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-NOTES-
ON A FAMILY OF ROTATIONAL GAS FLOWS*

By R. C. PRIM (Naval Ordnance Laboratory)

Steady plane flows of an ideal gas (i.e., a thermodynamically perfect gas without
viscosity or thermal conductivity) in the absence of body forces may be divided into
three distinct classes:

(a) flows in which the velocity field v is irrotational,
(b) flows in which the v field is rotational, but is derivable from an irrotational flow

by the substitution principle established by Munk and Prim1, and
(c) all other flows.
For the study of rotational gas flows, the actual velocity field v does not play so

basic a role as does the reduced velocity field w defined by1'2

w = v/a,

where a is the local value of the maximum or "ultimate" velocity magnitude attainable
by expansion to zero pressure. A necessary condition for irrotationality of v is that a
be constant throughout the flow. Therefore the flows in Class (a) are characterized by
irrotationality of both the w field and the v field. The flows in Class (b) have rotational
v fields, but share their w field (and hence their geometrical properties) with flows of
Class (a). The flows of Class (c) are truly rotational, i.e. they have rotational w fields
as well as rotational v fields and will be, in general, geometrically distinct from the flows
of Class (a).

Of the truly rotational flows of Class (c), those having a streamline pattern con-
sisting of concentric circles or of parallel straight lines constitute a relatively degenerate
subclass. Any value of velocity magnitude v and of reduced velocity magnitude w may
be assigned to each individual streamline, and the resulting flow will satisfy all the
governing equations. Except for this degenerate case, no formally simple solutions for
this class of flows have been known heretofore.

This paper presents a formally simple infinite family of truly rotational flow solutions.
This family includes the familiar irrotational Prandtl-Meyer corner flow as a special
case.

The new family of solutions. Necessary and sufficient conditions that a vector field
must satisfy in order that it may serve as the reduced velocity field of a steady flow of
an ideal gas in the absence of body forces are the following set of equations2

div[(l - w2)<x"1)/2w] = 0, (1)

,fw X curl w~| n /<ttcurlL !-«■ J= °- (2)
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1M. Munk and R. Prim, On the multiplicity of steady gas flows having the same streamline ■pattern,
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(X = (7 -f- 1)/(7 — 1), where 7 denotes the adiabatic exponent; for air, X = 6.)
We shall refer these equations to a cylindrical coordinate system r, 6, z and consider

flows of the following type:
wr = u(6), we = v(8), w, - 0.

Thus specialized, Eqs. (1) and (2) yield the following pair of ordinary differential equa-
tions restricting the functions u{6) and v(6)

9>0

Pig. 1.

(u + y')(l — u2 — v2) — (X — 1 )v(uu' + vv') = 0, (3)

v(v — u') — S(1 — u2 — v2) = 0, (4)

where B is an arbitrary constant parameter. (These equations appear in more general
form in a paper by Nemenyi and Prim.3)

3P. Nemenyi and R. Prim, Some patterns of vorticose flow of a perfect gas, Naval Ordnance Laboratory
Memorandum 9219 (1947).



,1948] R. C. PRIM 321

The general solution of the set of equations (3) and (4) is formally forbidding and
yields the functions u{6) and v(d) only implicitly. However, for the case B = 0 (for
which the w field is irrotational) the solution is easy and yields the following two types
<of solutions:

V = \-1/2 cos [(0 - 0o)/X1/2L U = sin [(0 - 0O)/Xi/2], (5)

and

v = A cos (0 — 0O), u = A sin (0 — 0O), (6)

/0 = 0Lim" 2

Fig. 2.

where 0O and A are arbitrary constants (except that A2 < 1 physically). The solution
(5) is the well-known Prandtl-Meyer irrotational corner flow, while solution (6) is the
trivial case of uniform parallel flow with w = A.

Guided by the form of (5) and (6) we investigate the possibility of special solutions
•of the form
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v = C cos m(d — d0), u = D sin m(0 — 0o), (7)

when B is not required to be zero. Substitution of (7) into (3) and (4) yields

. ^ (D - Cm)(l - D2)
cos m{0 - 60) = - (z)2 _ C2){D _ xCm) (8).

and

cos2 m(d d0) B(L)2 _ (9>

__

Fig. 3.

In order that (8) and (9) be valid for some finite range of 6 — 90 it is necessary that
the numerator and denominator of each right-hand member be identically zero. In
addition to the trivial condition C2 = D2 = m2 = 1, the following relationships between
B, C, D and m satisfy these conditions
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n _ AC2 - 1 _ _ D_ nnsx(i - cy ' m xc ^ ^
Replacing C by v„ and setting d0 = 0 (this involves no real loss of generality), we have
then the solution

v = v0 cos (6/Xv0), u = sin (6/\v0) (11)

Fig. 4.

-where v0 is an arbitrary parameter (limited physically to the range 0 < v\ < 1).
This family of solutions is as simple formally as the Prandtl-Meyer solution (5) to

which it reduces for the special case v\ = 1/X. For all other values of v0 the solutions
are truly rotational flows of Class (c).

