
279

TWO PROBLEMS OF MIXED TYPE FOR THE DAMPED WAVE EQUATION*
BY

D. G. BOURGIN
University of Illinois

This paper is primarily concerned with a mixed problem of somewhat unconventional
form for the one dimensional damped wave equation. Although the treatment given is
rigorous, the main interest of this work lies in the explicit determination of the solution
in closed form and in the methods used. The method of attack pivots on the use of
images (or co-images) associated with a hyperbolic metric. The utility of such extensions
■of the method of images, so useful for equations of elliptic type, was first pointed out
by Yolterra.1 However, the literature contains scant references to the application2 and
development of this idea. For the purpose of cataloguing the nature of our addition to
the class of explicitly soluble problems it may be pointed out that the fundamental
integral equations for the main problem are not of convolution type (cf. Sec. 7).

The main problem may be given significant physical interpretation in various fields.
For instance, it covers the vibration of a damped string whose length varies linearly
with time. One end moves in a vertical slot and the other is coupled to a driving mecha-
nism through an inertialess damped spring. Alternatively we may consider one di-
mensional gas motion (or sound propagation) in a cylinder of large radius. One end is
closed. The other moves at constant rate and is a friction damped elastic diaphragm
driven by an exterior mechanism. We may think of our problem as that of a telegrapher's
equation problem for an electric cable of steadily increasing length. A fourth application
is to problems connected with Schuster's theory of the radiation field in a moving
radiating atmosphere in the formulation given by Chandrasekhar. Indeed the writer's
interest in this investigation was aroused by a manuscript which Dr. Chandrasekhar
communicated to him.3 The second problem treated in this article is already a general-
ization of that of Chandrasekhar's, though the developments are simpler than those
for our main problem.

1. Preliminaries. We shall be interested in a boundary value problem associated
with

ztt — zxx + z = L{z) = 0. (1.0)

Before we state it, it seems desirable to indicate in brief the basic theory that we draw on.
Let z and u be solutions of (1.0), then for a continuous rectifiable simple closed curve,

T, bounding a domain S we have

*Received Sept. 22, 1947.
•V. Volterra, Lemons sur 1'integration ties Equations differentielles aux dirivies partielles, A. Herman

et Fils; Paris, 1912.
2In the thesis just completed by Mr. A. Charnes (University of Illinois) this method is of central

importance in analyzing the influence of a polygonal section type of fuselage on the wing potential for the
linearized supersonic flow.

3His interesting method has since been published: S. Chandrasekhar, A new type of boundary value
problem in hyperbolic equations, Proc. Cambridge Philos. Soc. 42, 250-260 (1946). Actually, the generaliza-
tion of Chandrasekhar's boundary conditions to problem 2 would give somewhat different conditions
than those used in this paper, but these are just as easily handled. On this point cf. footnote 4.
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0 = [f [uL(z) — zL(u)] dS = f [u(zxt, + ztx,) — z(uxt, + u,x,)] ds, (1.01)
J J s J r

for a clockwise sense of description of r. Besides the Euclidean metric used for ds we
associate a hyperbolic metric with (1.01), namely

da' = dt2 - dx2. (1.02)

The characteristics of (1.0) are the null lines for da, namely t + x = C, t — x — C.
We shall refer to the members of these two families as plus characteristics and minus
characteristics respectively. A pair of vectors orthogonal with respect to this metric
are said to be co-normal. Thus the vector dx, St is co-normal to the tangent vector (to
r) dx, dt provided

8t dt — 8x dx = 0.

We denote the co-normal direction by v. That is to say, we write

to _ dt 8t dx
8v ds' 8v ds

If T is given by f(x, t) — 0 then of course

| - ± /,/« + f,r - %

I - =f !M + fir - %
(1.03)

The sign choice is determined by the order on the curve. Thus (1.01) becomes

a <io4>

We shall take for v the Riemann function

u(x, t; Xj , U) = J0((t — <L)2 — (x — Xi)2)1^. (1.05)

For our purpose the significant properties of u are first that in the sector expanding
downwards bounded by t ± x — ti db Xi , it satisfies (1.0) and second that u has the
constant value 1 on the two sides of this sector. It is then clear that the tangential
derivative of u along these sides vanishes. On the plus characteristic t + x = C we
have from (1.03) that

(dx di\ _ . . _ ( dx c)A
\ds' ds) ~ ( ^ ~ dv' dv)'

That is to say, for these characteristics

A = _ A
dv ds

On the other hand (1.03) shows that for the minus characteristic t — x = C we get

A — A.
dv ds
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Hence if T includes a segment of a characteristic we have as the contribution to (1.04),
with s2 > Sj ,

/*« a a a

/ V ds = ±2 , (1.06)■'.i l.i
according as the characteristic is a minus or a plus one.

Our concern is with the solution of (1.0) restricted by boundary conditions on
t — 0, P : t + Az = 0 and a line P' which is x — I for our main problem and £ + Ax =
AI for our second problem. In view of the linearity of our system we can express the
general solution as a sum of three solutions each determined by 0 data on two of the
boundaries. Thus consider the solution of (1.0) subject to4

(4) : 2„ = 7(re, t) on P',

(B) : 2 = A(x), 2, = B(x) on t = 0,

(C) : 2„ = hz(x, t) + \p(x, t) on P.

Let 2'1 be the solution of (1.0) subject to vanishing Cauchy data on t = 0, 2, = 0 on
P and zv = y(x, t) on P'. Let z" be the solution of (1.0) subject to z — A (x), zt = B(x)
on t = 0; z, = 0 on P' and 2„ = 0 on P. Let z° be the solution of (1.0) under the condi-
tions 2, = 0 on P', vanishing Cauchy conditions on t = 0 and z, = hz(x, t) + \p(x, t) +
h(zA + zB) on P. It is easily verified that the solution of (1.0) restricted by (A), (B)
and (C) is then given by z = zA + zB + zc.

