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UPPER AND LOWER BOUNDS FOR THE SOLUTION OF THE FIRST
BOUNDARY VALUE PROBLEM OF ELASTICITY*

By J. B. DIAZ and H. J. GREENBERG (Brown University)

In another paper,1 we have considered the boundary value problem

AA w = p, in R,

a (i)
w = /, ^ = g, on C,

where A = d2/Sx2 + d2/dy2 , R is a plane domain with boundary C, and d/dn denotes
differentiation in the direction of the outer normal to C. Assuming the existence and
uniqueness of the solution of (1), we developed a method for obtaining upper and lower
bounds for w(x0, y0), the point x0 , yn of R being given in advance. The upper and lower
bounds were given in terms of integrals of two classes of functions, one satisfying certain

"boundary conditions and the other certain partial differential equations.
In the present paper we shall be concerned with the application of the same method

to a boundary value problem involving a system of partial differential equations. For
definiteness we shall deal only with the first boundary value problem of three dimen-
sional elasticity, i.e.

+ (X + + Xi = 0, in R,
(2)

wt = a given function, on S,

(i, j = 1, 2, 3), where R is a domain in three dimensions bounded by a surface S,
is the i-th component of the displacement, X and n are Lamp's constants, X, is the i-th
component of the body force, commas indicate partial differentiation, and a repeated
subscript indicates summation over the range 1, 2, 3. The differential equations in (2)
are known as Navier's equations.

Given a point , £2 , £3) of R, we seek to obtain upper and lower bounds for the
numbers wi(£x , £2, £3), w2(fi , £2, £3), and w3(£i , £2, &0- The "Green's formulas" needed
in the discussion are included in the first section. The second section deals with some
auxiliary inequalities and the third with the upper and lower bounds sought. A com-
parison with the paper quoted in footnote 1 reveals that the difficulty involved in the
transition from one equation to a system of equations is principally one of notation.

1. Green's identities.2 In deriving Green's identities for the system (2), we shall!
save space by using a convenient notation. We shall write <t> = (<£, , <f>2, <£3), for example,,
where the <f>, are real functions defined on R. Also, we shall need Green's theorem

( A.fdR = [ Ant dS, (3)
*'R •* S

*Received Feb. 18, 1948. This paper is based on a report-prepared for Watertown Arsenal under a
contract in Applied Mechanics.

'J. B. Diaz and H. J. Greenberg, Upper and lower bounds for the first biharmonic boundary value
problem, to appear in J. Math. Phys.

2See O. D. Kellogg, Potential theory, 1929. The formulas (6), (7), and (9) of this paper correspond to
those for Laplace's equation which appear on pages 212, 215, and 219, respectively, of Kellogg's book.
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J = 1, 2, 3, where nf is the j-th component of the outer normal to S.
Let <f> = (0i , </>2 , 0:0 and \p — (\p, , ip-2 , \p3). From Green's theorem we have at once

that

[ [nfoiti.d.i + (X + dR = f + (X + i] dS. (4)J R S

Introducing the notations

(ft>, <£) = [ + (X + dR,
J R

(4>, $)r = [ 4><[p-^i,a + (x + n)\p,-,ii] dR, (5)
J R

(0, \f/)s = / + (X + d<S,
J S

we may rewrite Eq. (4) as follows:

(0, tfOfl + (0, = (<£, £)s (6)
The integral {<j>, \p) = ($, 4>) plays the role of the Dirichlet integral fR (uxvx + uuvv +
uzvz) dR in the theory of Laplace's equation. Interchanging 4> and ip in (6), and sub-
tracting the resulting equation from (6), we obtain Green's reciprocal theorem

(0, i)it - (^, <P)r = (0, *P)s — (i, <t>)s ■ (7)
In order to obtain the remaining formula of Green, we must employ the "singular"

solutions of Navier's equations (2) with body forces zero, which were given by Lord
Kelvin. These three solutions give the displacements produced throughout space by
a concentrated unit force in the xx , x2 , and x3 directions respectively. The solutions
Z{k), k = 1, 2, 3, of the homogeneous system (2), with (£, , £2 , £3) as singular point, are
given by

yW   X ~|~ // j X 2fl j ,q-.
* ~ 8ttm(X + 2M) L x + M •n5tiJ' (8)

i = 1, 2, 3, where r is the distance from (£1, £2 > £3) to (xx, x2, x3), and 5ki is Kronecker's
delta (unity if i = k and zero if i ^ k). If we now employ a procedure common in potential
theory, replacing \p by Z(kl in (7), the integration being extended over the common
part of R and the exterior of a sufficiently small sphere with center at (& , £2 , £3), and
pass to the limit as the sphere shrinks toward (£1 , £2 , £3), we obtain3

