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Introduction. A problem of interest in mechanics of machinery is the transformation
of a uniform rotation about one axis 4 into a uniform rotation about another axis 4’.
This problem and the design of the gear surfaces give rise to interesting geometry.
It is shown in the following (Theorems A and B) that such a transformation both for
the case of parallel axes A, A’ and non-parallel or skew axes A, A’ may be accomplished
by means of two involute helical surfaces to be described presently. The case of non-
_parallel axes is covered by Theorems A, B; that by parallel axes by Theorem C. It is
further shown that where this transformation is possible, the ratio of velocities for any
two involute helical surfaces is independent of the relative orientation of the two sur-
faces. This result is generalized in Theorems A’, B/, C’ by the inclusion of uniform
translations; the ratio of rotational velocities, while constant, is then dependent also
on the translational velocities. An alternative proof of Theorems A, B, C follows from
Theorem D in which it is shown that by rotating an involute helicoid about its axis
through an arbitrary angle one obtains a family of parallel surfaces. As a limiting case
of Theorem C, if the axis A’ is made to recede to infinity one obtains the mating action
of a rotating involute helicoid and a plane which is undergoing a uniform translation;
this is given in Theorem E.

Not only are these results of interest from point of view of transmitting uniform
rotation by means of gears, (or transforming a rotation of a gear into a translation of
a rack), but they are also of direct industrial interest from point of view of generating
the gear surfaces in question. By designing the cutting tool (hob or shaving tool) so
that the cutting edges lie on an involute helical surface, and providing proper rotation
of the work and the tool, each about its axis, and proper translation of the tool parallel
to the work axis, one can prove from the converse of the above theorems that the tool
will generate an involute helical surface.

The results of this paper will also serve to answer certain practical questions which
constantly come up in gear manufacturing work. For instance, in hobbing helical in-
volute gears the angle = between the axis of the hob and the axis of the gear is set to

*Received Sept. 5, 1947. )

1It should be pointed out that if the generating tool is not a grinding wheel and possesses a finite
number of cutting edges, it produces ‘‘scallops”, and it is necessary from the practical standpoint to
design and operate the tool so as to limit the size of scallops and thereby obtain a surface corresponding
closely to the theoretical surfaces considered herein.
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agree with the design lead angles of the two members. During the life of the hob, its
outside diameter and lead angle change as its cutting surface is ground away in sharp-
ening. Likewise in shaving, the tool changes size and its actual lead angle will vary
from the design lead angle. Many gear engineers have questioned whether or not it
was necessary to adjust the shaft angle in hobbing and shaving to agree with the actual
lead angle of the tool. It has been thought that a discrepancy in the shaft angle of the
cutting tool would produce a profile error in the part being machined.

In spiral gear drives, errors in machining the casings and gear parts will result in
the gears being run at a shaft angle somewhat different than the design angle. Gear
inspectors often question how accurately the shaft alignment must be held to maintain
quiet running gears and adequate gear tooth contact.

These questions and many others can be answered by applying the results of this
paper. Some of these practical applications to gears are discussed in Sec. 5.

While a general appreciation of the main properties of involute spur and helical
gears is wide spread in industry, and some treatments of their properties may be found
in the literature [see, for instance, the article by Nikola Trbojevich, ‘“Problem of the
Theoretically Correct Involute Hob”’, Machinery, 25, 429-433 (1919)], the authors have
not run across any existing comprehensive exposition of the inherently simple basic
geometry and kinematics of these gears. Moreover, from personal industrial contacts,
they are aware that the equations for finding the effect of changes in distance and
angle on tooth shape, locus of contact, and backlash are either unknown, or not readily
available. The present paper contains an exposition of the simple basic helical involute
gear geometry and aims to provide equations from which the practical design 4nd shop
questions involving these gears may be answered.

1. Statement of results. By a helical surface is meant a surface generated by a curve
C during a screw motion about an axis. Such a surface consists of helices generated
by the individual points of C during the screw motion. By an involute is meant an
involute of a proper circle known as the base circle, whose radius, the base radius, will
be denoted by R, . Finally, by an ¢nvolute helicoid is meant a helical surface generated
by an involute lying in a plane perpendicular to the axis of the screw motion, that is
a helical surface such that a section of it by a plane perpendicular to the axis of the
helical surface is an involute of a proper base circle.

In cylindrical coordinates r, 6, z, with the z-axis along the axis A of the screw motion
and 6 measured as a right-handed rotation from y = 0 about the positive z-axis, the
equation of a helical surface is given by

r = f(z — C9), (1.1)

where C represents the axial displacement corresponding to a rotation of one radian
about the axis, and is positive for a right-handed screw, negative for a left-handed one.
To determine the equations of an involute helical surface, we start from the equa-
tions of an involute
= R, [cos g1 — (@2 — ¢1) sin ¢y,
(1.2)
y = R, [sin ¢, + (02 — ¢1) cOs @1,

where ¢, is the value of 6 at the cusp of the involute on the base circle r = R, , and ¢,
the value of 8 at the point of contact of the tangent line with the base circle (Fig. 1)
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By keeping ¢, constant and varying ¢, one obtains various involutes of the same base
circle, the cusp corresponding to ¢, = ¢, . For constant ¢, and variable ¢, the tangents
to the base circle result. For ¢, > ¢, , ¢, , ¢- yield an orthogonal family of curves outside
the base circle; similarly for ¢, < ¢, . All involutes are congruent, any one being obtain-
able from any other one through a rotation about the origin of amount Ag, ; in the

J

Fia. 1.

