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DIABATIC FLOW OF A COMPRESSIBLE FLUID*
BY

BRUCE L. HICKS
Ballistic Research Laboratories, Aberdeen Proving Ground

I. Introduction

The principal concern of theoretical aerodynamics in the past has been with the
theory of adiabatic flow. The development of a corresponding theory of diabatic1 flow
is needed in order to provide proper theoretical interpretations of present basic exper-
imental studies of combustion aerodynamics and to make possible the most general
application of these studies to the design of combustion and ignition apparatus..

Quite general discussions have been given of several features of the diabatic flow
of a compressible viscous fluid. Thus Kiebel [K-l]** has classified such flow into a
number of dynamically permissible types with applications to meteorology, and Bate-
man [B-l] and others have proposed several variational principles. Unsteady diabatic
flows less general than those studied by Kiebel are considered in meteorology but the.
heat addition function apparently does not usually enter explicitly. (See for example
the development of the Bjerknes theorem in Ch. VI of Haurwitz [H-7].) In the one-
dimensional or hydraulic approximation, steady, frictional, continuous (i.e., shockless)
diabatic flow ([H-5] and references cited there) and discontinuous steady flow (de-
flagrations and detonations—see [B-l], [B-2], [H-l], and references in [B-2], [H-l],
and [H-5]) have both been treated. However, there appears to be no published analysis
which is designed to apply specifically to steady, diabatic flow of an inviscid, compressible
fluid in two and three dimensions, although some transformations of the equations are
useful in both adiabatic and diabatic flow.

Our purpose in the present series of papers is to describe the principal characteristics
of steady diabatic compressible flow. The treatment will apply to both thin and thick
burning regions and to subsonic and supersonic flow conditions if it is understood that
algebraic equations should be added whenever necessary to express conservation of
energy, mass, and momentum across flow discontinuities. The theory will not apply
generally where viscous effects may be important, as in the interior of detonation fronts,
ignition within boundary layers, etc. Our discussion depends upon the use of vectors
other than the velocity vector to represent the flow, these vectors being chosen in order
that the complexity of the basic differential equations can be reduced. A general dis-
cussion of these vectors will be given later (reference H-6). In the present paper, we
shall derive new basic equations in terms of the velocity vector and in two other vector
languages. We shall exhibit the physical content and implications of these equations
for rotational and irrotational flow, sub- and supersonic flow and compare them with
their counterparts in adiabatic flow.2

No effort is made to solve specific technical problems in this paper because it is
believed desirable first to survey the whole field in coherent fashion. Formal manipula-

*Received April 29, 1947.
'The word diabatic in place of nonadiabatic was suggested by Dr. D. J. Montgomery.
**The number in square brackets refers to the list of references at the end of the paper.
2Some of these results were presented first in [H-2], [H-3].
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tion of the equations is based upon simple physical ideas. Boundary and initial-value
problems are not discussed. Although only a few types of quasi-linear partial differential
equations occur in this diabatic theory, and all these types have appeared in adiabatic
theory, the boundary-value problems may be more difficult than in adiabatic flow
because of the interdependence of the flow pattern and the position of an extended
burning region.

Projected applications of the diabatic theory in the field of combustion aerody-
namics provided the initial impetus for our research. It is hoped that the theory may
prove useful in other fields as well.

II. Three-Dimensional Flow

1. Fundamental equations. Formulation of the diabatic flow equations will be based
upon the ordinary hydrodynamic equations of continuity and motion for an inviscid
fluid

V-PV = 0, (1.1)

Vp + pV-VV = 0, (1.2)
(where p, p and V represent static pressure, density, and the velocity vector), the first
law in the form given by Vazsonyi [V-2]

Q = cBV • V T, , (1.3)

(where Q is the heat added to the fluid per unit mass and time and cvT, is the stagnation
or total enthalpy), and the equation of state for a perfect gas

V = RpT, (1.4)
(where T is the static temperature and R, the gas constant).