, £2, £3) = ~{Z™, <*>)« + (Zw, 0)s - (4>, Zw)s . (9)

2. Preliminary inequalities. Starting with (<j>, \(/), defined in (5), and writing
arf> = (a<t>i , a<j>2 , <x4>3), for real a, we have

(a<t> + /3\p, a<f> + (bp) = a2(0, 0) + 2a/3(0, yp) -f- /32(\p, \p) ^ 0,

3See A. E. H. Love, Elasticity, New York, 1944, p. 245, and C. Somigliana, Annali di Matematica
(2) 17, 41 (1889).
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for every real a and 0, which yields Schwarz' inequality
[(*, *)]a (<*., <*>)•(*, *). (10)

Let k = 1, 2, 3 be fixed, and consider the solution IV= (W[k), W™, W{3k)) of the
boundary value problem

+ (X + = 0, .in R,
(H>

= -z\k), on s,

i = 1, 2, 3. (Wu) is the "regular part" of a certain Green's function). Together with
}Vm we shall consider "vectors" V = (F» , V2, F3) and Uw = (Uik), U?\ Ul") such
that

iuVi.a + (X + v)Vj,a = 0, in R, (12)
i = 1, 2, 3, and

1/J» = JF<*> = -Z\k\ on S, (13)
i = 1, 2, 3, respectively. In connection with the vector w of (2) we shall introduce the
vectors v and u such that4

ftt',+ (X + — 0, in R, (14)

i = 1, 2, 3, and

■I. = W; , on S. (15)

It is now easy to verify that

(u — w, u — h ,
. ij [li - ",u — v). (1 '}

(v — w, v — w) j

Recalling the definitions of the vectors involved, and using (5) and (6), we have

(u — v, u — v) = ((w — w) -f (w — v), (u — w) + (w — v))

= (u — w, u — w) + (v — w, v — w),
(17)

since u — w vanishes on S and v — w satisfies the homogeneous system of equations in R.
The two known minimum principles for the solution of (2) can be immediately

deduced from the inequalities (16), as will be seen in Sec. 4.
3. Upper and lower bounds for w at a given point. Applying (9) to the vector w we

obtain

, *2 , y = -(Zlk\ w)R + (Zw, w)s - (W, Z(k))s , (18)

k = 1,2, 3, and we are seeking bounds on the left hand members of (18). Of the three
integrals in (18), only {Z'kl, w)s cannot be computed directly from the conditions (2)

4C. Somigliana, Annali di Matematica, Ser. 2, vol. 17, 1889, p. 39, gives a method for obtaining
solutions of (12) and (14). Let the functions Fi(l = 1, 2, 3,) satisfy AAFi = —Xi/n. Then the functions
Vi = —(X + n)/(\ + 2fi)Fi,n + Fi,u (i = 1, 2, 3), satisfy (14). In particular, the singular solution Z(k\
given in (8), is obtained by taking Fi = rSti ■
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on w, and hence it is only this integral for which we have to find bounds. For each k,
Schwarz' inequality, (10), yields

[(« - to, Um - Wm)]2 g (« - w,u- w)-(Um - Ww, Uw - Wlk)). (19)

This last equation, together with (16), implies that

[(« - w, V(i) - W(k))f ^ (u - v, u - v)-(U(k> - F, Uw - V). (20)

But, from (6) we have that

(u - to, Uik) - Ww) = (u, Um) - (Um, w) - (u- w, Ww)
(21)

« (u, Uw) + (Uw, to)* - (Uw, w)s ,

From (13),
~(Uw,w)s = (Zw,w)s,

the "unknown" surface integral of (18). Substituting for this surface integral from (18),
and combining the resulting equation with (20), we obtain

(®i(5l j £2 , £3) b/fc) = a'Ck , (22)

where

a = (u — v, u — v),

ck = (Uw - V, Uw - F),

bk = -(«, Uw) - {Uw, w)R

-(Z(k\ to)* - (to, Zw)s .

Given k — 1, 2, or 3, and four vectors u, v, Utk), and F, satisfying conditions (15), (14),
(13), and (12), respectively, equations (22) and (23) yield upper and lower bounds for
tOfc(£l , £2 J £3) •

Another set of bounds can be obtained by starting with

[(i> - w, V - Ww)}2 ^ (v - w, v - to) ■ (F - Ww, V - W(h)), (24)

instead of (19). From (16) we have that

[(0 - to, F - IF'*')]2 g (u - v, u - v)-(Uw - F, U(k) - F), (25)

and from (6) it follows that

(v — w, V — WtH) = (0, F) + {Ww, w - v) - (to, V)
(26)

= iv, F) + (Ww, w - v)s - (to, V)a .