Eqgs. (1.2) such a rotation corresponds to an increase of amount Ag, both in ¢, and ¢, .
In parametric form the equations of an involute helicoid S are given by

z = R, [cos ¢, — (g2 — ¢1) sin @],
Yy = Ry [sin ¢, + (02 — ¢1) cos o], (1.3)
z2=C [p2 — @2l

where ¢, is a constant. Indeed a constant value of z corresponds to a value of ¢, , and
the increments A, = ¢, — @50 , Ap; = Agp, , Az = CAgp, correspond to a rotation Af
in Ag, and an axial translation CA# of the involute ¢, = ¢, in the plane z = 0.

In applying the above to the problem of transforming a rotation about one axis 4
into a rotation about a skew axis A’, it will be convenient to set up two fixed systems
of coordinates with origins at O, O’, the feet of the common perpendicular between A
and A’: the z, y, z system with the z-axis along the axis A and the z-axis along 00’;
and the 2/, 3/, 2’ system with the 2’-axis along A’ and the z’-axis is along 0’0. The
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7’axis coincides with the z-axis but is reversed in direction and starts from a different
origin. The relations between these coordinate systems are shown in Fig. 2, where a
right-hand system is used for z, y, 2, a left-hand one for /, ¥/, 2’:

2 =D — z, D = 00’

y' = ycos T+ zsin I, (1.4)

2 = —ysin 2 4 2z cos =.

Here D is the mutual distance between A and A’, and Z is the angle between A and
A’, to be taken positive between 0 and 7. The rotations w, ’ are positive when right-
handed relative to the z-, 2’-axes. Unit vectors along the two sets of axes are denoted
by i, j, k; 1/, j/, k' respectively; one obtains
i = —i,
i’ =jcosZ + kcos Z, (1.5)
k' = —jsin 2 + ksin =.
Denoting by R} , C’ the base radius and the axial displacement per unit rotation of
6’ about the 2’-axis of the involute helical surface S’, one obtains for its equations
@' = R} [cos ¢f — (¢t — o) sin ¢f],
—y = R [sin ¢] + (¢} — ¢!) cos ¢{], (1.6)
2 = C' [¢f — ohol
Of course, both equations (1.3) and (1.6) represent fized positions of the respective

helical surfaces S, §'.
For the sake of definiteness, it will be assumed that

|C/Ry| 2 | C'/Ry|, (1.7) R, > R]. (1.8)
The base radii R, , R} will always be assumed to be positive; on the other hand, either
C or (' may be positive or negative corresponding to right-handed or left-handed helical
surfaces S, §'.
In Sec. 3 we shall prove the following theorem.

THEOREM A. If the inequalities
<IN HIN]L @9 IMI>[0) — 2] (110

hold, it is possible to rotate the surface S’ about its axis A’ till it comes in point contact
with the surface S at a point P, . If S is then rotated with a uniform velocity w about its
axis A, and if 8’ is allowed to rotate about its axis A’ so as to maintain contact with S,
then S’ will rotate with a uniform velocity o' about its axis A’, where the constant ratio of
velocities 1s given by

o _ Ccosh R,, sin A, (1.11)

w C’ cos \; fsin A’
tan N, = C/R,,tan N, = C'/R{, [| Ny | = | M | on account of (1.7)], (1.12)
and s independent both of the distance D between the axes and of their inclination. As the
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rotation proceeds, the contact point P of S, S’ describes a straight line 1 in space with con-
stant linear velocity

v, = Cwcos\, = C'w’ cos A} ; (1.13)

this line [ is the common normal to both surfaces at the tnitial contact point P, , and remains
normal to S, S’ at P as the rotations progress.

For the limiting cases of the inequalities (1.9), (1.10) the following result is proved
in Sec. 3.

TrEOREM B.- Let one of the rélations
=N+ IN]L (L4 =N =N (115
hold, as well as one of the relations
D=R,+ R}, (1.16) D=R,—R,. (1.17)

Then 8’ can be rotated about A’ till it comes in contact with S, the contact being along a
straight line g, . If S is then rotated about A with a uniform velocity » and S’ is rotated
about A’ so as to maintain contact with S, then S’ will rotate with a uniform velocity «'
gien by (1.11). Contact between S, 8’ is always along a straight line g, parallel to g, ; g
moves normally to itself, in the direction of a straight line | normal to both surfaces S, S’
at any point Py of their initial line of contact g, , with constant velocity v, given by (1.13);
during this motion g describes a plane parallel to A, A’ (and containing g, and 1).

A further limiting case of Theorem A is obtained by letting the axes A and A’ become
parallel. In this case the following result is obtained.

TeEOREM C. If
z =0, No= £\, D >R, + R, (1.18)
the same conclusions hold as tn Theorem B.