These equations can be modified to advantage if a vector W is introduced which
was found to be appropriate by Crocco [C-l] (compare [T-l]) for adiabatic, iso-energetic
flow and in reference [H-4] for the most general type of adiabatic compressible flow.
This vector W is defined as

W = V/F, , (1.5)
where

F, = (2 cvTtY'2 (1.6)
is the "limiting velocity" at any point in the flow. The quantity W2 thus represents
the ratio of the kinetic energy of a fluid particle to its total energy (cf. ref. [H-4] and
appendix of [H-5]). It is noted that W and M, the local Mach number, are related by
the equation

(l + ^I!) = l. (1.7)(1 - IF )^1 +

A second vector transformation that will be used is the substitution V = aM, where

a = (yRT)1/2 (1.8)

is the local velocity of sound.
In terms of W, the total or stagnation temperature T, and total pressure p, are

given by
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T, = T(1 - IF2)"1 = r(l (1.9)

p, = p(l - W2)~y/y~l = p(l + M2J/y \ (1.10)

The .symbols wF , b>w , and u>M will be used for the vorticity functions V X V, V X W
and V X M.

2. Transformed equations. The basic dynamical equations, (1.1) to (1.4), can be
reduced to a smaller number of equations containing only W, aw , p, , and a parameter
q proportional to Q. We first express the continuity Eq. (1.1) in terms of W, p, , and
T, with the help of equations (1.4), (1.9), (1.10).

V-W + W-[V log (ptT71/2) + (T - l)"1 V log (1 - W2)] = 0. (2.1)

Similarly, using Eq. (1.10), the definition of ww and the identity W- V W = | V 14'2 —
W X (Jjr , we find that the equation of motion (1.2) becomes

V log p, = (1 - T72)-x[W Xww- |W(W- V log Tt)l (2.2)
7—1

We now introduce the factor q which is defined as

q = Q/V3, (2.3)

and which therefore satisfies, according to Eqs. (1.3), (1.5), the relation

q = |W- V log Tt = W- V log Vt . (2.4)

(The quantity qw = q/(1 — IF2) will also be used later; qw corresponds to the notation
of [H-6].)
Equation (2.2) now becomes

V log pt = (1 - TF2)_1[W X% - qW] (2.5)
7—1

which we will call the W equation of motion. This equation is a generalization of the
Bjerknes type equation (cf. [V-2], Eq. (6.1))

-TV S + cpV T, = V X<o (2.6)
in V language and of the W equation previously given in [H-4],

Final reduction of the continuity equation is effected by calculating W • V log
(.p,771/2) from Eqs. (2.4), (2.5) and substituting in Eq. (2.1):

V-W + —±-r W-V log (1 — W2) = 5(1 + TF2)/(1 - W2)
7 — 1 \ 7 — 1/ (2.7)

or

V-(l - TF2)1/7_1W = g(l + TF2)(1 - w2y2-yW'y~1). (2.8)

When q = 0, the equation
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V-(l - tF2)1/T-IW = 0 (2.9)

is obtained (cf. [C-l] and [H-4]).
Similar development in the M language leads to two equations analogous to (2.5)

and (2.8) (cf. [H-4]):

- V log (peyM'/2) - ^4 MV-M = —f-r ?.„M + M X wAf , (2.10)
7 7 ~r 1 7 T 1

.. _ 1 \-<7+1)/2(t-1)

V-( 1 + X~1rjLiV72 M

/ <v — 1 \-(37-l)/2(7-l)
= (1 + yM2)[l + M2) qM

(2.11)

where qM — (y — l)Q/2a3 in accordance with the convention to be used in [H-6]. It is
important to note that the dimensionless quantities qw and qM rather than Q appear
in these transformed equations. As will be shown in H-6, reductions of the form em-
ployed here, (i.e., V = [g(N)RT)x/2 N), never yield equations in which Q is the most
appropriate heating factor.

3. Comparison with adiabatic flow. In adiabatic flow, T, and pt are constant on
streamlines though they can vary between streamlines [H-4]. In diabatic flow, however,
the variation of Tt on streamlines is prescribed by Eq. (1.3) or (2.4), its variation
normal to streamlines still not being restricted. The rate of change of pt along a stream-
line is proportional to qW and normal to streamlines, to the appropriate component
of W X uir as in adiabatic flow [H-4]. The W language is thus particularly useful be-
cause it permits simple expression of the variations in stagnation pressure. In the M
language, the quantity peyM'/2 is a more appropriate variable according to Eq. (2.10)
than p or p, , but its variation along streamlines depends both upon qM and upon V -M.