It is clear that the crux of the general problem is the determination of zc for zA and
zB can be determined by a simpler form of the methods of this paper (or otherwise).
Thus we shall concern ourselves only with the solution of (1.0) subject to

2„ = 0 on P',

2 = 2, = 0 on t = 0, C1.07)

2„ = hz{x, t) + \p{x, t) on P.

We make the further assumptions that ^(0, 0) = 0 and that on P, d/ds \p(0, 0) = 0
and5 \p(x, We suppose also that A > 1 and h > 0 though this last restriction is
not significant for our analysis.

2. Geometric considerations. On P consider s increasing with t. This will be the
situation in our developments. Then dx/ds is negative and dt/ds is positive. From (1.03)
we get

fv = A/(A2 + 1)1/2

I " - (*2 + D-1"
(2.0)

4Chandrasekhar's problem corresponds to the case x = 00 • His conditions would amount to changing
hz to z, in (C) and z, to z in (A). The last modification is evidently trivial for the corresponding zA is just
as easily found. The first change has the effect of replacing h by p in all the transforms arising in Problem
2. Since, however, the inverse transforms for this case are direct and essentially on record, Cf. 8, the
problem is actually simpler than before.

6C" denotes the class of functions continuous up to and including the nth derivatives with respect to
the independent variables (here a single one).
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The key of our method is the use of images. The reader will find a figure helpful.
Consider the image in P of the point (x0 , t0) with respect to the hyperbolic metric
(1.02). Denote this image by L. Then the hyperbolic distances from any point of P to
L and to (x0 , t0) are equal. Thus if L is (xt') then for all x,

(\x + t0)2 - (x - x0)2 = (\x + t')2 - (x - x')2, (2.01)
whence

x' = —(2\t0 + (X" + l)x„)/(X2 + 1)>

t' = (2Xx0 + (X2 + 1)*0)/(X2 - 1).

It is convenient to use the representation

cosh a = (X2 + 1)/(X2 — 1),

sinh a = 2X/X2 — 1.
Thus

x' = — (x0 cosh a + t0 sinh a),

(2.02)

(2.03)
t' — Xo sinh a + ta cosh a.

We denote the image of x0 , t0 in P' by R. The calculations of this section refer to
the main problem. Thus

R : (21 — x0 , t0).

The image of L in P' is denoted by LR. That of R in P by RL, etc. Hence the point RL
has coordinates

x' = 21 + x0 cosh a + t0 sinh a,
(2.04)

t' = Xo sinh a + t0 cosh a.

It is plain that ■ ■ ■ R and the image corresponding to this symbol with an added L
on the right, namely • • • RL, have equal hyperbolic distances from any point on P.
A similar remark holds for • • • L and ■ ■ • LR with respect to P'. Accordingly the function
in (1.05) with x1 , <i corresponding to • • • R and that with x, , h corresponding to • • •
RL have equal values on P. Moreover, the derivatives with respect to v of these two
u's are equal, but of opposite sign on P. Thus with (t — t0)2 — (x — x0)2 = (t — <i)2 —
(x — Xi)2 = fi2 for x, t on P we have

(X2 + 1)1/2 £ Jo[(t - to)2 - (x- *o)2]1/2 - J jr (X®0 + to)

We have therefore merely to show

Xx0 + to = — (XXn + tj)

for L : Xi , ti . However, this is an immediate consequence of (2.03).
Denote by J the combination LR and by J" the nth iterate. Denote by Kn+l the

point KJn, where K = RJ° = R. Let M be the matrix

cosh a sinh a

sinh a cosh a/
(2.05)
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We may give (a, b) the dual interpretation of a point (or vector) and a one rowed matrix.
Thus with the familiar algorithm for matrix multiplication, we may write (2.04) as

J : (xiU) = (x0t0)M + (210).

Suppose first I — 0. Then the coordinates of Jn are given by

(xj„) = (x0t0)Mn.

Since M induces a rotation of angle a in the sense of the hyperbolic meti-ic, i.e. a Lorentz
rotation, it follows at once that

M" =
cosh na sinh -na

sinh na cosh nat
(2.06)

A direct proof of (2.06) proceeds by induction, using the addition laws for the hyper-
bolic functions.

The contribution of the I terms may be obtained by assuming xQ = t0 = 0 and
1^0. Let ln , l'n be the I terms in the x and t coordinates of J". Then according to (2.03)
and (2.04)

l„+i = 21 + ln cosh a

That is to say

Hence

l'n+i = In sinh a

(ln+1i:+1) = (210) + (IX) M.

"n) = (210) £ M' = (2Z0) (e0"°J (2.06)(U,

where e„ and 0„ are the even and odd parts of * M' and are equal to cosh ja
and Eo" sinh ja respectively. Hence ./" : Xn , Tn is given by

= snl + x0 cosh na + <0 sinh na,
(2.07)

Tn = 0.1 + x0 sinh na + t0 cosh na.

The coordinates of Kn are designated by X'n , T'n . It will be clear that K" arises from
Jn~1 by the substitution of 21 — x0 for x0 ■ We observe that cosh ja and sinh ja are even
and odd functions respectively as regards both a and X. Accordingly the reader may
verify the following formulae convenient for our purpose

en = X sinh na + (1 — cosh na),
(2.08)

0„ = X (cosh na — 1) — sinh na.

It is convenient to change from the coordinate system (x, t) to another, (w, v), in
which the coordinate lines are again conormal, i.e. orthogonal in the metric of (1.02).
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We require that v = 0 give P and that the transformation from (x, t) to (w, v) preserve
the hyperbolic distance. It is then easy to see that we must have

w = p(X< + x),
(2.09)

v = p(Xx + <)•

We require further that w retain its previous significance as Euclidean distance on P.
Hence for x, t on P we have

t = \w/(\2 + 1)1/2

= \w/(p(X2 - 1)).

Accordingly p = (X2 + l)1/2/(X2 — 1) and

da2 = sech a(dw2 - dv2). (2.10)

Hereafter /32 is written for sech a with /3 > 0.
The w, v coordinates of x0 , t0 are designated by w0 , v0 . Those of X„ , Tn and X'n ,

T'n by Wn , Vn and W'n , V'n respectively. When v0 = 0 the distinction between primed
and unprimed letters fails and we denote them by wn and v„ in the obvious correspond-
ence. We find in a straightforward way that

W„ = (cosh na — 1 )J(X2 + 1)1/2 + w0 cosh na + v0 sinh net.