The "unknown" surface integral of (18) appears, with a minus sign, on the right hand
side of (26). Substituting for this surface integral from (18), and combining the resulting
equation with (25), we obtain

(to*(£i , £2 , £3) bQ ^ a -Ct, (27)

(23)
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where

a = (u — v, u — v),

ck = (Uw - V, Uw - V),

K = (v, V) - {Ww, v)s - (w, V)s

~(Z(*>, w)R - (w, Zw)s .

Again, given k = 1, 2, or 3, and four vectors u, v, U(k), and V, satisfying conditions (15),
(14), (13), and (12), respectively, equations (27) and (28) yield upper and lower bounds
for Wi(£x , |2 , £3). The relations (22), (23), (27), and (28) are the inequalities we wished
to derive.

It is clear5 that an iteration procedure for improving the upper and lower bounds
already obtained may be given in terms of sequences u{ and w( of vectors satisfying
the homogeneous boundary conditions

Ui 1 = Ui2 = ui3 = 0, on S,

and the homogeneous system of equations (12) respectively.
4. Minimum principles for w. It is interesting to observe that it is possible to deduce

from (16) two known minimum principles associated with the solution w of (2). One
principle picks out w from among the u's (the vectors satisfying the boundary conditions
of (2)), and the other principle singles out w from among the v's (the vectors satisfying
the system of partial differential equations of (2)).

Let us derive the first minimum principle ("principle of minimum potential energy")-
From (5), (<j>, 4>) = 0 if and only if </> is a constant vector, i.e., each of <f>t , <f>2 , <t>3 reduces
to a constant. In view of this remark, equations (16) and (17) imply that, for any fixed v,

(v — w, v — w) sS (u — v, u — v), (29)

the equality sign holding if and only if u = w. Expanding (29), employing (6) and (15),
yields

(■w, w) + 2(w, v)B ^ (u, u) + 2(u, v)B . (30)

Taking (5) and (14) into account, this result may be stated as follows: the functional

/ [ixUi, , ,■ + (X + m)m,' , iUj, j — 2u,iXi] dR (31)
J R

is minimized, over the class of vectors u satisfying (15), by the solution w of (2).
The second minimum principle ("principle of minimum complementary energy", or

"Castigliano's principle") may be derived in a similar manner. Equations (16) and (17)
imply that, for any fixed u,

{u — w, u — w) (u — v, u — v), (32)

the equality sign holding if and only if v — to is a constant vector. With the aid of (6)
and (14), Eq. (32) yields

5See, for instance, section 3 of the paper quoted in footnote 1.
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(w, w) - 2(u, w)s g: (V, v) — 2{u, v)s ■ (33)

Taking (5) and (15) into account, this result may be stated as follows: the functional

/ [Wi.iVi.i + (X + dR — 2 WilpVi^rij + (X + ,•,,■<] d<S, (34)
J S

is minimized, over the class of all vectors v satisfying (14), by w + c, where w is the
solution of (2) and c is any constant vector.

ON SOME SINGULAR SOLUTIONS OF THE TRICOMI EQUATION*
By G. F. CARRIER and F. E. EHLERS (Brown University)

1. Introduction. In this note we intend to develop briefly some singular solutions of the
Tricomi equation. These solutions have application in the hodograph techniques for the
theory of compressible fluids. The flows to which they apply will be discussed in a later
work but it is felt that the singular solutions are of sufficient interest to merit this pre-
sentation.

2. The singular solutions. We shall consider the equations

<Px = Ipy , (1)

tx = — <Pv/y (2)

which imply

ivy + WPxx = 0 (3)

and

v>xx + (<Pv/y)„ = 0. (4)

Equation (3) is the Tricomi equation. The solution of primary interest has the following
properties:

ix ~ 1 /y on x = 0, y —> 0;

<py = 0 on y = 0, for x ^ 0;

4>, <p, regular in y > 0 and on x = 0, y ^ 0.

It is evident that if <p, \p, are not regular in y < 0, the branch lines will occur along the
characteristics x2 + 4?/3/9 = 0. The development that follows is strictly formal and the
proof that the solutions are those sought is readily found by substituting them into the
original equations. To find them, we first replace y and <p by

« = (2/3)ys/2, = (2/3r3yx(x, s) = s2/3x(x, s).

*Received May 14, 1948.