We note that the new equations of motion (2.5), of continuity (2.7), and the first
law (2.4) are more compact than the conventional equations (1.1), (1.2), (1.3) having
been stripped of a non-essential variable in that now only pt , q, and W appear in place
of p, p, Q and V. The new equations also connect directly the changes in p, and q with
variation throughout the W field. By taking the curl of Eq. (2.5) we can eliminate p,
and find another differential equation in addition to Eq. (2.7) which describes the
variation of the W field. Thus,

V X [W X »*/( 1 - W2)] = V X [gW/(l - W2)] (3.1)

which is a generalization of Crocco's equation [C-l] and also of an equation in reference
[H-4]. (Cf. later discussion of = 0 and of uw = 0.) It is noted that q in Eq. (3.1)
can be eliminated by use of Eq. (2.8) resulting in a differential equation involving W
only. The analog of (3.1) in M language will contain terms in V X (M V M) which
have no counterpart in the W language. Elimination of qM with the help of (2.11) is
possible however.

The behavior of the fluid when it reaches sonic velocity in a diabatic flow is also
worth examination. Let us use the convention suggested in [H-4] that V-(W/IF) =
V • s is a measure of the fractional rate of variation along a streamline of stream-tube
area. Then from Eq. (2.7)
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V-S + (1 - TF2)s-V log W

(3.2)

y
For local velocity equal to the local velocity of sound, W = [(7 — 1)/(t + 1)]1/2 and

= qW~\l - TF2)_1(l + TF2)-

.0 the local velc
if the flow is continuous,

Vs = q(y + 1)3/2(t —1)_1/2 (3.3)

Thus the stream-tube diverges at sonic velocity if q > 0, converges if q < 0 and has
minimum area for the adiabatic case q = 0 (cf. discussion in H-4). "One-dimensional"
analogs of Eq. (3.3) are described in H-5.

4. Types of Irrotational flow: cov = 0. We first observe the consequences of irrota-
tionality in the V field. Just as in adiabatic flow we find at once from Eq. (1.2) (cf. [H-4])
that for <oF = 0, the flow must be barytropic, i.e., that p = F(p). The continuity equation
(1.1) then leads us to a partial differential equation for a velocity potential <pv of familiar
form. Thus from Eq. (1.2)

V-V log p = -ar2V-V |F2, (4.1)

where ab — dp/dp and Eq. (1.1) can be written in summation notation as follows:

?(al ~F?) S"2 5ViVi = 0> (4-2)
where VT and xr are the components of velocity and position vectors, respectively.
Placing Vi = d<f>,/dXi we find

2 = (4.3)
0Xi tTi oXi dXj OXi dXj

Equation (4.3) changes type from elliptic to hyperbolic as V increases and passes
through the value ab . When M ^ 1, ab can be greater or less than a, but for M = 1,
ab = a and change of type still corresponds to passage between subsonic and supersonic
flow. This correspondence no longer holds for some types of irrotational diabatic flow
[cf. Eqs. (4.11), (4.13); Sec. 6; and Eq. (5.1)].

Further development yields relations between ab and Q. Vazsonyi [V-2] gives the
equation governing the entropy variation, V S, in the form

V- V jS = Q/T (4.4)
which, together with the definition of S

dS = c,d log (p_rp), (4.5)
leads to

(r IS ~ ')V'V log ' ~ Q,cJ <4'6)
and finally, with introduction of <p» to

-Q'c-T- <4-7)
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We see that Q/T is a measure of the divergence of the V field and of the departure of
the (p, p) relation from the adiabatic one.

This result can be thrown in a form that is directly comparable with the one-di-
mensional theory. From Eqs. (1.1), (1.2) for uv = 0

(4.8)dsds

ds py ds ' {y)
where d/ds = s-V. Hence

(410)

We can then use Eq. (4.6) to eliminate d log p/ds obtaining

^ = al = a2M2( V • s - Q/cvTV)/(M2V ■ s - Q/cvTV). (4.11)

When Q = 0, we obtain the usual adiabatic formula dp/dp = a2. We now see that,
depending upon the relative magnitudes of M, V • s and Q/cvTV, al may differ from
a2 by a factor of either sign as well as any magnitude (cf. S-l). In comparing with one-
dimensional flow in the direction of a; in a duct of (variable) area, we place V • s =
—da/dx and Q/(c„TV) = dd*/dx (see reference [H-5]) and obtain

^ = a2M2(da + d6*)(M2 da + de*)~x (4.12)

which is what could also be computed from Eqs. (15) and (17) of this reference.
It is noted that the analog of (3.2) in V language is

V-s = (Q/cPTV) - (1 - M2) (4.13)

which reduces to the known expression for adiabatic flow V-s = —(1 — M2)
(d log V)/ds when Q = 0 and to expression (3.3) for M = 1.