Two proofs of the above theorems are given in Secs. 3, 4. The proof of Sec. 4 is based
upon the following theorem.

THEOREM D. The Family § of involute helicoids S with the same base cylinder and
the same lead angle \, of the base helix forms a family of parallel or normal surfaces, that
18 a family of surfaces possessing the same normals, any two surfaces intersecting each
normal “tn two points at a constant distance apart. These ® normals are all tangent to
the base cylinder and make an angle N, with its axvs. The members S of F can be obtained
by rotating S, , any one member of F, about the cylinder axis, a rotation A@ corresponding
to a displacement

CAf cos N\, . (1.19)
of the intersection points along the normals. '
In Sec. 3 the following theorems are also proved.

TrarEOREMS A’, B/, C’. Under the same conditions as in Theorems A, B, C, after initial
contact between S, S’ has been secured, let S be simultaneously rotated about its axis A with
a constant velocity @ and translated in a direction parallel to A with a constant velocity V,
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and at the same time let S’ undergo a simultaneous translation V' in direction of its axis
A’ and a proper rotation about A’ to maintain contact with S. Then the latter rotation is a
uniform rotation w’ given by the equations

w=a—V/C, (1200 o =« — V'/C", (1.21)

where w, ' satisfy (1.11). From these equations ' can be determined in terms of w, V, V.
As the motion proceeds the contact is of the same nature as tn the respective Theorems A,
B, C for the case V = V' = 0, and rotations v, o’.

Another limiting case of interest is obtained by allowing the base radius of one of
the two contacting surfaces, say S’ to become infinite, while keeping its normal at a
fixed point of contact with the other surface. In the limit the surface S’ flattens out
into a plane, the rotation of 8’ about its axis degenerates into a translation of the plane
S’ and one obtains the following theorem.

TuroreM E. Let 7 be a plane tangent to S at a point P, . Let S rotate about its axis
with a uniform velocity w, and let w, while remaining parallel to itself, be translated uni-
formly, normally to itself, with a velocity v, '

v, = Cw cos Ny, (1.22)

then = will remain tangent to S, contact occurring at any time along a straight line g which
moves normally to = (and to itself) with a velocity v, given by (1.22).

The proof of Theorem E is mentioned in Sec..4. Its physical applications relate to
mating of involute helical gears with plane racks.

Applications of the above theorems to physical gears are discussed in Sec. 5. These
involve limitations due to finite axial and radial extent of the tooth surfaces, simul-
taneous contact between corresponding surfaces of several teeth, as well as contact to
both sides of the same teeth, and aveidance of interference. The results of Sec. 5 are
directly helpful in answering practical questions arising in manufacture of gears and
described in the introductory section.

2. Geometry of involute helicoids. Before proceeding with the proof of the results
just stated, we shall obtain several useful properties of involute helicoids.

It will be noticed that in (1.3) the coordinates are linear in ¢, . The curves ¢; =
constant on S thus reduce to straight lines, and we conclude that an involute helicoid
is a ruled surface.

The vectors
ar . . .
3.~ Bo (@2 — @) cos ey — jsin @1), 2.1
(4] .
20 = — iR, sin ¢, + jR, cos ¢, + kC (2.2)
2

where r = zi + yj + zk is the position vector of S, are tangent to the parametric
(¢1 , 2)-net on S; the former vector is tangent to the involutes ¢, = constant, z =
constant; the latter to the generators ¢, = constant. The latter vector, being dependent
on ¢, only, is constant along the generator g in question and gives the direction of g.
Reduction of (2.1), (2.2) to unit vectors leads to
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u=1icos ¢, — jsin ¢, , (2.3)
t = —isin ¢, cos A\, + jcos ¢, cos A, + ksin A, , (2.4)
where ), is given by (1.11).
It will be noted that
ut=0 (2.5)

hence the generators g are normal to the involutes z = constant.

Since the first two equations (1.3) are identical with (1.2), the projections of g on
z = 0 are identical with the straight lines which are tangent to the base circle r = R, .
Hence, the generators of S are tangent to the ‘“base cylinder’” r = R, . The point of
contact is obtained by putting ¢, = ¢, , whereupon (1.3) yields

x = R, cos ¢y , y = R, sin ¢, , z = C(er — @20)- (2.6)

This is a helix lying on the base cylinder r = R, and belonging to the screw motion of
the helicoid. Its ‘“lead angle’’, that is the angle it makes with the planes z = constant,
is equal to arc tan C/R, that is to A\, . Taking differentials of (2.6) one obtains

dr = R, [—isin ¢, + j cos ¢, + kC/R,] de. 2.7

for the tangent vector element to the helix 2(6); comparison of (2.7), (2.4) shows that
both vectors are parallel, so that ¢ is tangent to (2.6). Hence, all the generators are
tangent to the helix (2.6); the latter is known as the “base helix.” Thus S is a develop-
able surface consisting of the tangents to the base helix. Therefore, S has zero (Gaussian)
curvature. One of the directions of principal curvature on S corresponds to that of
the generator g, with zero as the corresponding value of the principal curvature, the
other principal curvature direction corresponds to the involutes sections z = constant.
The generators and the involutes form the lines of curvature on S.
The normal unit vector to S is given by the cross-product t X u:

n=tXu=isine, sin\, — jcos ¢, sin\, + Kk cos ), . (2.8)

