

+ .09938
+ .22027
+ .36526
+ .46377
+ .49813

+.07132
+.15621
+ .27584
+.34179
+ .47927

+ .06221
+.13367
+ .24644
+.29092
+ .47762

+ .02498
+ .11455
+ .04796
+ .45529-.20898

+ .05477
+ .11401
+.22295
+ .24157
+ .47815

The approximate calculation described above has been applied to this case.
It is important to notice that / depends on the taper parameter t, but not on the

aspect ratio. Consequently, the terms in Eq. (20) are independent of aspect ratio, and
each set of eigenvalues and -functions can be used for an entire family of planforms
having the same taper ratio.

The numerical results for this class of wings are summarized in Tables I—III and
Figures 2-5. Figures 2 and 3 present the first ten eigenvalues as functions of the taper
ratio T, which is defined as

T _ (cm)o = 1
(cm)lip 1 — t '

In Figures 4 and 5 are shown a typical set of eigenfunctions i>„ , namely the set corre-
sponding to the case T = 1 (rectangular wing), for n = 1 to 10.

In Tables II and III are presented the values of the first ten Fourier coefficients
c(nm) of the functions for m = 1 to 10 and for several taper ratios between 1 and
4. It will be recalled that these functions are related to the normalized eigenfunctions
by the relation

These tables include all of the numerical data required to use the present method of
solution with trapezoidal planforms within the range of values of T indicated.

7. Formulas for practical application (rigid wings). In this section we shall present
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X.

1 Z 3 4
T

Fig. 2. Eigenvalues X„ for trapezoidal wings of taper ratio T. Odd values of n.

2. 3
T

Fig. 3. Eigenvalues for trapezoidal wings of taper ratio T. Even values of n.
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.81 

rn. 0

Fig. 4. The eigenfunctions <f>„(0) for rectangular wings. Odd values of n.

n. 0

Fig. 5. The eigenfunctions 4>„(0) for rectangular wings. Even values of n.
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certain formulas that may be convenient in the practical application of the present
theory to the classical problem of the Prandtl wing theory, i.e. to calculate the forces
and the spanwise distribution of lift on a prescribed rigid wing.

It has already been found, in Eqs. (16) and (17), that

HO) = 4C7ai: ftA(0), (23)
where

f*2 it

«„ = — 1 f g(r)<P„(r) dr.
Jo16 Ua X„ — X

Thus, the circulation distribution is given by

r = 2<P = 2$//1/2 = SUaJ2 ancpn(8). (24)

When, as in the case of the trapezoidal wings above, the functions ipn are given in
terms of their Fourier constants, it is convenient to calculate the coefficients ft„ as
follows:

ffW E^'sinmrdr

(25)
* X £ cln)Bm ,

16 Ua Xn — X i

where Bm = (1 /7r) Jo' g(j) sin mr dr; i.e. the Fourier coefficient of the angle-of-attack
function g.

Moreover, the usual sine series for r may be useful; it is commonly written as

T = 8Ua £ ^sinnfl. (26)
1

It is seen that the two "Fourier" coefficients, for expansion in sines and in eigenfunctions,
respectively, are related as follows:

An = Z dm,am. (27)
1

Hence, certain formulas of the Prandtl theory2,3'5,12 can be transformed immediately
to our new formulation:

CL = (Coefficient of total lift) = tA £ c[m> <S„, ,
1

Ci = (Coefficient of total rolling moment) = — A ,

CD = (Coefficient of induced drag) = tA £ £ £ kc'^'cl"
m n k •

= 7ri XI ,
1

where A denotes the aspect ratio, a constant.
Other useful expressions can be obtained by the well-known expedient of dividing

the circulation distribution into so-called "basic" and "additional" parts, which are

(28)
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independent of CL and of g(0), respectively. These formulas will not be developed here,
since they are quite analogous to those employed in other methods of calculating span-
wise load distributions.13

An additional simplification occurs in most practical cases because the planform is
symmetrical about its center-line y = 0. This makes f(0) symmetrical about 6 = x/2,
and it is then found that <pi , <P3 , <Ps , ■ • • are symmetrical while <p2 , <p4 , • • • are anti-
symmetrical; thus half of the coefficients ci"' are identically zero. The trapezoidal plan-
forms of the preceding section provide an example of this. In this situation it is clear
that symmetrical and antisymmetrical lift-distribution problems are independent of
one another; i.e., symmetrical a{y)'s will produce only symmetrical T(y)'s, and anti-
symmetrical a(y)'s will produce only antisymmetrical V(y)'s. Obviously, practical
problems involving arbitrary a(y)'s will usually be handled by considering the sym-
metrical and anti-symmetrical parts of a{y) separately.