We now show that given F(p) and appropriate boundary conditions Q can be de-
termined as a function of position. Integration of Bernoulli's equation gives the functional
relationship between V and p.

= \ VI- f p-'F'ip) dp (4.14)
from which a\ = F'(p) is also expressible implicitly as a function of V = [ V<pr |- Ac-
cordingly, the continuity Eq. (4.3) is a quasi-linear partial differential equation which
can be solved with appropriate boundary conditions for <pv as a function of position.
Subsequent calculation of VVf and (d log p)/(d log p) yields Q/T as a function of V
along any streamline. The energy equation (1.3) can be written for any one streamline
Sj as follows:

g - (Q/mttt --ird£. «.i®
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where V2 is a known function of Si . Accordingly, T as a function of Si , and therefore
also Q can be found along each streamline and therefore throughout the field of flow.
This process, although complex, is direct; it would be essentially more difficult to pro-
ceed in the opposite direction, that is, with knowledge of Q (or some combination in-
volving Q) because compatible solutions of (4.3) and (4.7) would not be obtainable
for arbitrary Q functions.

A note on the place of the Earnshaw pressure-density relation in the theory is in
order. When co„ = 0 in diabatic flow, a hodograph transformation yields an additional
term proportional to Q in the hodograph partial differential equation for \p, the stream
function. Assumption of a linearized (i.e., Earnshaw) p vs. p_1 relation corresponds to
a restriction upon the type of Q function that can be specified. In order to obtain the
partial differential equation for \p used by Chaplygin and by von Karman, the additional
term proportional to Q must be neglected. Therefore, treatments which utilize any
linearized p vs. p'1 relation in the Chaplygin equation can be regarded as approximate
treatments of a special type of diabatic flow. (Compare also [V-l], p. 348.)

The previous discussion also indicates that a Glauert-Prandtl treatment (cf. [T-2])
should be feasible. In the series of approximations leading to the expansion or con-
traction factor (1 — M2)1/2 where Mb = V0/abQ , ab will now replace a. The method is
especially simple when the p, p relation is polytropic, p <=c p\ Then

(l - -)W = Q/c,T (4.16)

and for small distortions of the flow

V V = Ml (4.17)
Combination of these equations yields

^ = M6"2(i - ~)lQ/cvT. (4.18)

Now transform the variables according to the scheme

x = (1 - Ml)1/2Z, y = 77, z = f, <f>r{x, y, z) = 17, f)

The equations (4.17), (4.18) become
= 0 (4.19)

= (1 - Ml)Q/cvTM2b(l - (4.20)

According to the second of these equations,

V?.„r^ = 0 (4.21)

Thus in the Glauert-Prandtl approximation in a diabatic, polytropic field of flow, the
function Q/cpT must be harmonic in the variables (£, 77, f). As Mb —* 0, Q and VVr
likewise approach zero.

Other assumed (p, p) relations than polytropic or isentropic have not so far led to
simple results of interest.
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5. Types of irrotational flow (cont'd.): uw = 0. In an irrotational W field, ww = 0,
and the equation of motion (2.5) becomes

V logp, = - qW/{l - W2). (5.1)
7 — X

Thus the only change in stagnation pressure is along streamlines and is of "momentum
pressure drop" type due to the heating. If this equation is integrable

log p,   [ qw{<pw) d<Pw ,
7~1J (5.2)

1 = (1 ~~ W )lw{<Pw),

in accordance with the notation to be used in [H-6], which restricts the possible modes
of variation of q or qw in that now qw only varies along streamlines and must therefore
be a function of <pw . Accordingly, the W continuity equation can be written as follows:

V-(l — Wy^'W = (l + 1 - W2)i/y~1qw{(pw). (5.3)

In terms oi <pw this becomes

V I" 1 _ W2 _ 2 /dtpw\2 d2tpw _ 4 yp d<pw d<pw d^w
7 L 7—1 \dXf ) J dx] 7 - 1 w dXi dXj dxt dxt

= {l I" ^2)(i * W2)qw{«,w).