Since n is independent of ¢, , it follows that along every point of a generator g the normal
to S has the same direction—a characteristic property of developable ruled surfaces.
Since t is also the unit tangent vector to the base helix, its derivative
dt . .
T = (i cos ¢; + jsin ¢,) cos A, (2.9)
P1
is readily seen to yield the direction of the principal normal of the base helix. Since
n is normal both to t and to the principal (2.9), it follows that n is parallel to the bi-
normal to the base helix at its point of contact with ¢.*
From (2.8) it will be noted that

n-k = cos\; ; ’ (2.10)

hence the angle between n and the direction of the axis A is A, . Thus, if from a fixed
point F the various unit normals n to S be drawn, they will form a cone C, of semi-

*This property, too, is characteristic of developable ruled surfaces, the binormal to the base curve C
being normal to each osculating plane, and therefore normal to the ruled surface; the latter consists of
tangents to C which is the envelope of the osculating planes.
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angle A, with axis parallel to A. Similarly the unit vectors t giving the directions of
the generators, if drawn from F, will outline a similar cone C, , of semi-angle 7/2 —
s . It will be noted that the vectors k, t, n are coplanar; hence, corresponding vectors
n, t on C,, C, are mutually perpendicular and lie in the same plane through the axis.
Figure 3 shows these relations on a unit sphere.

(-2

Fic. 3.

3. Contact between two involute helicoids. Contact between the two surfaces S,
S’ can only occur at a point at which the normal to the one surface is also normal to
the other. As shown above, the unit normals n to S, when drawn from a fixed point
F, form a cone C, of semi-angle A\, with axis parallel to the axis A. Likewise the unit

normals to S’,
7

n’ = i’ sin ¢f sin A} + j’ cos ¢f sin A} + k' cos A}, 3.1)
when drawn from the same point F, will form a cone C of semi-angle A\}-with-axis parallel
to A’ which is parallel to

k' =icos 2 — jsin Z, (3.2)

where A} is the lead angle of the generating base helix of S’. If C, , C} intersect, each
intersection of the two cones furnishes a possible direction for the common normal,
and contact between S, S’ can only occur at points at which both surfaces are normal
to that direction. Figure 4 shows the two cones C, , C, and their intersections FE, FE.

The rotation of the surface S about A leaves the cone C, in Fig. 4 unchanged as a
whole, though the normals rotate along the cone; similarly for rotation of S’ about A’
and the cone C, . The direction of the common normal to both mating surfaces at the
point of contact, if any, thus remains invariant with time.

Several cases present themselves in regard to the cones C, , C. .

I. The cones C, , C} lie outside each other.
II. One of the cones C, , C lies inside the other one; on account of (1.7) C’ will lie
inside C, . '
III. The cones are tangent externally.
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IV. The cones are tangent internally.
V. The cones intersect in two distinct lines.
VI. The cones coincide.
In Case I the inequality (1.9) fails to be satisfied; in Case II the inequality (1.15)
holds; finally, in Case V, (1.9), (1.10) are both satisfied. Only in Cases III, IV, V, VI

A

Fic. 4.

is contact between S, S’ possible; III, IV lead to case discussed in Theorem B, Case V
leads to the case covered in Theorem A, while VI leads to Theorem C.
The nature of contact between S and S’ is exhibited in

TaBLE I
" Contacting
Case Theorem Generators Type of Contact
I None No contact
II None No contact
III B Parallel Line contact
IV B Parallel Line contact
v A Not parallel Point contact
VI C Parallel Line contact

Indeed, in Cases I, II, no common normal exists over S, 8’ — hence no contact
between them is possible. In Case V, the common normal n (FE on Fig. 4) yields possible
contacting generators g on S and ¢’ on S’ as the locus of points where the surface elements
of S, 8’ are parallel. As indicated at the end of Sec. 2, the vector t giving the direct
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of g, is coplanar with n, k and 90° away from n. It therefore differs from t’, the unit
vector along ¢’, which vector is coplanar with n, k' and 90° away from n. Hence, if
contact can be obtained between g and ¢’, this contact is at a point only. In Cases III,
IV, as shown on Fig. 5, the vectors n, k, k', are coplanar and t, t’ are coincjdent, leading
to parallel (possible) contacting generators. If contact can be secured in these cases, it
will be along a line. The same statement applies in Case VI, though now the two cones
C. , C! of Fig. 4 degenerate into the same cone; whatever common normal one picks
along this cone, one obtains the same conclusion as in Cases III, IV.

A !

t, t

»

Fic. 5a. Fia. 5b.

