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solution such that ¢ has a logarithmic singularity at the point x, , ¥, ;¥ (of course) has an
“arc tan behavior’”’ at this point. It is immediately evident that we are looking for the-
Green’s function of Eq. (5), say for the region y > 0. To find this, we merely put a spurious.
non-homogeneous term N (z, s) on the right side of (5), define N as we did X, and operate:
as before.

This time we find

€ +ox=N 17y

if we allow the boundary contributions to vanish. The inversion of Eq. (17) leads to

15(:—20)
X = j:,m / 80N (%o , %0) f [ Jwa(aS) J2/3(aso) d§ da dzx, dso (18)

where the double integral over ¢ and « must define the Green’s function. Thus, we write

G, 7o ; 8, %) = ‘/0‘ e_alz_“IJz/a(as)Jz/a(aso) do

(19)
_ 2 2 2
— As-l/lem((x xo)%:; s+ 80)
where A is some constant.
The corresponding solutions ¢ and ¢ are
— 2 3 3

o= yl“Ql/e((”” x;zy;r)? = y) 20)
v=[ G | @D

It is interesting to note that the stream funection ¢ is closely related to one found by
Weinstein.*

If we had formally used J_,,; again, the index 1/6 appearing in the Legendre function
would be replaced by —7/6. Either solution may readily be continued into the hyperbolic
domain.

THE LOST SOLUTIONS IN AXIALLY SYMMETRIC IRROTATIONAL
COMPRESSIBLE FLUID FLOW*

By H. J. STEWART (California Institute of Technology)

1. Since the two dimensional potential equation for the irrotational flow of a com-
pressible fluid may be linearized by a Legendre transformation from the physical plane
to the velocity (hodograph) plane, this linearizing transformation is usually one of the
first steps taken in the study of two dimensional compressible fluid flows. This trans-

4Weinstein, A., On axially symmetric flows, Q. Appl. Math. 5, 429 (1948).
*Received Jan. 12, 1948.
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formation is degenerate for any flow for which one velocity component is a function of
the other velocity component. In this case the entire physical plane maps into a line
in the hodograph plane. Such a solution to the potential flow equation is called a “lost”
solution because the Legendre transformation to the hodograph plane is not valid in
these circumstances and cannot be used to investigate such a flow. In the two dimensional
supersonic theory this type of flow, generally called Prandtl-Meyer flow,' is of great
importance since it includes the expanding flow around a corner or over any convexly
curved surface. It is also important in the design of supersonic wind tunnel nozzles
since the matching flow between a two dimensional source flow (representing the initial
expansion near the nozzle throat) and the rectilinear flow in the working section is of
the Prandtl-Meyer type.

Because of the importance of the lost solution in the two dimensional case, the
question of the existence and nature of similarly degenerate flows in three dimensional
flow problems is of considerable interest. The complete solution to this question for one
class of three dimensional flows, axially symmetric flows, can be obtained by a very
simple extension of a method used by Bateman® in treating the two dimensional problem.

2. Consider an axially symmetric irrotational compressible fluid flow with x being
the distance along the axis of symmetry and y being the radial distance from the axis.
Let » and » be the velocity components in the x and y directions respectively, and let
p be the density of the fluid. The functional relation between the velocity components
may be written in a parametric form as

u=A(s), v=2B@), p=F@), M

where F(s) may be expressed in terms of A(s) and B(s) by the momentum integral
and the parameter s = s(z, y) represents the lines of constant velocity in the physical
plane. Since the flow is irrotational,

o ou
o = oy 2
or
1y 9 — Aoy 98

This shows that the lines of constant s must be straight lines of the type
zA'(s) + yB'(s) = C'(s), 4)
where C’(s) is an arbitrary continuous function. The velocity potential ¢ is thus
¢ = zA(s) + yB(s) — C(s). (5)

The functions A(s) and B(s) must be so related that the continuity equation is
satisfied. The continuity equation for axially symmetric flow is

55 (o) + 52 (o) + 2 = 0. ®

'W. F. Durand, Aerodynamic theory, vol. 3. J. Springer, Berlin, 1935, p. 243.
*H. Bateman, Irrotational motion of a compressible inviscid fluid, Proc. Nat. Acad. Sci., 16, 816 (1930).
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Thus .
’ ’ @ ’ ’ Q_s_ @ —
(PA’ + AF)) 5 + (FB' + BF) 30 + =~ = 0. )
By Eq. (3), this may be written
| FA'+ AF" FB' +BF ___FB __ __FB ®
B’ A’ " B'yads/ox. A’y ds/dy

unless B'(s) ds/dx = A’(s) ds/dy = 0. This special case will be discussed later. Except
in this special case, Eq. (8) shows that a solution of the type indicated by Eq. (1) is
possible only if