Vn = sinh rial (X2 + 1)1/2 + v0 cosh na + w0 sinh na.
(2.11)

W'n = (cosh na — 1 )Z(X2 + 1)1/2 + w0 cosh na — vQ sinh na.

V'n = sinh nal (X2 + 1)1/2 + w0 sinh na — va cosh na.

The minus characteristic through W„ , Vn cuts v = 0 at w = wn and x = I at t =
t". We define w'n, v'n similarly with respect to the minus characteristic through W'n ,

. Observe that J"'1 has Jn~1L as its image in P and Jn'1L has Jn as its image in P'.
It therefore follows from the definition of images that the plus characteristic through
J"~'L cuts P aXw = w""1 and x = I at t = Indeed the hyperbolic distance of (w"'1, 0)
from either J"'1 or Jn~1L is 0 since characteristics are null geodesies. Analogous remarks
hold for the left image points of Kn : W'n , V'n .

It is manifest from (2.09) that in the w, v coordinates the characteristics are w ± v =
C and that plus characteristics in the x, t system are again plus in the w, v system.
Accordingly6

w° = w0 — v0 ,

Wn = Wn — Vn , (2.12)

W" = W' - V'n.

"Repeated tacit use is made of (2.12), particularly as regards changing from the sub to superscript
0 and vice versa.
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For x, t on P we have7

J0[(t - Tny - (x - X„)2]1/2 = JMw - Wny - (Fn)2]1/2 (2.13)

and a corresponding expression in W'n , V'n if the image point is X'n , T'n .
3. The associated integral equations. Let y designate the curve P, P' (for t > 0)

and P" where P" is the segment of t = 0 connecting P and P'. Consider w0 , v0 or any
of the image points L, R, Jn, Kn, J"L, KnL as an apex for the plus and minus character-
istic rays. We need consider only the case where one, at least, of these rays intersects
7. Then a convex polygon is uniquely determined by these rays and 7. The boundary
of this polygon is denoted by r. For convenience we shall use an obvious mixed nota-
tion. Thus if the first argument of z( , ) is x, the other is t, if the first is w the second
is v. Suppose w0 , v0 is the apex. The associated polygon may be five sided. Assume
this is indeed the case for the w0, v0 chosen. Then by reason of (1.07) and the properties
of the Riemann function, (1.04) becomes

2 z(w0, v0) — z(w°, 0) — z(l, t')

+ [,«, — w)zv(w, 0) — z(w, 0) Jo/3(w° — w) J dw (3.00)

+ £ z(i, t) £ - tor - (i- x0)2]i/2 dt = 0.

If an image point is taken as apex then the associated polygon is at most a quadrilateral.
Assume this optimum case. Then the vertices of the polygon are at (co„ , 0), (I, rn),
(0, 0) and (I, 0) where the last refers to the (x, t) coordinates. Here , rn is either wn,
tn; w'n, t'n; wn, r+1 or w'n, t'n+1 depending on whether Kn, JnL or K"L is the image point
selected as apex.

z(co„ , 0) — z(l, T„) + ^ j^./o03£>) fvz(w> 0) — z(w, 0) ~ J0(J3D) | J dw

+ [' z(i, t) £ j0m
(3.01)

dt = 0, n > 1.

The argument /JD of J0(l3D) is /3 times the hyperbolic distance from the apex point to
P or P' according as the first or second integral is considered in (3.01). We may now
waive the requirement that co„, r„ be non negative in (3.0) or (3.01) provided it be under-
stood that a negative integration limit means the integral is 0 and that z(w, 0) and z(l, t)
are 0 for w or t negative.

We sum on n, the left hand members of (3.01) plus (3.0). This is a finite sum since
starting with arbitrary w0 , v0 , eventually con and r„ are negative. Hence if necessary
the order of summing may be modified at will. Manifestly the integrated terms balance
out in pairs and one is left with 2z(w0 , v0). The integrals enter the sum in pairs having
the same upper limit. Specifically if the upper limit is wn then the pair of integrals arises

'For typographical reasons we generally omit a parenthesis and write Jofi[{w — a)2 — 6s]1'2 in place
of/0{|8[(u> - a)2 - 62]1'2}.
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from the pair of images J", JnL. If the upper limit is w'n then the image pair is K",
KnL, etc. With respect to f the pairs are JnL, Jn+1. Now the Riemann functions for
the pair Jn, JnL for instance have equal values on P and opposite values for the co-
normal derivatives on P. Similar remarks hold for P' or for the other image pairs.
Accordingly the terms involving the integrands balance out and all integrals along
P' balance out. Our final result is, then,

dw
P

rw a?
-z(w0 , Vo) = Jg JolSKte - Woy - (F0)2]1/2 fv

+ E p j^w - tf-)2 - ^
n = 1 J0

+ E f - wo2 - (vo2]
n= 1 J 0

1/2 fa
dv

,-.2-11/2 dz

dv

dw (3.02)
p

dw.
p

It is convenient for our method of attack on (3.02) that one limit of the integrals
occurring be the same for all integrals. Therefore replace w by w° — w in the integral
equation above and use (1.07). This leads to our basic formulation

-Z(w0 ,v0)= j: r JS[(w - w° + W„r - (VJT2 I (w - W, 0)
71 = 0 Jwn OV

dw

+ E r Jo0[(v> -W° + wo2 - (V02]1/2 ~ (w° - w, 0) dw,
n = l J-w'* VV

(3.03)

where

(w, 0) = hz(w, 0) + (3.04)

Let the point w0 , v0 move to the boundary P. Then (w0 , v0) —> (w°, 0) and in place
of (3.03) we have

—z(w°, 0) = 1 + 2 £ [ ./0/3[(w - w" + wnf - (vn)2)]U2(hz(w, 0) + ipiw)] dw. (3.05)
71= 1 J Wn

4. Problem 2. Our second problem may now be set up with ease on the basis of the
formulation for the first problem. Here P' is the line t + Ax = \l.

