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THE RADIATION AND TRANSMISSION PROPERTIES OF A
PAIR OF PARALLEL PLATES-IP

BY

ALBERT E. HEINS
Carnegie Institute of Technology

1. Introduction. In Part I, we discussed the excitation of a pair of semi-infinite
parallel plates by an electromagnetic plane wave which had only one component of
the electric field. We now reverse our discussion in order to find the effect of a parallel
plate mode on the excitation. In Fig. 1 we assume that the structure has been excited
for z <<C 0 by a mode of the form e" sin (tx/a), that is a parallel plate mode traveling
to the right. A reflected mode is excited at the mouth of the parallel plate region and
has the form e~"* sin (irx/a) for z « 0. We are now interested in calculating the reflection
coefficient, that is the ratio of the amplitude of the reflected parallel plate mode e~""
sin (irx/a) to the amplitude of the incident one, e" sin {irx/a). Because of the presence
of certain symmetries we shall find that this problem may be formulated as a single
integral equation. We shall find that much of the mathematical technique which we
developed in Part I carries over, so that we shall not have to discuss this part in great
detail. The author wishes to thank Dr. J. F. Carlson arid Dr. J. S. Schwinger for several
stimulating discussions on this problem.

 f
a

.E

(0,a)

(0,0)

Fig. 1.

2. The formulation of the problem. The structure in Fig. 1 has been excited sym-
metrically about the line x = a/2 by an electric field of the form Eu(x, z) = pi e+*"
sin (irx/a). As such, no even modes containing factors of the form exp{z[(4m27r2/a2) —
k2]'/2\ sin (2mirx/a), z « 0 will be excited in the parallel plate region.1 The line x =
a/2 is then a line of maximum electric intensity or zero tangential magnetic intensity.
Figure 1 may therefore be replaced by Fig. 2. The condition for 0 < x < a/2, z « 0
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Fig. 2.

still holds. That is, Ey(x, z) is asymptotic to sin (irx/a) (pi_e" + p2e~"'). On the plane

*Received March 29, 1947. Presented to the American Mathematical Society on Dec. 27, 1946.
Part I of this paper appeared in this Quarterly 5, 157-166 (1948).

'It is assumed as in Part I that only the lowest mode propagates.



216 ALBERT E. HEINS [Vol. VI, No. 3

x = 0, z < 0, Ev(x, z) vanishes, while on the plane x = a/2, — < z < co; dEy/dx
vanishes identically in x and z. Since there is no plane wave field external to the parallel
plate region, Ev(x, z) is at most of the form of a radiated field and is asymptotic to
e%hr/r1/2 for r » 0, where r = (x2 + z2)1/2.

We first divide the half plane x < a/2, — °° < z < <» into two regions, the strip
— oo < z < c°, 0 < a; < a/2, and the half plane — °° < z < °o, x < 0. It is now possible
to express Ey(x, z) in each region in terms of an appropriate Green's function and
Ey(0, z). Let us first look at the half plane a; < 0, — °o <z< co. We have here

r°°
E„(x, z) — — / Ey(0, z') -r-r (x, z, 0, z') dz', (2.1)

J 0 OX

where

Gm(x, z, x', z') = | [H^mx - x')2 + (z- z')T*}

- Hol) {k[(x + x'f + (z- z')2]1/2}]

and Hi" is the usual notation for the Hankel function. This Green's function is quite
similar to the one which we employed in Part I. However, we note that we have sub-
tracted a source free term from the first term and this has the effect of making Gw
vanish for x = 0. Thus, noting boundary conditions for Ev(x, z) and Gm on the line
x = 0, we are left with (2.1).

As for the strip, we choose a Green's function Gm{x, z, x', z') which vanishes for
x — 0 and whose normal derivative vanishes for x = a/2. Such a Green's function has
the form

^(2), f /\ 2 ^ . (2n + l)wx . (2n + l)irx' , , , , , , ,G (x, z, x', z) = - 2^ sm sin — exp{ — | z — z' \-kkJo\Ik„
it n=i ci a

. 2i . TTX . tx' ... ...
i sin — sin — exp « z — z'

Ka a a 1 "

where
Kn = {(2n + l)2 - (ak)2/tt2}1/2.