So far it has been shown that 4f contact oceurs it is of the type shown in Table I.
It will now be shown that under the conditions stated in Theorems A, B, C contact
between S and S’ can always be secured by a proper rotation of S'. '

From (1) follows that a rotation of a helical surface about its axis is equivalent to
a proper translation parallel to that axis. Thus, a positive rotation of S about the z-axis
through an angle A is equivalent to a translation of S in the direction of (positive)

z of amount
Az = —CAS. (3.3)

Similarly, a rotation of S’ about A’ of angle A%’ is equivalent to a translation in the
direction of positive 2’ of amount

A2 = —C'Af. (3.4)

Likewise, a continuous rotation of S about A4, of angular velocity  is equivalent to a
translation in direction of positive z of magnitude

V = —Co, (3.5)
and similarly a continuous rotation ' of S’ about A’ is equivalent to a translation
V= —Cw (3.6)

in the directions of positive 2.
Consider Case V first. Suppose that g, , g4 , the initial possible contacting generators
of S, §, fail to intersect. Since, as shown abeve, g} is not parallel to g, , and since neither
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go nor g4 is parallel to A’—this follows readily from Figs. 3, 4 and the equations of Sec.
2—it is always possible to translate S’ and g; along with it till it intersects g, at a point
P, . Thus in Case V, it is possible to secure contact between S’ and the initial position
of S by properly translating S’ about A’, and hence also by rotating it through a proper
angle about A’. Similar considerations show that contact can be maintained as rotation
of S proceeds.

The directions of n and hence of g, ¢’ remain invariant with time as S, S’ rotate.
Figure 6 shows the contacting generators g for S in the positions at which they make

A

Fia. 6.

contact with corresponding generators g’ or S’. If the position of the contacting generator
go of S is given at the time { = 0, the subsequent positions of g may be obtained by
displacing it in the direction of the axis A with velocity (3.5). A similar statement
applies to the contacting generator ¢’ of S’ where the displacement is in the direction
of 2’-axis with velocity (3.6).

As shown in Sec. 2, the generators of S are tangent to the base cylinder » = R, .
Therefore, as S rotates about its axis, the locus described by the contacting generator
g is a plane m, through the initial position g, of g, parallel to A, and tangent tor = R, .
The plane , in addition to being the locus of g, also contains the normals n to S at the
points of contact P, since as shown on Fig. 3 n, k, t are coplanar. Likewise, the con-
tacting generator ¢’ of the surface §’, as the latter rotates, describes a plane =’ tangent
to the base cylinder of S’ and containing the directions of A’, of ¢/, and the normal n.
The line of intersection ! of w, ' forms the locus of the contact point P. Since each of
the two planes m, 7’ is parallel to n, their line of intersection [ is itself parallel to n.

The line I is tangent to the base cylinder of S at Ps and normal to its base helix
there. Being parallel to n, I is normal to S at the contact point as S undergoes its rotation
or equivalent displacement. The angle between I and the z-axis is the same as between
n and k, hence equal to \, . Hence, the translation (3.5) of the contacting generator g
leads to a motion of the contact point P along I with velocity

Veosh, = —Cwcos ], . 3.7)

Similarly, the translation (3.6) of the contacting generator of S’ leads to the motion of
the contact point along ! with velocity

V' eos N, = —C'w’ cos A} . (3.8)
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Equating the two velocities and denoting their common value by v, , one arrives at
(1.13) and (1.11). '

This essentially completes the proof of Theorem A.

The cone C, of unit normals n to S is given by (2.8) with variable ¢, . The inter-
sections of the two cones C, , C; are obtained by imposing the condition

n-k’ = cos ¢, sin A, sin = 4 cos N\, cos = = cos A} . 3.9)

Solvin'g for ¢, and substituting in 2(8) yields the two possible common normals to S
a‘ndEil:ual.ting n’ in 3(1) to n: in 2(8) and expressing i, j, k in terms of i/, j/, k’ one is led
to the following relations:
sin @] sin M} = —sin ¢, sin A, ,
cos ¢f sin A} = —cos ¢, sin A\, cos £ + cos A, sin Z, (3.10)
COS A\j = COS ¢, sin A, sin = + cos A, cos =.

The third of these relations is the same as (3.9), and will be recognized on the spherical
triangle BEB’ of Fig. 4 and Fig. 7 as the law of cosines for side A, = EB. The first
equation (3.10) determines ¢f in terms of ¢, , A, , A7 , and forms the law of sines for the
same triangle for the angles B, B’ and the sides opposite.

Fi1e. 7.

Substitution of the value of ¢, obtained from (3.9) in (2.6) yields the point on the
base helix of S in the plane . Since this plane is tangent to r = R, at this point, its
equation is

m Tcose, +ysing, =R,. (3.11)

Both the contacting generator g and the line of contact [ lie in =. The line [ and ¢’ lie
in the plane ' whose equation is

w: 2’ cos o] — y sin of = R}, ) (3.12)
where ¢! is determined by means of (3.10). Utilizing (1.4) one changes (3.12) into
Z cos ¢! + y cos = sin ¢ + zsin = sin ¢ = D cos ¢ — R; . (3.13)

Turn now to Cases III, IV. Referring to Figures 5, we now have for the common
normal
n= —jsin\, + kcosh, 3.19)

corresponding to ¢, = 0 in (2.8), and ¢! = 0 in (3.1). All the vectors k, k', n, t. = t;
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lie in the plane normal to i. Hence both planes = and #’, the locus of the possible con-
tacting generators, are parallel; in fact their equations (3.11), (3.13) now reduce to

m z=R,, (3.15) . =D+ R]. (3.16)

Clearly, unless =, 7’ coincide, no amount of translation of S’ along A’, or of equivalent
rotation about A’, will bring ¢’ into contact with g. On the other hand, if = and #’ do
coincide, thus leading to (1.16) or (1.17), a proper translation of S’ along A’ will bring
the possible contacting generator g§ into coincidence with g, . From this point on, the
rest of Theorem B is proved similarly to Theorem A.