A simple observation enables us to determine the image points (LR)n, Kn with a
minimnm of effort. Consider for a moment (2.03) where now x', t' is the object and
x0 , t0 the image. Write

N =

Then

— cosh a sinh a

v —sinh a cosh a

(xot0) = (z'OIT1
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If we seek the reflection in P' we need merely replace x0 , x' by x0 — I and x' — I re-
spectively. That is to say

(x0 - Uo) = (x' - It')N_1. (4.0)

If x', t' are the coordinates of L and X1 , rl\ are the coordinates of LR then we have

(X1 - IT,) = (xoWNN"1 - (M))N-\ (4.01)
or

Xi = Z(1 + cosh a) + x0 , Ti = — I sinh a + t0 .

Hence Xn , Tn the coordinates of (LR)* are, evidently,

Xn = nl( 1 + cosh a) + x0 ,
(4.02)

T„ = — nl sinh a + t0 ■

It is easy to see that the coordinates X'n , 7" of R(LR)n are, in view of (2.03),

Xn = (n + 1)1(1 + cosh a) — (x0 cosh a + t0 sinh a),

T'n = — (n + 1)1 sinh a + x0 sinh a + t0 cosh a.

We now pass to the w, v coordinates using the same letters W„ , Vn , • • • as before for
the corresponding coordinates of J", • • • . Then with w0 , v0 as the w, v coordinates for
.T0 , t0 and our earlier definition of p we have

W„ = Wo = W' = w0 .

V„ = 2\nlp + t'o. (4.03)

V'n = 2\(n + 1 )lp — v0 .
We write

W° = W0 — V0

(4.04)
w'° — W0 + t'o — 21 p\.

The intersections of the plus characteristics through (LR)" and R{LR)n with P are
denoted by (w0) and (w'n, 0) respectively where

w" = W„ — Vn = w° — 2\nlp
(4.05)

w'n = w'° — 2\nlp

We take over (3.08), (3.05) with the understanding that the symbols now be inter-
preted according to (4.03). Thus (3.03) is now

oo pw°

—z(w0 ,v0)= X) / J»fi[{w + V0f — (2\nlp + v0)2]I/2zv(w, 0) dw
0 «'2XnI P

+ it f Jol3[(w + voy — (2X(n + l)lp - v0)2]l/2zv(w, 0) dw, (4.06)
1 *^2X(» + 1) jp —2«o

zv(w, 0) = hz(w, 0) + \f/(w) (4.07)
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We refer to (4.06) with v0 = 0 and z,(w, 0) given by (4.07) as (4.08).
5. Transforms. We bring together here some explicit evaluations of the inverse

Laplace transforms arising in our problems. Let q(w) have the Laplace transform Q(p).
Consider

«• CI eW"Q(p) dp (5-o)2 iri

This integral is interpreted as a Cauchy principal value. For d sufficiently large and
under certain well known conditions the integral exists and yields [q(w + 0) +
q(w — 0)]/2. We indicate the reciprocal correspondence between q(w) and Q(p) by
Q(p) ~ q(w) and refer to q(w) as the inverse transform of Q(p) (with respect to the
kernel exp (wp)).

A standard result for B > 0 is8

exp ( — Bq)/q ~ JS(w2 — B2)1/2, w > B,

~ 0, w < B

We use the symbol q for (p2 + /S2)1/2 throughout this paper. It is therefore trivial that
for B > vo and only then,

. exp (v0p — Bq)/q ~ J0l3(w + v0)2 — B2)1'2, w > B — v0

(5.01)
~ 0 w < B — v o

where B is either Vn or V'n .
The typical inverse transform of concern to us is that of

[exp (v0p - Bq)]/(q + h)n. (5.02)

with respect to the kernel exp wp. The presence of q in the function suggests the natural
substitution

p = i(3 cos (or + ir), 0 < a < ir.

(With this substitution, eventually an integral over a finite contour is obtained so that
our manipulations are evidently valid. This would not be quite so obvious if we used
(5.0) directly to obtain (5.09)). The path of integration in (5.0) then becomes the
contour C defined by

/3 sin a sinh r = d (5.03)

This is a loop lying between a = 0 and <j = ir with minimum at height arc sinh d/fi
and asymptotic to <r = 0 and a = x. Then (5.0) becomes, with 0 = <r + ir and u =
w + v0 ,

[ exp [/3(m cos <f> — B sin <f>)] sin <I>/(J3 sin </> + h)n d<f>. (5.04)
2/k J o

For t | oo the expression sin <r{u sinh r — B cosh r) goes to — oo when 0 < <t < ir and

aR. V. Churchill, Modem operational mathematics in engineering, McGraw-Hill, 1944.
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B > u or when — ir < a < 0 and u > B. It is then easy to see that the integral in (5.04)
vanishes for B > u.

For the case u > B we note that the integral over Cr , the reflection of C in a = 0,
is 0 and hence for this case C may be replaced by C' = C + Cr . Evidently the singu-
larities are at the points

/3 sin a cosh r = —h,

cos a sinh r = 0.

For d sufficiently large and some non negative 8, 8 < d, the imaginary parts of the singu-
larities are inferior to 8. Consider the closed contour determined by the verticals at
a = — 7r and a = x, the line r = <5 between a = — ir and a = ir and C'. Evidently the
•contributions for the two verticals balance each other. Hence the integral in (5.04) is

jf- [ exp [13[iu cos (cr + iS) — B sin (<r + i5)J]2,f (5.05)

sin (<r + i8)/(fi sin (a + iS) -f h)" da.

Let

Q(u. B) = f [exp [/3{iu cos (<r -{- id) — B sin (c + i5)j]2tJ- (5.06)

/(/3 sin (a + ib) + h)n] da

We write Q'{B, B) for d'Q(u, B)/du' at u — B, and z for exp (ia — 8). Then

—iw2l~nQ(B, B) = f [ exp (i^Bz)zn~1/{^(z2 - 1) + 2hiz\n] dz.