(5.4)

This quasi-linear partial differential equation changes type when W2 =
(dipw/dXi)2 = (y — 1)/(y + 1) (i.e., for M = 1) from elliptic to hyperbolic as W
increases. Equation (5.4) is reminiscent of Crocco's equation (number 11 in [C.l]) in
the stream function for two-dimensional rotational flow in that a function (arbitrary)
of the dependent variable appears on the RHS. Other similar equations will be de-
rived later in generalizing the Crocco theory. It appears that equation (5.4) might be
easier to solve than its analog for the irrotational V field, Eq. (4.3). The key functions
in the two cases are qw(<Pw) and a,XV2) where V2 = ^(dpr/to.)2 and the second func-
tion involves higher order derivatives of the dependent variable than does the first.
In both cases solution of the partial differential equation for <p is the central problem,
for the equations of motion are integrated by Eqs. (4.14) and (5.2).

For the incompressible case (W « 1) Eq. (5.4) reduces to

V (pw = Qw(<Pw) (5-5)

which is of the same form as an equation for the potential function <pM of the Mach
vector for adiabatic flow (cf. Sec. 6; also H-4). A Glauert-Prandtl treatment of (5.4)
leads to an equation similar to (5.5):

in which now

(l + WljqUvl) (5.6)
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X = (1 - ^)"1/2(l - Wlf\ y = V, 2 = f,

y, z) = vMf, v, f)-
6. Types of irrotational flow (cont'd.): = 0. If the M field is irrotational, (2.10)

shows that

log (peyM'/2) + f Fm(<pm) dvu = 0 (6.1)

and

= 7 ~ (6.2)

where Fm(<pm) is arbitrary.
The function peyM'/2 is thus constant on potential surfaces as in adiabatic irrotational
flow in the M field [H-4].

Elimination of qM from (2.11) and (6.2) yields the partial differential equation for
<Pm '■

d2<PM O V* dpM d<PM ^ Vm 71 r2\ TJ f \ /r. o\7 S ST 3^7 - - a + tM )FM. (6.3)~ 711 / -
This equation is of the same form as (5.4), but changes type for M = 7"1/2 rather
than for M = 1. This behavior is reminiscent of a property of diabatic flow in one di-
mension that was described in [H-l] and [H-5]. It was there found that a compressible
fluid which is subjected to heating and is flowing in a duct of constant area attained
its maximum static temperature T for M = (y)~1/2. A connection between this result
and the situation described by the irrotational M field is shown as follows. From our
previous equations,

M- V log a = - FM(<pM). (6.4)
y

Comparison with Eq. (6.3) for the one-dimensional case M = Mi gives

M d a = (i ~ +iff (6'5)
and a (or T) has a maximum for M = 1. This maximum in the one-dimensional case
occurs, of course, no matter what language is used to replace the M language. It is
possible that an extremum of the temperature might also occur in three-dimensional
irrotational M flow at M = y~1/2 if Fis chosen properly.

If throughout the flow M « 1 ("incompressible approximation") then

V <pm = Qm = ~ F(6.6)y

which is similar to the W case (5.5). If the Glauert-Prandtl type of approximation is
used (Mt = M = M0 , Mu « M0 , M, <K M0 where M0 is the uniform Mach number
at infinity),
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V|.,.r<p*m = - (1 + yMl)FM(<p%), (6.7)
7

where x = £(1 — yM20)1/2, y = v, z = <pM(x, y, z) = <p%(%, v, f) which is of the same
form as (5.6). Note that qM is not simply related to Fm(<pm) in the Glauert-Prandtl
approximation for irrotational M flow, because occurs in the second integral
(6.2) of the M equation of motion. If J is put equal to x(l + (7 — l)/2 Mo)1/2(l —
then qM satisfies the equation similar to

t(i+vLm°) ^ ■ (6-8)^7— (1 +

As M0 decreases, J —* £ and (6.8) approaches Eq. (6.6) in form. For larger M0 than
corresponds to use of (6.6), J and £ are still approximately equal and qM is approxi-
mately proportional to F(<pM). It will be recalled that in the irrotational W field, qw =
qw(<Pw) exactly.