As regards Case VI and parallel axes A, A’, one now finds that with coincident
cones C, , C’ the degenerate Fig. 4 or equation (3.9) fails to pick common normals or
possible contacting generators. Whatever normal n is assumed it leads to t, = t; , to
parallel possible contacting generators g, g’, and to parallel planes =, #’. For contact
to occur, the planes 7, ' must reduce to the common tangent planes of the two base
cylinders:

R R _

3.17)
oS ¢, COS ¢,

With ¢, determined from (3.17) the rest of the proof of Theorem C follows along the
same lines as above. The last inequality (1.18) prevents the base cylinder » = R, from
enclosing the other one, thus rendering common tangent planes non-existent. Contact
ocecurs now not at a point but along a line g, and as rotation proceeds g describes the
plane 7 which is identical with #’ and is given by (3.17).

Theorems A’, B’, C' are proved by utilizing the equivalence of rotations and trans-
lations.

4. Alternative proof based on theorem D. To establish Theorem D, it will now be
shown that the normal I to the surface S at a point P, on it is also normal to each involute
helicoid of the family &, given by (3.1) for other values of the constant ¢,, , at its point
of intersection with that surface. The members of the family § can be obtained by
translating S along the z-axis through a variable distance Az, or by rotating S about
the z-axis through a variable angle A8. They all have the same base cylinder and the
same base lead angle A, , but different base helices.

Let P, be a point on S obtained by putting ¢, = ¢1 , ¢: = ¢ in (1.3):

R, [cos ¢} — (@3 — 1) sin 1],
—_
OP, =1, = {R, [sin ¢ + (¢2 — ¢3) cos @], 4.1)

Clez — @2l
The unit normal along the line [, normal to S at P.., is obtained from (2.8):
n = (sin ¢ sin \, , —cos¢r Sin\,,  €OS\,). (4.2)
Now consider the point P on ! a distance s from P, :
0P = I, + sn. 4.3)

The coordinates of P can also be obtained from (1.3) by increasing ¢, , ¢z , ¢20 from their
values at P, by the amounts



206 . ' H. PORITSKY AND D. W. DUDLEY [Vol. VI, No. 3

A(D] = 0, Agog = -(S/Rb) sin )\,, y A¢2o = —(S/C) sec )\,, (44)

and P thus lies on a surface of the family ¥. The normal to this surface at P, moreover,
agrees with (4.2) since ¢, = ¢, . Thus ! is normal to the helical involute surface passing
through P.

From the above it follows that the family & is a family of parallel surfaces admitting
the same normals, each surface being a constant distance apart from every other surface.
The directions of principal curvatures along such surfaces at their points of intersection
with the same normal are parallel and the prmmpal radii of curvatures at these points
differ by the constant normal distance.

The common normals ! to.this family F of parallel surfaces are all tangent to the
base cylinder and make an angle with the direction of its axis A equal to )\, . Stated
in another way, it has been shown that the surfaces perpendicular to the lines which are
tangent to the cylinder r = R, and make a fixed angle \, with its axis form a family of in-
volute helicoids with their base helices on r = R, and of lead angle \, .

Suppose next that S rotates about its axis A with uniform velocity w. It will be
shown that its intersection with the normal [ at the point P, moves with uniform velocity

v = —Cwcos ]\, . (4.5)
Indeed, putting
s = vt = —Cwt cos \y, = —R,wt sin \, (4.6)

in (4.3), (4.4) leads to the above point P on the normal; it is readily verified that the
same point is obtained if in (1.3) we first put

Y1 = ‘P(I) - "’tl (47)
@2 = g2 — wicos’ N\, (4.8)

(while keeping ¢,, fixed), then, corresponding to the rotation wf, we increase ¢, , ¢
by wt in the first two Egs. (1.3), thus putting

o= o1, (4.9)
@2 = @5 + wisin® ), (4.10)

there, while allowing (4.8) to hold in the third equation.
There results

Ar = —Rywt sin® ), sin ¢ ,
Ay = Rywt sin® ), cos o) , (4.11)
Az = —Cot cos® Ay

and these agree with sn for s given by (4.6).

Thus a uniform rotation of S leads to a point of intersection with the normal ! which
moves with a uniform velocity along .

By applying this result to two involute helical surfaces S, S’ initially in contact
at a point or a line, Theorems A, B, C follow.

Theorem E follows readily from D by considering a rotation of S, its intersection
with a fixed normal line ! and the tangent plane to S which is normal to I at that point
of intersection.
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5. Application to gears. In applying the results of the preceding sections to two
mating gears G, G/, certain limitations occur due to the finite dimensions of the gears,
to non-interference of mating teeth, and to the integral number of teeth on each gear.