Upon applying Green's theorem, with G'2' as a kernel, to the strip — oo < z < °o,
0 < x < a/2 and noting the form of Ey(x, z) for | z \ —> co, we get

Ev{x, z) = / Ey{0, z') ^-T dz' + Pl sin — e*", (2.2)
J 0 OX d

where (?<2) has been evaluated at x' = 0.
Equation (2.2) contains the definition of the reflection coefficient which we desire.

For z large and negative Ev(x, z) is asymptotic to (pte"" + p2e~"") sin (irx/a). But
from Eq. (2.2), we see that this is equal to

. TTX iKZ , 2iir f°° _ ... TTX , ,px sin — e H—2 / -^.,(0, z ) sm — e dz'.
CL a k Jq a

From this it follows that
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p2 = f Ey(0, z')eu°' dz'.
(X K J o

We note that p2 is the unilateral Fourier transform of E„(fd, z) evaluated at — k. In
view of the fact that we shall solve our problem by Fourier methods, this quantity will
appear directly.

We can now form the desired integral equation by observing that the z component
of the magnetic field is continuous .on the surface x = 0, z > 0. On this surface we have
then

f HIS+IS] +f ■>'" - »■ <2-3>
where x and x' are now evaluated at zero. Eq. (2.3) is of the Wiener-Hopf type because
of the limits on the integral and the particular z dependence of the Green's function.
For analytical convenience, we assume that k has a small positive imaginary part.

3. The Fourier transform solution of Eq. (2.3). Following Wiener and Hopf we
extend Eq. (2.3) for all z to read

4>{z) /°° r ffc1^ a2r(2)13(0<4^+^>'+*o(z)' (3-1}

where the x and x' in the Green's functions are evaluated at zero. We define

E„(0, z) = 0 z < 0,

Uz) z> 0,

= 0 z < 0,
and

<t>(z) =0 z > 0.
It is a simple matter to find the growth of Ev(0, z) for z » 0, and 4>(z) for 2 <5C 0.

We shall verify with the solution of the problem that they are both integrable for finite
z. Ey(0, z) is asymptotic to etk'/z1/2 for z » 0, while <t>(z) is asymptotic to either e~xkl/z1/2
or e~lKZ depending upon which goes to zero more slowly for z <5C 0.<2) Furthermore
(?a)(0, z, 0, z') is asymptotic to e'k' for zy> z' and e~,k* for z <5C z', at least insofar as the
exponential growth is concerned, while G(2)(0, z, 0, z') is asymptotic to e"12 or e~"z
depending on whether z » z' or z « z'. With this information at hand, we can define
the regions of regularity of the various Fourier transforms we shall encounter.

Consider first, the unilateral Fourier transform of Ev(0, z),

'Pi(w) = f e "°'Et(0, z) dz.
Jo

ipi(w) is regular in the lower half plane 3mu> < 3infc because of the growth of /?„((), z)
for z 0. As for 4>(z), we note that

2With appropriate restrictions on the imaginary part of k, we may determine the magnitude of 3tnk
relative to 3m k. However, as we shall see, the information is unessential.
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ip-Jw) = f e "°z</>(z) dz
J — <x>

is regular in the upper half plane > — 3mfc (or — 3m«). The right side of this
inequality is the smaller of the two quantities (3m/c, 3m«). The expression Ga)(0, z, 0, z')
will have the bilateral Fourier transform

gM = r e-iw°Gm(0, z, 0, z') dz
J — 00

which is regular in the strip — while the bilateral transform of
Gm(0, z, 0, z>),

g2(w) = J e~iwzG'2\0, 2, 0, z') dz

is regular in the strip — 3m* < < 3m«. Upon noting the transform of 4>o(z), we
see that all transforms involved in Eq. (3.1) have a common strip of regularity, — $mk
(or — 3fntK) < 3^™ < 3nt& (or 3ihk) and it is thus permissible to apply the Fourier
transform to Eq. (3.1).