III. Uniplanar Flow
When we pass to the two-dimensional case of uniplanar flow we find that there

are a number of systems of variables in the three languages (V, W, M), each of which
may be useful in the proper circumstances. On the one hand, in the "physical plane"
we may choose W (or M, V) and 6, the direction angle of a streamline, or alternatively,
potential and stream functions <p, \p to be the dependent variables (see [V-l]). Cartesian
or curvilinear coordinates may appear as independent variables. On the other hand, in
the "hodograph plane" either the Cartesian components u, v or the polar components
W (or V, M), 6 will enter as independent variables and usually <p, \p as dependent
variables. We will now derive or state the differential equations for uniplanar diabatic
flow for a number of these cases. Their most general form, that is, when neither q nor
01 vanishes, will always be given first. Because in some ways the W formulation appears
at present to be the most convenient we will give the derivations in W language only.

7. The unit vectors s, n. The basic equations (2.5), (2.8) in the case of uniplanar
flow are made easier to handle if the mutually orthogonal unit vectors (s, n, k) are
introduced. The plane of the flow is normal to k, s lies in the direction of the streamline
at each point and n in the direction normal to the streamline. The sense of the vectors
is such that

k = s X n. (7.1)

Then it follows that
&> = o>k, (7.2)

W X <0 = — Worn. (7.3)

Accordingly, the W equation of motion (2.5) becomes

V log p, = - (1 - + qs). (7.4)
7—1

With the convention

irs-v' !rn'v< <7-5>
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Eq. (7.4) may be rewritten as follows:

d log p, _ 2yW, _ i a - wr;,

iJMi _ _ (1 _
dn 7 — 1

(7.6)

The continuity equation is now

W(l - IF2)V • s + (l - Yz\ W2) ™ = (i + TF2)g. (7.7)

It should be noted that d/ds, d/dn cannot be treated like partial derivatives in
general because these symbols are shorthand for the longer expressions, d/h,■ ds',
d/hn' dn' where h,, and hn- are elements of the metric for the orthogonal curvilinear
coordinate system s', n' and h,■ , hn- can be functions of both s', n'. Thus pt cannot be
eliminated from (7.6) by simple cross differentiation but elimination can be effected by
vector operations on Eq. (7.4) as shown in (3.1) which now can be written as

IF(con + qs) X V log (1 - IF2) + V X (IFcon + qW) = 0. (7.8)

After dotting in k and using the unit-vector formulas in the appendix we find that

If(-co £ + q log (1 - IF2) + coV W + IF ^ + qo> - IF = 0. (7.9)

This may be combined with (2.7) and rearranged to read

2IF"_1(1 - IFT^l + IF2)gco + co log [<o/(l - IF2)1/T~1]

(7.10)
= q£log [q/( 1 - IF2)].

It is noted that this can also be written in the form

2.(1 - TF2r(l + w2)l« + "(* £ + * loS ["/(! -

(7.11)
q{u^~vdi)log[q/{l - n

where W = ul + vj.
With the help of the expression for W-V log p, we can find another form which can
be directly compared with Crocco's results. This form is

21F"> + co | log (co/p) = q ~ log [?/(1 - IF2)]. (7.12)

Equations (7.10), (7.12) exhibit the intimate relationship between the heating
factor q and the vorticity o> in steady flow. For example, if IF and therefore co are
specified throughout the field of flow, then the variation of q/( 1 — IF2) and also of q
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along directions normal to the streamlines cannot be arbitrarily specified although
variation of this quantity along streamlines is still not restricted by (7.10).

Crocco's equation follows at once from (7.12) when q = 0, i.e.,

~(co/p) = 0. (7.13)

When instead, w = 0, then q is subject to the restriction (reference [H-3])

£ [q/( 1 - W2)] = 0. (7.14)

This can also be written as

*-£ - i<.Q/*,TV.) - 0. (7.15)

Both equations imply a degree of uniformity of the heating on curves normal to the
streamlines if the flow is to be irrotational in the W field.