Let the gears G, G’ possess an integer number of teeth, N, N’ respectively, and sup-
pose that the mating teeth are properly shaped so that a uniform rotation of G is trans-
formed into a uniform rotation ' of G'. After a time T corresponding to N’ complete
rotations of @, the number of teeth of G that have gone through mesh is NN’. During
the same time T a like number NN’ of teeth of G’ has gone through mesh; hence ¢
has gone through N complete rotations. Thus, the number of complete rotations of G,
@ in the time T varies inversely as the number of teeth, and hence

L = —
=N (5.1)
For involute helicoid tooth shape, combining (5.1) with (1.11), one obtains
o _N _ Ccosh =R,,s%n)\;,. (5.2)
@ N’ C’cos\N Risin)\}

This is a restriction on the design brought about by the integral numbers of teeth.

In actual gears the radii r, 7’ of the involute surfaces are limited by the dedendum
and addendum radii, and continuity of rotations is assured by having several feeth in
mesh part or all of the time. This is obtained by having the angle of contact exceed
2x/N. Since, in accordance with Theorem A, the point of contact moves with velocity
(1.13) along the line of contact I, this condition is assured by having a segment on the
line of contact greater than

?V_r Ccosh, =d (5.3)
lie both within the limits of 7, 7’ corresponding to the mating teeth and within the z,
2’ limits corresponding to the face width. For involute helicoid gears satisfying (5.2),
no new conditions are required for assuring correct stmultaneous contact between corre-
sponding surfaces of several teeth. Two involute surfaces S spaced 2x/N radians apart,
according to Sec. 4, are at a constant (normal) distance apart, equal to d. Hence, condi-
tion (5.2) assures one that for two adjacent tooth surfaces on @G’ the distance d’ agrees
with the corresponding d for the mating surfaces of S; hence, simultaneous contact
takes place without interference.

If the gears have no backlash, contact on opposite sides of various teeth occurs, and
the question of interference between the mating action of opposite sides arises. These
opposite sides on S are characterized by the respective inequalities

P2 > @1, (5.4)
e < @ (5.5)

in Eqgs. (1.3) (see Fig. 8). This is evident on Fig. 1 where the cusp of the involute is
seen to correspond to

Y1 = @2 . (5-6)

The theorems and proofs of Sec. 1-4 now have to be reviewed
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from point of view of the inequalities (5.4), (5.5) and the corresponding inequalities
o> o, (5.7
¢ < el (5.8)

in Eqgs. (1.6) for the surfaces of the teeth of S'.
As stated in Sec. 1, only if one of the inequalities (5.4), (5.5) holds will the orthogonal
net of involutes ¢, = const., and the tangents to the base circle, ¢, = const., cover

the region outside the base circle so that through each point there passes one and only
one involute, and one and only one tangent line. Likewise, only if one of the inequalities
(5.4), (5.5) holds does there result a family of involute helicoids & such that through
each point outside the base cylinder there passes one and only one member of this
family. The two involute helicoids through a point satisfying (5.4), (5.5) respectively
have distinct normals. In particular, the two intersections of the cones C, , C’ on Fig. 4
correspond respectively to upper and lower faces of gear teeth of G. These distinct
normals are obtained from (3.9) by choosing the positive and the negative values of
¢1 . Each one of the normals leads to a distinct line I and distinet planes =, =’. However,
on account of the inequalities (5.4), (5.5), (5.7), (5.8), contact along each line [ is re-
stricted to a portion lying to the proper side of each of the two base cylinders. (In
practice this segment is even further restricted by the limits of r, 7’; 2, 2’ of the teeth
of G, @)

As an example, consider the technically important case where one of the two contact
lines I cuts the x-axis, that is where the line of contact intersects the common perpendicular
of the axes A, A’. Putting y = 0, z = 0 in (3.11), (3.13), one obtains for the resulting
contact point

x = R,/cos ¢, , y =0, z2=0 (5.9)
as well as
‘o’ = (D — z) = R}/cos o] , y =0, Z =0, (5.10)
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whence
A
COS ¢y cos ¢}

D= (5.11)
The last restriction on the distance D furnishes the condition for the intersection of I
and the r-axis. It will be noted now that if (5.11) is satisfied, it will still be valid if the
signs of ¢, , o] are changed. Hence, both lines of contact ! will intersect the z-axis if
one of them does.

Substituting (5.9) in (1.3) one obtains

g2 = o1 — tan ¢, . (5.12)

Hence the sign of ¢, is opposite to that of ¢, , so that if ¢, > 0 Eq. (5.5) holds, while
for ¢; < 0 Eq. (5.4) applies. If we suppose further that G, @’ are right handed and
2 < /2 it will be seen that the line I for which ¢, > 0 corresponds to contact between
an upper face of G and a lower face of G’. This checks with the first Eq. (3.10) according
to which ¢{ is now negative. The line ! with ¢, < 0 yields the contact between a lower
face of G and an upper face of G'. Both lines ! pass through the point (5.9), which is
now known as the ‘‘common pitch point”’ of G, G—while their directions are given by
(2.8) for the proper value of ¢, .

The function tan ¢ — ¢ is sometimes denoted by “inv ¢’ (pronounce the ‘“‘involute
function of ¢’’), on account of its frequent occurrence in involute theory.