Here the contour D is the circle of radius exp (—8). Moreover

-*V21+,'-1(;/3)-,'Q,'(5, B) = f [ exp (i/3Bz)(z2 + 1 )izn~i~1/{^(z2 - 1) + 2hiz}n] dz.
Jd

Plainly Q'(B, B) — 0 for j < n — 1 since the integrand is then regular and analytic.
Evidently too, d'Q(u, B)/dB' = 0 for u = B, j < n — 1 by the same type of argument.
We next observe that partial differentiation of Q(u, B) with respect to B introduces a
factor of —/3 sin (a + i8) in the integrand. Hence

( + h]nQ(u, B) = f exp [0(iu cos (<r + i8) — B sin (a + i8)] daV dB ' 2irJ~* (5.08)

= j0p(u2 - B2y/2.

Q\B, B) = 0 = d'~Q(B, B)/du', j < n - 1. (5.09)

It is not difficult to solve (5.08). Thus let u be interpreted for the moment as a fixed
parameter. In order to obtain a solution satisfying the boundary conditions, (5.09),
the Laplace transform technique seems natural. However, the facts that B < u and
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the differential operator involves —d/dB require that the Laplace transform be over
the variable range — °° to u and not over u to °°. This implies obvious changes in the
expressions for the convolutions. (An alternative method which is essentially equivalent
is to replace u, B by — n, —b. The usual convolution theory may then be applied); In:
any case it will be perceived that the result is

Q(u, B) = ^-f(s- Br1e~l('-B)J<Au2 - s2)1T(n)

The integral in (5.04) is evidently — dQ(u, B)/dB and is therefore

ds.

(5.11>
tk /»<« ~ «•"'[» mi

exp [—h(s — B)] J0t3(u2 — s2)1/2 ds, n > 1

J0p(u2 - B2)1/2 - h/T(n) f exp [~h(s - B]J0p(u2 - s2)1/2 ds, n = 1 (5.12)
" B

Consider now

M(p) = -h/(q + h)

The inverse transformation of M (p) is obtained as follows. Consider

M(p, e) = M(p) exp (~eq), e > 0.

The Plancherel theorem, for instance, asserts that in the L2 sense the limit of the inverse
transform of M (p, e) is the inverse transform of M(p). Hence we should expect from
(5.12) that

M(p) hJ0pw + h2 [~ e~hs J0[)(w2 - s2)1/2 ds. (5.13)

We need bother with no abstract arguments since it is easy to verify that the Laplace
transform of the right hand side of (5.13) is actually M{p). Indeed this follows from

[" [" e~h'Jo&(w2 - s2) ds e~p" dw = f [ e'"" Jo0(w2 - s2)1/2 dw e~hs ds
J o J 0 ^ 0 ^ s

= f {exp [~(hs + qs)\/q} ds = [q(q + ft)]"1.
Jo

6. Solution of problem 2. The integrals in (4.06) for fixed v0 or in (4.08) are evidently
tonvolutions and so the Laplace transform theory may be applied. The integrals in
(3.03), (3.05), (4.06) and (4.08) are understood to vanish when the lower limit is nega-
cive. Actually no special care in our manipulations is required to ensure this for, on
passing to the Laplace transforms, (5.01) guarantees the irrelevancy of integrals for
which V„ — v0 or V'„ — v0 dominates w°.

We proceed formally at first and reserve the rigorous establishment of the validity
of our analysis to a later place. Write
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F(p) z(w, 0)

H(p, Vo) ~ z(w, Vo)

Dip) ~ i(w)
(6.0)

M

Qm(p) = [1 + 2 XI exP (~21\pnq)]q~l
1

N

Pn(p) = q'1 exp v0p X { exp [ — (v0 + 2\lpri)q] — exp [v0 — 2\/p(n + l)g]}
0

It will then be clear that (4.08) and (4.06) imply

F(p) - ~[hF(p) + D{p)]QM{p),
(6.01)

II(P, v0) = — [hF(p) + D(p)]PN(p).

Strictly speaking F(p) and II(p, v0) depend on M and N respectively. However, in view
of a previous italicized remark, for prescribed w0 and all M and N sufficiently large, the
inverse transforms for w = w° are the same. To indicate this special choice of w we write
~w0 in place of ~. The admissible integers M are evidently those at least as great as
w°/(2l\p) and N may be chosen equal to M. We next remark that since ip(w) e C' we
may if necessary modify it in the range 2w0 < w < co so that the modified \p(w) belongs
to C' and its derivative is Lebesgue summable on 0 < w < . The transform D(p) is
tacitly understood in the sequel to refer to the modified function. Of course, the modi-
fications have no influence on the ~w0 relations.

Our key relation is the consequence of (6.01) namely

z(w0 , v0) ~ H(p, v0)

= -D(p)PN(p)[ 1 + hQN(p)]~l ^6Q2^

_ —D(p) exp (i;0p)[ exp (—v0q) + exp (v0 — 2l\p)q] exP (~2\lpnq)

(q + h) + 2h exP (—2l\pnq)

Since no error is committed by allowing N to increase without limit, we have

, . ~D(p) exp (v0p)[ exp (-v0q) + exp {(«;„ - 2lp\)q}]
H(P' Vo) = (q + h) + (h-q) exp (-2IpXq) (6"°3)

However, in the calculation of the inverse transform we use the expression essentially
equivalent to (6.02).

(Actually (6.03) may be derived by the usual transform method though slight
generalization such as that involved in the passage to our main problem eliminates
this as a general method. Thus we write (1.0) in v, w coordinates. Consider the sector
determined by v = pi, v — w = pl{\ — 1) with z, = 0 on the first and z = 0 on the
second. The conditions imply, as is well known, that z = 0 in the sector. The Cauchy
problem with vanishing data on t = 0 implies a vanishing solution in the triangle
bounded by 2 = 0, i> + to = 0, v — w = pl(\ — 1). In particular z = 0 on n - «) =
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pl(\ — 1). Hence we know that 2 = 0 for the triangle bounded by t = 0, v + w = 0
and v = pi. The solution of our original problem is, therefore, unaffected if we replace
the vanishing Cauchy data on i = 0 by 0 data on w = 0. We have now the problem of
satisfying

u„ — (p2 + /32)u = 0

u„ = hu + \p on v = 0

u = u, = uw — 0 on w = 0

uv = 0 on v = pi.

where u is the Laplace transform with respect to w of z{w, v). Evidently u is precisely
our H(p, v0) and one easily verifies that the system above leads to (6.03). Of course a
similar remark holds for the simpler situation treated by Chandrasekhar).