We will now suppose that W can be neglected compared to one, that is, that the
flow is "incompressible." Equation (7.10) then reduces to [H-3]

2 W-qw* + £-£ (7.16)

Now when qw = 0, then doi/ds = 0, a known result for rotational incompressible flow,
and when u = 0, dqw/dn = 0, or the factor q = qw does not vary on curves normal to
streamlines. Finally, if dco/ds and dqw/dn are to remain finite as W —» 0, either qw or
co (or their product) must likewise approach zero. Very low speed continuous flow there-
fore cannot locally be both diabatic and rotational with arbitrarily high values of q
and co.

It is shown in the appendix that V-s = dd/dn where 6 is the angle of inclination
of a streamline. The continuity equation (7.7) accordingly becomes

W(1 - ff,) M + (' - n") ? - (» + 7=1 w')q (7'17)

For W « 1,

f + iistE . q,w
dn ds

We can complete our set of equations for uniplanar flow by adding the definition of a>,
using the expression k-V X s = 66/ds, developed in the appendix,

f - , a/w (7.19)ds dn

and the definition of q (energy equation)

= q/W (7.20)

both of which hold also when W is not <3C 1. These equations (7.16), (7.17), (7.19),
(7.20) reduce to the conventional ones when q = u = 0.
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8. Introduction of the stream and potential functions. We will follow Crocco and
define a stream function in terms of (1 — W rather than in terms of pV (cf.,
however, [T-l]), and the potential function <p will be introduced similarly. Thus, we
set [H-3]

(1 - wy/y~lW = V? + V X k*, (8.1)

where now, for q ^ 0, both <p and \p must be used. It follows that the relations

d<p _ dip
dn ds' (8.2)

(1 - WY'-'W = & + ^ (8.3)
ds on

hold. The continuity equation becomes

= (* + ~H[ - W2Y2-y)/iy-1)q. (8.4)

It is not advantageous to re-express the equation of motion and its consequence, Eq.
(7.10), in terms of <p, \p. An expression for a can be found however. Our development
is similar to that of Crocco and of Vazsonyi for the adiabatic case.

We first write (8.1) in component form

(1 _ W2)1/y~yu = , (8.5)

(1 _ wy^v = <py - +. , (8.6)
where W = wi + vj and the subscripts indicate partial differentiation. We differentiate
(8.5) with respect to y and let

(a2/V2,) = c2 = (1 - W2). (8.7)

Then,

(1 - wy/y~\ = (1 - T01/T_1 ^ W, + . (8.8)

By symmetry also

(1 - W2)Uy-\ = (1 - W2y/y~l Wx + (8.9)

and therefore

_(i _ wy/y-\vx - Uy) = -(i - wy/y-iw

= (i - wy/y-1 ^ (~vwx + uw,) + vv-
(8.10)

This equation is the same as the equation on p. 7 of Crocco's paper and therefore is of
the same form whether the flow is diabatic or not. The terms Wx and Wv can be elimi-
nated. From (8.5), (8.6)
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(1 - WT'-'W2 = <pl + vl + il + il + 2- 29#m . (8.11)
The gradient of this expression can be reduced to the form

W( 1 - W2)1/T_1(l ~ + *.) + vV^ ~ (8-12)

Now taking the cross product with (8.1), we find

w(l - K)(l - W2)1/y-\uWv - vWx) = -uv{<p„ + - v2(Vxv - *„)
(8.13)

+ U2(>PXy + ^Vy) + UV{fPyy ~ \Pxy).

Combination of (8.10) and (8.13) yields the desired formula for to.

2 2u — V-(i - w2y/y~lu = (i - K) '[f (^„ - <pj + c2 Vxv

+ (i - $)*,, + (l - $)*., - 2f, #,.]
(8.14)

in which m, v, W, c are to be evaluated from (8.5), (8.6), (8.7).
This equation is still quasi-linear in <p and ip. It reduces to Crocco's equation (10")

if <p = 0. For the incompressible case, PF « 1, it becomes simply

Vty = -co (8.15)

as in adiabatic flow whereas (8.4) becomes

VV = qw (8.16)

The symmetry in qw , oj of Eqs. (7.16), (8.15), and (8.16) has been remarked upon
previously [H-3].