In summary, it may be said that, for rigid wings, the use of eigenfunctions reduces
every lift-distribution calculation to the same simplicity that ordinarily occurs only for
the elliptical planform. However, since the eigenfunctions are not conveniently tabu-
lated and are not as simple as trigonometric functions, this simplification is partly
illusory, and for practical use one actually works with the Fourier constants clm). Never-
theless, the simplification represented by Eqs. (25), (26), and (27) is very great; one
calculates the span loading r by a straightforward process requiring only the Fourier
coefficients of the angle-of-attack function g, besides tabulated quantities. No procedure
of successive approximations is required.

8. Formulas for practical application (elastic wings). In the case of the elastic wing,
whose ultimate geometrical configuration is determined by the airload distribution, it
appears that the present theory may offer rather important possibilities. At present,
calculations for such wings are either made without attention to the aerodynamical
principles of the Prandtl theory—i.e. by neglecting the effects of the trailing vortex
sheet entirely—or by assuming special and simple geometrical and elastic properties,
which may be completely inapplicable to wings encountered in practical engineering
problems. Another method is to perform a process of successive approximations, esti-
mating the elastic deflection from the rigid-wing airloads, repeating the rigid-wing
calculation for the deflected wing, and so forth. It is clear that this process must fail
at each of the so-called divergence speeds, where the elastic restoring force in some
mode of deflection becomes insufficient to resist the air forces. It is also likely that the
convergence of the process becomes poor as such a divergence situation is approached,
and that this will make it impossible either to predict the divergence speed or to calculate
air loads with satisfactory accuracy near such a speed.

To attack this problem, we first note explicitly that the load distribution pUY(y)*
is linearly related to the angle-of-attack distribution a(y) or g(9), according to the
Prandtl theory considered here. Let us denote by (P[</] the circulation distribution of
a given wing at the speed U when the angle-of-attack function is g(d). Thus <9[g] is the
"Prandtl functional" calculated in the preceding paragraphs, i.e.

r = (%]
and it is linear in g; i.e.

* p denotes the fluid density.
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<%i + 92] = + (P[g2],

(29)
<P[kg] = k(9[g].

Now if the subscripts r and e denote, respectively, the contributions due to the
built-in angle of attack, af(y), and the elastic deflection under load a,(y), we have

a(y) = ar(y) + ct.{y),

g(6) = gr(0) + g.(0), (30)

r = <P[g] = <p[grr] + <P[sr.].

Moreover, the elastic deflection (twist) is determined by a linear functional in-
volving the load distribution pUT(y). Ordinarily, it is satisfactory to calculate this
deflection by means of the torsional influence function F{y, if), which denotes the angular
twist at y due to a concentrated unit torque at 77. This function can be calculated or
it can be determined experimentally; for practical airplane wings it is often a very
irregular function. It is used to calculate the elastic twist as follows:

f2° rfT*«(?/) = J F(y, v) J- dt],dti
where 3 (y) is the torque about the elastic axis at any span wise station y:

An
^ = M + pUl'e, (31)

where M — M(y) = aerodynamic moment about aerodynamic center at y
= (h)PUVcm(y),'

cm(y) = moment coefficient of the profile at y (a given function),
e = e(y) = distance between aerodynamic center and elastic axis at y (a given

function).

Thus

or

1 I /»zo /»2 a

<*e{y) = 2 pU\J0 dr> + 2 J0 F(y> ̂efPlg/U] d-q

g,/U = (cm)0ae sin 6

= | pU2(cm)0 sin e| ^ F(y, v)ccm dt]

+ <32>

It should be noticed that there are two terms on the right-hand side of Eq. (32)
involving only known functions and a third involving the elastic deflection. Equation
(32) is a linear integral equation of second kind, but involves a very complicated kernel.
Its solution might be found in terms of the eigenvalues and -functions of the homo-
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geneous case, i.e. the case cm = gr = 0. These eigenvalues would represent the values
of %pU2(cm)0 for which wing deflection would occur with no initial moment or angle
of attack; viz., the divergence speeds.

For practical calculation, using the present technique of handling the Prandtl
problem, we make use of a symbolism that is equivalent to Eqs. (6), (10), or (18):*

2<pje) =

or (33)

v[M = •

where /1/2 <pn is the normalized eigenfunction, as before. This shows, incidentally, that
the unique property of the eigenfunctions can alternatively be expressed thus: f<pn is
the angle-of-attack distribution that produces, on the given wing, a circulation distri-
bution proportional to <pn.