It is convenient to write S(p) for the reciprocal of the denominator in (6.03) and
T(p) for the numerator divided by Dip). Let9

Sn(p) = (q.+ hY1 £ (a-A)e-2"'"°
N ' I

\q + h

Write

= E (Z iCk(-2h)\q + hYk-\-2W'.
o \ o /

HN(p) = H{p, v0)SN(p)/S(p)

K(p) = H(p, v0)/D(p)

KN(p) = K(p)( 1 - SN(p)/S(p))

N+l

= Z »+iCk(-2h)k(q + hr"S(p)T(p)e-2^N+1)"
0

= S(p)T(p)e-2"(N+l)X° + k„(p)

We show now that

KN(p) ~m„0

for admissible N values.
The following relations are easy to establish for R{p) large enough

I q + | h || > | p |,

q ~ | h || < | p |, (6.04)

R(q) > B(p).

9The symbol NCj is the familiar binomial coefficient.
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In view of (6.04) it is plain that for h > 0

I S(p) | < [| p | (1 - exp -2lp\R(p))]~1 < 2 | p I"1,

for Rip) sufficiently large. That is to say | Sip) | = 0(| p |_1) as | p | —> at least in
some half plane to the right of the imaginary axis. The order relation for Sip) together
with (6.04) guarantees there are no polar singularities far enough to the right. We need
one more fact, namely that

| exp(ap — bq) | < exp [(a — b)R(p)] (6.05)

We apply this to
ji (p)^»°j)-2/Xp(Ar+i)c

and note that in view of the definition of N, (6.05) applies with a < b.
Observe

S(p) = [g(l - e-21^")]-1 _ hS(p)(.l + <T2!Xpa)[g(l - e~s,pXe)]-1 (6.06)

The second term above is 0| p |~2 for Rip) > d. The first term on the right hand side
has an inverse transform interpreted as a Cauchy principal value which is in fact a
finite sum of Bessel's functions for any positive w and reciprocally the Laplace trans-
form of this inverse transform is precisely the first term. It is then trivial that S(p)T(p)
•exp — 2lp(N + 1 )q\ admits an inverse transform and, since kN(p) is regular and is
0(1 P l~2) f°r R(v) ^ a!, the same is true of kN(p). In short, KN{p) admits an inverse
transform.10 That KN(p) ~ wn 0 is now an easy consequence of the fact that the real
part of w0p — 2lp(N + 1)A<? is negative for Rip) > d.

On writing (q + h)'1 as

q~l ~ h[(q + h)qV

it is easy to show, by reasoning similar to that above, that the inverse transform of
K(p) SN(p) /S(p) exists. The trivial identity

K(p) = KAp) + [Kip) - KKip)] = KN(p) + HN(p)/D(p) (6.07)
shows that the inverse transform of K(p) exists and for w < w0 is identical with that of
HK(p)/D(p).

In view of (5.11) and (5.12) we may write, with w replacing w0 ,

g(w, v0) ~ Hip, v0)/D(p)

= ~r E Z iCk(-2hy(T(k + 1))-
L o i

f (s - 7y)*-1[fc(« - V,) - k]e-h"-rnJol3(w2 - s2)1/2 ds

r>w

+ / (* - Vy-'ihis - F') - k]e-h(-y,°JoP(w2 ~ sy/2ds
J V' j (6.08)

10G. Doetsch, Theorie und Anwendvng der La-place Transformation, Dover Publications, 1943. Cf. in
particular p. 128.
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+ £ Vo/3(w2 - F?)1/2 + Jo(i(w2 - Vf)1

+ h r e-h{-rnJo0(w2 ~ s2)1/2 ds + f e-hU-v,i)J0p(w2 - s2)1/2
JVj Jv'i

ds

Again we observe that the terms with V, , V' > w are to be replaced by 0. Then
/*w o

z(w0 , v0) = / ip{w0 — w)g(w, Vo) dw. (6.09)
Jo

Equation (6.09) gives the formal solution of Problem 2. The verification of this fact will
be given in Sec. 8.

7. Problem 1. The integrals occurring in (3.03) or (3.05) are not convolutions since
the variable w° occurs in Vn , V'n . Nevertheless they may be evaluated in terms of
convolutions even though paradoxically the equations cannot be directly solved this
way. Since we make use of these observations it is worthwhile giving more detail.

The typical integral in (3.03) or (3.05) is of the form

/Wn JaP[(w +wn- w0)2 - (Vn)2]1/2f(w° -w)dw = I(w°). (7.0)

We propose to replace w° by a new variable t in the limits and in the argument of /( )
but not in Wn — w" or V„ so that we obtain an integral of convolution type depending
on a parameter w°. Thus, consider

I(w°, t) = f E(s, w°)f(t — s) ds,
J t—wn

where

E(s, w°) = JMs + Wn — w0)2 - (F„)2]1/2, s> w° -w"

= 0 , s < w° — wn

Evidently for t < w° we can express I (w°, t) as a convolution

(w°, t) = [' E(s, w°)f(t - s) ds (7.01)
Jo

Moreover

Lt^J(w°, t) = I(w°, w°) = I(w°).

Indeed the convolution is evaluated as the inverse transform with kernel exp (w°p) of

ei""-w°)v-V"F(p)q-1,

F(p) ~ w°f(w°)
More accurately the inverse transform is taken with respect to exp Up) and then t is
given the special value w°.