When q = 0, <p may be taken to vanish and (8.14) then is a partial differential
equation for ip which changes type, as W increases through the value c, from elliptic
to hyperbolic. When w = 0, it is appropriate to use <pw and Eq. (5.4) gives similar
behavior at W = c = [(7 — l)/(y + 1)]1/2. In general, with neither q nor co = 0, <p and
\p are to satisfy (7.11), (8.4), and (8.14). Since there are three equations for the four
dependent variables <p, \p, q, w, the system is underdetermined until one of them is
specified independently.

9. The generation of vorticity by nonuniform heating. Let us suppose that in a
field of compressible flow described in W language that ww is equal to zero upstream
of a region R (see figure) and that only within II is q different from zero. Consider the
curve N passing through R and intersecting all streamlines orthogonally. At A and B,
outside R and on N, q = 0 but within R, q is different from zero. Then the rate of varia-
tion of q along N, represented by dq/dn, must also be different from zero somewhere
between A and B, say at C among other places. Along the streamline through C, w
must then be changing at C, according to (7.12) for, in general, the terms 2qu>/W —
cod log p/ds + qd log (1 — W2)/dn will not cancel one another. Accordingly, on each
streamline which passes through" a point on N (or other such curves) where dq/dn 7^
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0, du/ds will also not equal zero, and the value of u on some streamlines issuing from
R will differ from zero unless the q distribution is of such a character that fB (du/ds)
ds = 0 for every streamline passing through R.

Fig. I.

This situation also obtains in the incompressible case, as may be seen by referring
to Eq. (7.16). When q is constant within R and changes suddenly at the boundaries
of R to zero, then only along the streamlines (1) and (2) tangent to the boundary will
co change in the incompressible case. The flow which has passed through R will have
been accelerated (or decelerated) leaving vortex lines (1) and (2) to effect the velocity
jump to the flow outside (1) and (2). The heated region will therefore create a dis-
turbance not unlike the wakes that have been studied in adiabatic flow.

IV. Appendix
10. Unit-vector formulas. Let s be defined as the unit vector in the direction of flow.

s = W/W = V/F (10.1)

and n be a second unit vector in the plane of the flow and normal to s such that

n = k X s (10.2)
from which it follows that

k = s X n
(10.3)

s = n X k
After the abbreviations

s-V=|, = £ (10.4)

are introduced, it can be shown that
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s X V = k (10.5)

n X V = —k (10.6)
OS

V x (Ba) = kV-(Bs), (10.7)

where B is an arbitrary scalar function. These are the equations used in the develop-
ment of (7.11).

It can also be shown that

V-n = -k-V X s, (10.8)

V X n = k V-s, (10.9)

and these quantities can be re-expressed in terms of derivatives of 6, the angle of in-
clination of s to the x axis. Thus

s = i cos 8 + j sin 9, (10.10)

n = — i sin 6 + j cos 0, (10.11)

V-s = — 0X sin 8 + 8y cos # = n-V# (10.12)

or

'•••* - *•

Similarly

V X s = k (0X cos 8 + 0„ sin 8) .= ks- V 6
and • ' -V ! .

V X s = k (10.14)

Concluding Remarks

Three representations have been studied of, steady fields of flow of an in viscid com-
pressible fluid that contains distributed heat sources. Of these representations, that
afforded by the vector W = V/ V, , where V is the velocity vector and V, is the (variable)
limiting velocity appears to be the most convenient for rotational flows. Thus the in-
timate connection between vorticity co = | V X W| and the heating factor q = Q/V]
(■Q is the energy added per unit time and mass) is shown in W language by the equation
for uniplanar flow

2F-V + « | log {a/p) = q ~ log [9/(l - W2)}

in which d/ds and d/dn denote spatial differentiation parallel and perpendicular to
streamlines and p is the (static) fluid pressure..

It has proved to be convenient to broaden the concept of irrotational flow in order
to include diabatic flow fields in which V, W or M = V/a (a is the local velocity of sound)
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is irrotational. Although the character of the corresponding heat source distributions is
decidedly different in the three types of irrotational flow, the partial differential equa-
tions for the potential functions <p„ , <pw and <pM are all quasilinear and, except in the
case of <p, each contains an arbitrary function of the potential function, which is a
consequence of the diabatic nature of the flow.

The question as to whether other representations than the three here studied may
also be of interest in investigations of diabatic flow will be discussed in a subsequent
paper describing the characterization of fields of diabatic flow.
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