Therefore, if we expand gr/U and gJXJ in series of <p„'s, we can immediately operate
term-by-term with the Prandtl functional symbol (P; i.e. if

then

I = M E and * = M £

v[g/u] = Z (&ir> + = E (^r> + bn~z~<Pi. (34)

But according to Eqs. (13),

bi" = J\n(0)^dd

I i*Zir f*2a

= ^ pU2(cm)AJ <pn(d) sin 6 J F(y, i])ccm dt] dd

+ Z (^r> + ^ fj «.(«) sin d jT F(y, r,)^ dr, dfl} (35)
(for n = 1, 2, • • •)•
This equation has the form

K'' = \ pU2(cm)0lcn + Dn + £ Enib'A. (36)

*For, according to equation (6), the symbolism = (P[c/] means

if<p + (4/jt\)d<p/dr = g

in any case. But for the eigenfunctions, or rather the related <p„ ,

4f<Pn + (4:/ir\„)d<pn/dr = 0;
hence

4/<pn + (4/IT\)dip„/dr = 4(1 — .
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where the terms have the following physical meanings:
Cn = nth "Fourier" coefficient, for expansion in <pn(9)'s, corresponding to the

twist due to the aerodynamic-center moments cm(y), at unit dynamic
pressure.

Dn = EnMr) = nth "Fourier" coefficient corresponding to the twist due
to the rigid-wing airload distribution, at unit dynamic pressure.

/a Enibte) = nth "Fourier" coefficient corresponding to the twist due to the air-
load resulting from elastic twist, at unit dynamic pressure.

Moreover, Eni is equal to [X/(X — \i)]Fni , where Fni is the nth "Fourier" coefficient
for the series expansion of the twist produced by the circulation distribution , at
unit dynamic pressure.

It is clear that the elastic-wing problem is solved when the b'n" are determined
from Eqs. (36), since they define the only unknown function, the elastic deflection under
load. It is seen that the essential calculation required for the elastic wing is the de-
termination of a set of Fni s, i.e., one must calculate the elastic deflection under a loading
proportional to each <pi for a sufficient number of values of i, and must then determine
the "Fourier" coefficients of these deflections. To do this, it is most convenient to use
the formula

f* 2 T

Fni — X) °m ' / ©;(0) sin 8 sin md dd, (37)
m ^0

where
r*2a

©<(0) = / F(y, ij)evi d-q.
J0

Equations (36) are most conveniently solved by standard matrix methods.14 Of the
several techniques available, the partial-fraction type of expansion* gives the most
engineering information, since the latent roots, which appear as simple poles in the
expansion, correspond to the divergence speeds of the wing, as has been mentioned
above.

Once again it will be found that, for a symmetrical planform, the symmetrical and
antisymmetrical distributions are independent of one another. Thus a set of odd-num-
bered and a set of even-numbered latent roots appear, corresponding respectively to
divergence in symmetrical and antisymmetrical modes, and so forth.

In summary, the following may be said regarding the present treatment of the prob-
lem of the elastic wing. The integral equation of the problem, Eq. (32), has been put
into matrix form, and an essential feature of the treatment is the proposal that matrix
techniques be used for numerical solution. Moreover, in making this formulation,
essential use has been made of the knowledge of a complete set of functions, the eigen-
functions of the planform, for which the Prandtl functional can be written dowTn im-
mediately.

9. Acknowledgements. The use of the eigenfunctions of the Prandtl equation, as
well as the physical interpretation of these functions, was suggested in 1939 by Professor
Theodore von Karman. Following his suggestion, the present author worked out the
details while he was a staff member of the California Institute of Technology. The
eigenvalues and -functions for trapezoidal planforms were calculated by H. Fischer in

*See, for example, reference 14, pp. 78, 134-141.
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1940 and later by H. T. Nagamatsu, both of the California Institute. This method
was used extensively by the engineering staff of Northrop Aircraft, Inc., and the appli-
cation to elastic wings was worked out at Northrop by the author and H. R. Lawrence
in 1943-44. The formulation in terms of matrices and the application of matrix tech-
niques in practical computations are largely due to Mr. Lawrence.

Incidentally, it may be mentioned that Mr. Lawrence's work has progressed some-
what farther than the material presented here. He has extended the calculations, in
practical form, to problems of aileron reversal, wing deflection and divergence in
accelerated flight, and other similar cases. It is expected that his results along these
lines will be published soon.
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