The reason that we cannot argue that (3.03) or (3.05) can be solved by the Laplace
transform method in spite of the above is this. Suppose we were to attempt to exploit
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the idea involved in passing from (7.0) to (7.01). For simplicity consider (3.05). We
should replace this by the integral equation in which the terms are of type (7.01).
We refer to this equation as (3.05)'. This new integral equation determines a solution
which depends on t and on the parameter w° so that we should write Z(t, 0, w°). Let

F(p, w") ~ Z(t, 0, w°).

Formally at least we could solve for F(p, w°) from (3.05)'. We should hope that
Z(w°, 0, w°) is the z(w°, 0) satisfying (3.05), but this is in general untrue. Actually it
is obvious Z(w°, 0, w°) would satisfy the integral equation of type (3.05) with z(w" — s, 0)
replaced by Z(w° — s, 0, w°) and not by Z(w° — s, 0, w° — s). Perhaps the following
simple illustration will be helpful. Consider

r* w

z(w) = 1 + / wz(w — s) ds (7.02)•V
Let Y(p) ~ z(w). It is true that

/ wz(t — s) dt ~ wY(p).
Jo

On the other hand the attempted solution would be

z(w) ~ (p — w)_l ~ e~tw |i_„ = e~w'

while it is plain that exp — w2 certainly does not satisfy (7.02). In fact, the operational
interpretation of wY(p) is really —d/dp Y(p).

Let y° denote the value of w° when the corresponding w1 is 0. Let y" be related to
yn_I in the same way as w° to w1. That is to say yn is the largest w° value for which only
the images {«/* [ i — 1, ■ ■ ■ n\ need be taken into account. Then from (2.12) it is patent
that

yn = (e"° - 1) (X2 + 1)1/21. (7.03)

Accordingly we have from (3.05) that

.z(w°, 0) = — [ J<>fi(w" — w)[hz(w, 0) + yf/(w)] dw w° < y°
Jo

(7.04)
/ + / Jn(S(w" — w) [hz(w, 0) + i^(w)] dw

J 0 Jy"-1

+

n r*w /

2 E JoMw - wtf - (vJT'lhziw, 0) + i(w)] dw,
j =1 *^0

y"-1 <w°< y\

We refer to the value of z(w°, 0) in the range yn~x < w° < yn as zn(w°). We solve
the first equation for z0(w°). In the equation over the range y° < w" < y1 this solution
z0(w°) is used wherever the integration range involved only w values up to y°. We
proceed step by step. Evidently the only integral involving z(w, 0) for w values surpassing

0 •y is
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— / Jo0(w° — w)hz(w, 0) dw
J y O

In the general case, for zn(w) we have an integral equation of the form

zn(w°, 0)= — f J0t3(w° — s)hz„(s, 0) ds + fn(w), (7.05)
Jyn-1

where f„(w) is known since it involves integrals either of ^(w) or of z(w) over ranges
contained in 0 < w < y"'1 and these are known from the preceding solutions. In short,
then, we have merely to establish the form of the solution of (7.05) and then to apply
it at each stage (for the new values of yn~l and fjw) to obtain the solution of (7.04).
The solution of (7.05) can be written

f*W

z(w, 0) = fn(w) + k(w — s, h)f„(s) ds.
Jyn-i

We understand below that the inverse transform is to be taken with respect to the-
kernel exp ((w — s)p). We start with

q'1 ~ J0fi{w — s), w — s > 0

Write M(p) for the transform of k(w — s, h). Then

M(p) = ± (-h/qy = -h/(q + h)
1

~ k(w — s, h).

Hence in view of (5.13) the reciprocal kernel, k(w — s, h), is known. Since f0(w) is known,.
Cf. (8.01), z0(w) is given by (7.06). Therefore ft(w) is determined, Cf. (8.01), and so-
(7.06) yields Zi(w), etc. Accordingly we may write down the explicit solution for z(w, 0).
On substituting this solution in (3.03) we have the formal solution of our problem,
namely the value of z(wn , v0).

8. Validation of the solutions. In this section we verify that the solutions of the
two problems of this paper are actually given by Sees. 6 and 7. We consider Problem
1 first and Sec. 7. We observe first that on replacing z(w, 0) by an arbitrary function,
restricted merely by suitable continuity conditions, the right hand side of (3.03) satisfies
(1.0). It is a straightforward exercise to show that /w(u>) e C' implies by (7.06) and
(5.13) that z(w, 0) c C' for y"'1 < w < y". However $(w) t C' guarantees

r*W

fo(w) = — / Jo@(w — s)iKs) ds (8.0)
•'o

belongs to C' and hence by successive stages we arrive at f„(w) t C'. We next show
that z{w) t C' at the points yn. We observe that

fn+i(w) = fn(w) - h f J„0(w - s)z„(s) ds
J yn-i

(8.01)
/*wn +1

- / Jo0[(w - wn+lf - {vn+1f]u\hz(w, 0) + Hw)] dw.
J n
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That z„+l(y") = zn(yn) is an immediate consequence of (5.13), (8.01) and the fact that
wn+1 = 0 for yn = w. From (7.05) one derives

Zn+l(y") = - hznil(y") + fn+l(.y")

(8.02)
= - hzn(yn) + f'n+i(y"),

where primes here denote differentiation. Since z(0, 0) and are zero it is easy to
see that the w derivative of the last integral on the right hand side of (8.01) goes to 0
as w goes to yn. Accordingly (8.01) implies

fn+i(y") = fn(yn) ~ h f ,m-wn ~ s)zn(s) ds. (8.03)
J yn-i

Again (7.05) leads to

z'M) = - hzn(y") -h f .my" - s)zn(s) ds + f'M)
J yn-1

and hence by (8.02) and (8.03) we can assert z'n(yn) = z'n+l(yn).
Since then z(w, 0) t C' and ip(w) t C' it follows at once from (3.04) that the expression

on the right hand side of (3.02) or (3.03) is of class C2 away from the boundary and of
class C' if the boundary is included. Indeed consider a typical integral

f JS{{w - Wn)2 - (Vn)2y/2y(w) dw = Y(w0 , v0)
Jo

and let primes denote differentiation with respect to w0 or v0 at will. Then since (wn)" = 0
we have

Y"(w0 , vB)

... (8.04)
= («,")'(Y(w") + J'o(Oh(W)) + J'o'PKw - Wn)2 - (Fn)2]1/27(w) dw.