We have given elsewhere the Fourier transforms of the Green's functions. For
example, with co = (k2 — w2)1/2, we have

[ e~'w"Gm(x, z, x', z') dz = —- exp{— iwz' — iux'} sin cox, for a: > x',
J — CO CO

= —- exp{—iwz' — iux'} sincoa;', for x < x',
CO

and this is clearly regular in the strip — 3tnA; < 3mw < Qmh. For the transform of
G™(x, z, x', z'), we have

f" z, ZO dz = tor * >•/_„ co cos (aco/2)

for x < x',

co cos (aco/2)

sin cox cos o)(x' — a/2)
to cos (aco/2)

and this is regular in the strip -gntu < 3mw < 3 ink-
If we now apply the Fourier transform theorem to Eq. (3.1) we get immediately

i//2(w) = fi(w)cottan (aco/2) + i\ + itpi/ai(w — <c)

= iwUw) 6^2) + TPl/oi(w ~ k)"

Eq. (3.2) may now be split into two parts, one of which is regular in the appropriate
lower half plane, while the other of which is regular in the appropriate upper half plane.
We have already described these details in Part I, so without any further discussion
we can write

TpiK+(i<)/ai(w — k) + = E(w) (3.3)
and

irpi[K+(w) — K+(K)]/ai(w — k) — \l/2(w)K+(w) = E(w) (3.4)
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E(w) is an integral function and

KJw) = N-(w)/D-(w),

where

N-(w) = {k — w}1/2 exp j^ —^arctan + x(w>)

and

D.{w) = {w - k) n [{1 - (ak)2y(2n + 1)2}1/2
« = 1

+ iaw/ir(2n + 1)] exp {—iaw/ir(2n + 1)}

while

1FT1 = -Kk.(-w).K+(w) a

x(w) is an integral function which is chosen so as to render K-(w) and K+(w) of algebraic
growth in the appropriate half plane as | w \ becomes infinite. We have already seen that

k + w 1/2

> , taw
X(w) = log 5 + 3--]

where y is the Euler-Mascheroni constant. With x(w) so chosen, 3mu> in the appropriate
lower half plane and | w | 0, K-(w) = 0(w1/2). Upon employing these asymptotic
forms and noting that ipi(w) and ^2(w) approach zero for | w | » 0 with w in the ap-
propriate half plane, we find by a direct application of Liouville's theorem, that E(w)
is identically zero. Thus we have

a(w — k)K-{w)'

This tells us, incidently, that Vi(w) = 0(w~3/2) for j w j » 0, $mw in the appropriate
lower half plane, and hence that Ey(0, z) = 0(z1/2), z —* 0+.

It is now a simple task to compute the reflection coefficient. We have that

u-«)=t? re<" e'(°' z)dz-a k a k J o

Hence p2/pi = R, the reflection coefficient, is

p - _ **L g+(K)
aV K-(— k)'

Let us now dispense with the assumption that k has an imaginary component. We find
that

R = v k — k 1/2

exp [2.9! + 2i arctan + 2x(k)J
[k + k)

where 0i has been defined in Part I. Here ir < ak < 2t, and an2 = a2k2 — x2
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4. Some remarks on the method employed. We have discussed and solved in this
series of papers, a group of free space problems in electromagnetic theory. Because of
the peculiar geometry, it was always possible to formulate this set of problems as integral
equations which are closely related to the Wiener-Hopf type. Despite the subtle difference
which exists between the integral equation we have treated and the original Wiener-
Hopf theory, the mathematical machinery carries over. It is worth noting here that
the class of integral equations we solve here, for example Eq. (3.1), belongs to the in-
version formula type. We shall pursue this remark elsewhere.

It is clear that in order to apply Fourier methods to this class of integral equations
we must be certain that the various functions involved have proper growths at infinity,
as well as in any finite interval. An examination of the integral equations we have solved
reveals that integrability over any finite interval is demanded if the equations have
been properly formulated. The same remark holds true for conditions at infinity. Indeed,
on the basis of the integrals we use to calculate certain physical parameters, the in-
tegrability condition at the origin would enter immediately. As for the asymptotic
form of the various field quantities, the physics of the situation dictates the precise form
that we require. Every Fourier transform solution we have obtained can be readily
shown to have appropriate properties and therefore the field quantities also do.