Some properties of the solutions. The equation of the streamlines of these flows is
readily obtained by integration of the defining equation

dr u 1 . .
-JZ = - = — tan {d/\vo)rad v v0
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giving

r = r0 [sec (0/Xi>o)]x (12)

The rotation of the reduced velocity field is given by

Q = i|VXw' v ~ u'
2 i 2r

\vl — 1 cos (d/\v0)
(13)

=
2\v0

or, along a particular streamline,

Xtig - 1a = [cos (^/^'o)] - (14)
Z\v0r0

It will be noted that for v0 > 0 the rotation is positive, zero, or negative near 0 = 0•
depending on whether vl is respectively greater than, equal to, or less than 1/A, where
1/X is the square of the "critical velocity" at which the flow velocity and sound velocity
are equal.

The pressure distribution can be computed from the w field using the equation2

gradh„= _(x+ 1)6^5

the result being

p = jfc{r(X**-I>/X(1—''[cob (ffA»o)](X"1>*,v<,",,'> }X+I (15

from which is readily obtained the equation of the isobars

r = L[sec (0/At>o)f(16)
where K and L are arbitrary positive constants. It should be noted that only for the
irrotational case (vl = 1/X) are the lines, 0 = constant, lines of constant pressure. From
(15) it is also seen that the nature of the pressure distribution is quite different depending
on whether the initial velocity is supersonic (vl > 1/X) or subsonic (vl < 1/X). For
vl > 1/X, the pressure is zero at the origin and increases with increasing r; for vl < 1/X
the pressure is infinite at the origin and decreases with increasing r.

A familiar characteristic of the Prandtl-Meyer solution is the existence of a limiting
angle (0lim = xX1/2/2) at which the flow velocity is of ultimate magnitude and radial in
direction (u = 1, v = 0). From (11) it is seen that for each member of our family of
solutions there exists such a limiting angle, its magnitude depending on the choice of v0 ;

ellm = VoXtt/2. (17)

By varying the choice of v0 from zero to one, we may vary the limiting angle continuously
from zero to Xx/2, (3tt for air).

Another familiar characteristic of the Prandtl-Meyer solution is the fact that the
tangential velocity component v is always equal to the local value of the velocity of
sound c, i.e., v/c = ± 1. We shall find that our entire family of solutions (11) has a similar,
but more general, property which reduces to v/c = ±1 when vl = 1/X. The square of
the velocity of sound (referred to the ultimate velocity, of course) is given by
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c2 = Lml (18)
X - 1

Making use of (11) we then have

V 2 2 $ I 1
"2 = vQ cos —
c \v0

fi - vl 2 6 I"1 (X - 1>0
[_X - 1 COS XjJ 1 - vl

or, since for steady flows of ideal gas in absence of body forces, the Mach number M
is related to w through

=(xiiy d9)

I = ±M0 , (20)
-where M0 is the Mach number at 6 = 0. (For the Prandtl-Meyer solution, M0 = 1).

It is noteworthy that only for the irrotational case (vl = 1/X, M0 — 1) are the
radial lines characteristic lines of the differential equations. Therefore, the useful
"patching" properties of the Prandtl-Meyer solution are not shared by the other mem-
bers of our family of solutions. However, sufficiently restricted regimes of our flows
•could be obtained by passage of an initially irrotational flow through a curved shock front.

The Mach number at any point in the flow is, from (11) and (19) given by

M "P (21)
(X - 1)[1 - (1 - t>g) cos2 (g/Xi>0)1

(1 — vl) COS2 (d/\v0)

By virtue of the substitution principle1 each member of the family of solutions (11)
in terms of the reduced velocity field w represents a vast variety of actual velocity fields
v. Denoting the tangential and radial components of v respectively by v* and u*, and
using r0 of (12) to parametrize the streamlines, we have

v* = a(r0)v0 cos (6/\v0)
(22)

u* — a(r0) sin (d/\v0),

where a(r0) [>0] denotes the ultimate velocity magnitude assignable arbitrarily upon
and constant along each individual streamline. The density distribution p, can be com-
puted by recourse to the basic relation (valid for ideal gases in absence of body forces)

ypM2 y p
" ~ V2 ~ a\roy

where p and c2 are given by (15) and (18).
Examples of flow patterns. The general nature of the flow patterns associated with

several choices of v0 is indicated in Figs. 1 to 4. These patterns were computed
from equation (12) using X = 6 (the value for air) and values for v0 chosen to give
limiting values of 6 of x/4, t/2, it, and 3x/2 (that is, flows turning from 0 = 0 through
— tt/4, 0, t/2, and x). The flow of Fig. 3 is of particular interest, representing a
flow around the edge of an infinitely thin flat plate. This flow is similar to the irrota-
tional Ringleb flow, but lacks the limiting lines which'are characteristic of the latter.