JQ

Since J0 (u) is an even integral function and y(w) t C' at least, it is clear that Y"(w0, v0) z
C.

We remark next that (1.0) and (1.07) have a unique solution. Indeed this amounts to
the statement that (1.0) has only the trivial solution z(w„ , v0) = 0 if the data on P
are now either z, = 0 or z = 0. These are essentially known results in the theory of
the mixed problem for hyperbolic equations.

We have already shown that the solution z(w0, v0) found as described in the previous
paragraphs satisfies (1.0). We wish now to show that (1.07) is satisfied. It is easy to
establish this for the data on t = 0 and x = I. Hence we restrict ourselves to the data
on P. Evidently the solution we have found satisfies (3.05). Suppose, however, it is
inconsistent with the data on P. Let s(w0 , v0) be a solution of (1.0) and (1.07). Then
s(w, 0) satisfies (3.05). Write y(w0 , v0) = s(wa , vQ) — z(w0 , v0). Manifestly y(w, 0)
satisfies (3.05) with \p(w) replaced by 0. However, this amounts to the statement that

f»W

y(w, 0) = / K(w, s)y(s, 0) ds
J0

where K(w°, s) is a finite sum of the bounded piecewise continuous functions E (s, w")
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defined previously. The classical theory of the Volterra equation then guarantees that
y(w, 0) = 0 since the possible discontinuities of E(s, w°) are on w° — s = C, i.e. lines
inclined to the axes. Our uniqueness assertion of the preceding paragraph implies now
that y(w0 , vn) = 0. Hence z(w0 , v0) satisfies the datum condition on P.

We carry through the validation of the solution of problem 2 in a somewhat more
direct manner. It is plain from (6.08) that g(w, v0) has derivatives of all orders. Hence
ip(w) e C' implies by (6.09) that z(w0 , v0) e C2. Formal differentiation of the integral of
type (5.0) with integrand exp (pw°)H(p, v0) indicates that this integral and hence
z(w0 , Vo) satisfies (1.0). This surmise is established rigorously by replacing g(wa , v0)
by any of the terms in (6.08) whence it appears that the right hand side of (6.09) satisfies
(1.0). To show proper datum values are assumed on P we observe first that the inde-
pendent variables are w0 , v0 and not w°, v0 . We require now that \p(w) t C2 and that
the modified function satisfies: d2\f/(w)/dw2 is Lebesgue integrable on 0 < w < <».
Then \ D(p) \ < M \ p \~2. Hence with H1(p, v0) = H(p, v0) exp ( — pv0)

can easily be shown to admit an inverse transform with kernel exp w0p and this is pre-
cisely dz/dvo . There is no difficulty in taking the limit as v0 goes to 0. Indeed it will be
clear that we have

I fi+i" (dHi _dH1 \„o
I Jd-i0° \ dv0 dv0 „o_0/ P

< M r I p r2 (I 1 - e| + | 1 - e('°-2X"u ) I e°°v | dp
Jd-iA

for proper choice of A. For v0 sufficiently small it is trivial that the right hand side is
dominated by 2«. Hence in view of (6.02)

o) = qD(p)S(pX 1 - e~2lp"°)

= — D(p)S(p)[(h(l + e~21"u) - (q + h) + (q - h)e'21^] (8"°5)

~ hz(w°, 0) + i^(w°)

This establishes that the boundary values are assumed on P when *p(w) e C2. (To gain
the result for the weaker hypothesis \p(w) e C' is not difficult though it seems unde-
sirable to give more than a sketch of one procedure. Let <Si be the segment of P, 0 <
w < A and S2 be the region bounded by S1 , P', t = 0 and the minus characteristic
through (A, 0). Let be the Banach space of functions of class C' on S1 which vanish
together with their first derivatives11 at w = 0. Let B2 be the Banach space of functions
of class C2 over S2. We are able to show that the transformation T which maps \p(w) into
z(w, v) is linear on B1 into B2 . The functions of Class C2 on iS\ which vanish together
with their first derivatives at w = 0 are dense in . Hence the linearity of T ensures

US. Banach, Theorie des operations lintaires, Warsaw, 1932.
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that the boundary conditions are satisfied on P for ip(w) t C' since this is the fact for
>P(w) e C2. Of course, this, result can also be established directly by the method followed
in connection with problem 1).

The equation (1.0) has been basic in this paper. In many applications

Ztt - Zxx - z = 0 (1.0)*

occurs; that is to say the roles of x and t are interchanged. This implies that the Rie-
mann function for (1.0)* is obtained from that for (1.0) by interchanging x and t.
This amounts to replacing (3 by ifi. We assert in fact that all the results of our paper may
be interpreted for (1.0)* as the fundamental equation by just this substitution of if} for /3.
This is plain for (3.03) and (3.05) since the Bessel's functions occurring there appear
as the Riemann functions. We remark that 13 enters the p functions arising from (1.0)*
in the combination (p2 — /32)1/2 instead of the previous (p2 + /32)1/2. A little reflection
will show that our italicized assertion will be established if we show that the corre-
spondence between p functions and the inverse transforms is maintained when j8 is
replaced by if}. This is at once verified for (6.01). Write

g. = - py/2,

Qi(u, B) = ~ [(e"P~B80/(?1 + h)nqJ dp.

Then

a q,(«, b) = f*1* (?1 + hyvB°> dp.dB
Straightforward differentiation of Qi(u, B) reproduces the Eq. (5.08) with if3 replacing
/3 on the right hand side in view of our comment on (6.01) and Qi(u, B) replacing
Q(u, B). Accordingly (5.10), (5.11) and (5.12) are still valid when Qi(w, B) replaces
Q(u, B) and if3 replaces j3. Evidently all arguments based on the behavior of <?, as | p j —>
co are identical with those involving q.