V5= 00 v, = he), ©

where ¢(s) and h(s) are arbitrary but related continuous functions of s.
The functions s(z, y) which satisfy Eq. (9) can be determined by inverting variables
and considering x = x(s, ¥). Then Eq. (9) becomes (if ds/9x > 0)

o 1
3s = 350z @ = yG(s), (10)

9z _ _9s/dy _ _h(s) _
dy  os/ox - g(s)

These expressions may be simply integrated, and it is seen that

= H(s).

z = yH(s) + ¢, (11)
where ¢ is a constant and G(s) = H’(s). Thus the only function s(z, y) which satisfies
Eq. (9) is : :

_ Y
$= s(x - c) ) (12)

The excepted case, ds/dx = 0, is given by the limit as ¢ — «. If ¢ is finite it may alw: ys
be made zero by a proper choice of the origin. There are thus only two solutions of Eq. (9),

8 = s(y), (13)
s = s(y/x), ' (14)

The derivation of Eq. (9) breaks down if both sides of Eq. (3) are identically zero.
The simplest case occurs if A’(s) = B’(s) = 0. This corresponds to a uniform rectilinear
flow which is axially symmetric if B = 0. This is obviously the simplest lost solution
and is contained in both Eq. (13) and (14) as s = s, , a constant. If s = s(x), both sides
of Eq. (3) are identically zero if B’(s) = 0. The continuity equation can then be satisfied
only if B = 0; so this, too, corresponds to a uniform flow. The case, ds/dxz = 0 and
A’(s) = 0, is the limiting case of Eq. (13). This case includes, beside the rectilinear flow
along the axis, a two dimension line source on the axis of symmetry or a superposition
of the two flows. The remaining case, Eq. (14), leads by Eq. (5) to the Taylor-Maccoll®

3G. I. Taylor and J. W. Maccoll, Air pressure on a cone moving at high speeds, Proc. Roy. Soc. (A)
139, 278 (1933).
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potential equation and corresponds to the supersonic flow past a cone in the range of
Mach numbers for which the shock wave at the nose is attached to the cone. The only
lost solutions of the axially symmetric potential flow equation are thus seen to be a recti-
linear flow along the axis, a.two dimensional line source on the axis, and the Taylor
Maceoll flow past a cone. The first two flows may be superimposed, but the result is of
little interest. Only the third conical flow is an essentially three dimensional flow pattern.

In conclusion it can be stated that all the lost solutions of axially symmetric irrota-
tional compressible flow are already well known solutions. This result was apparently
known to Bateman; however, it does not appear in any of his writings. A discussion of
another class of three dimensional lost solutions, conical flows, has been given by
Busemann.*

A GENERAL STABILITY CRITERION FOR LINEAR OSCILLATING
SYSTEMS WITH CONSTANT TIME LAG*

By H. I. ANSOFF anp J. A. KRUMHANSL (Brown University)

Several formulations' have recently been given for the stability criterion of a lumped-
parameter linear oscillating system with constant time lag given by the equation

Iy"(t) + Ry'(t) + Ky(®) = —Sy'(t — 1), )

where I, R, K, S and 7 are real positive constants and Sy’({ — 7) is the feedback term.
By applying Cauchy’s index theorem to the operational form of (1) it is possible to
generalize the discussion to feedback proportional to any derivative of the dependent
variable taken at time ¢ — 7; this will be called a retarded derivative. It is found that
the resulting stability criterion can be written in an easily computed form and that
the permissible range in the time lag 7 can be stated explicitly.
Equation (1) is generalized to

Iy"() + Ry'() + Ky(t) = =Syt — 7), (2)

where n is allowed any integer positive value. Letting F(p) be the Lap]ace transform
of y(t), one obtains’

g - — L@ _ L) 1

Yo) + Sper YO 1+ Spe 1) ®
where
L(p) = Ipy(0) 4+ Iy'(0) + Ry(0),
‘ (4)

Y(p) = Ip* + Rp + K.

A. Busemann, Aerodynamischer Auftrieb bei Uberschallgeschwindigkeit, Luftfahrtforschung, 12, 210
(1935).

*Received Feb. 27, 1948.

1See references [1] and [2]. In the following, numbers in square brackets refer to the Bibliography at
the end of this paper.

2The Laplace transform is defined here as in [3]. For other examples of this procedure see reference [4].