It is customary to introduce the “pitch radii”

R, = R,/cos ¢, , (5.13) R, = R}/cos ¢}, (5.14)

as the distances from the common pitch point to the axes A, A’. The helices of S, S’
corresponding to the pitch radii are known as the “pitch lines.” The lead angle of the
pitch line of S is denoted by A, :

tan A, = C/R, = (C/R;)(R,/R,) = tan )\, cos ¢, (5.15)

and A} is introduced similarly.
The normal projection of (either) common normal n on a plane x = constant, it
will be noted from (2.8), makes an angle

tan™" (sec @, tan \,) = A, (5.16)

with the z-axis; it is thus normal to the pitch line of S; likewise, it is normal to the
pitch line of S’ through the same point. There is thus contact between the pitch lines
of S, §’ through the pitch point (5.9) at the instant of contact of S, S’ at that point.
This condition leads to

Z=N+N (5.17)

—a relation that also follows from (3.10) by expressing A, , A\, in terms of \, , A, . The
angle | ¢, | itself is now readily shown to be equal to the “pressure angle” at the pitch
radius in the transverse section z = 0, that is to the angle between the radial direction
and the involute through the pitch point. The pressure angles | ¢, |, | ¢f |, the “lead
angles” N, , \; , and the pitch radii R, , R} are the quantities technically used in specifying
helical gears.
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For the case of pitch-point contact, the condition of simultaneous contact on both
sides of the teeth of G, G’ is given by

% =1- % (5.18)

where (Af), , (A#'), are the angular thicknesses of the teeth G, @' at their pitch radii;
thus, (A6), is the increase in 6 along r = R, , z = 0 in passing from one side of a tooth
of G to the other side. This equation is obtained by noting that since now the two lines
of contact ! both pass through the common pitch point (5.9), the time that it takes a
tooth of G to pass over this point is equal to the time it takes the space between two
adjacent teeth of G’ to sweep over the same point.

To obtain a relation equivalent to (5.18) but involving angular tooth thickness at
other radii than the pitch radius, the variation of tooth thickness with r is obtained
from Eqgs. (1.2), keeping in mind that along an involute ¢, is constant. From these
equations follow

=Ryl + (02 — @)1, (5.19)
tan 6 = tan ¢, + (p; — ¢1) = ¢, + Inv @, (5.20)

and after determining the change in ¢, corresponding to a change in 7, one may then
obtain the corresponding change in 8 from (5.20). Multiplication by 2 then leads to the
change in tooth thickness.

To examine the case when (5.11) is not satisfied it is convenient first to shift the
axis A’, while keeping it parallel to itself, to a position for which (5.11) does hold, then
move it back a distance

AD =D — R, — R, = D — Ry/cos ¢, — R{/cos ¢} (5.21)

to its original position. Since the cones C, , C’, of Fig. 4 are unchanged by this displace-
ment, the direction of n, the values of ¢, , ¢ which satisfy (3.9), as well as the directions
of I and the possible contacting generators g, ¢’ are not affected, except, of course, for
the relative displacement of the latter. Comparing the solutions of (3.11), (3.12) for
A’ and for its shifted position, it will be noted that a solution is offered by the same
.z, y as for the pitch-point contact case, provided that z be increased by the amount

Az = AD cot ¢{/sin Z. (5.22)

It will be noted that corresponding to a change of sign of ¢, there is also a change
of sign of Az, that is that the two contact lines ! are displaced in opposite directions
from the point (5.10) as D is changed in value.

Let

nT + nyY + nz = p ’ (5.23)

be the equation of the common tangent plane at a point of contact of the two gears
G, G', where n, , n, , n, are the components of the normal to the plane, and p the distance
of the plane from the origin. Suppose now that G’ undergoes a displacement AD1i, thus
throwing the gears out of contact, and displacing the tangent plane to G’ from (5.24) to

nz(x - AD) + ny + n,z = p, (5-24)

or, transposing, to
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nx + ny + n,z = p + n,AD. (5.25)

Since ¢, , ¢f are not effected by the displacement ADi, the possible contacting generator
g’ undergoes the same displacement as G, while g remains unchanged. Now note that
(5.25) may also be obtained by increasing z by the amount

Az = AD n,./n, ; (5.26)

hence contact may be restored by displacing @ in the direction of positive z by the
amount (5.26). Substituting from (2.8) for n, , n, and recalling that a displacement
of G in the direction of its axis A is equivalent to a proper rotation about A, it follows
that

£P sin gy tan \, (5.27)
is the rotation of G required to close up the gap due to the displacement AD of G, and
restore contact with @’. Change of sign of ¢, corresponding to contact on the other
tooth side causes the rotation (5.27) to change in sign. Hence

2AD 2AD

sin ¢, tan A, = R, sin ¢, (5.28)

is the backlash between @, G’ (measured as a rotation of G about its axis) produced
by the displacement ADi from initial zero backlash position. Again, (5.28) is the in-
creased angular thickness of a tooth of G' caused by a displacement ADi of a generator
tool (involute hob, involute shaving tool) having the shape of G'.
Similarly it is shown that the same backlash is measured by the rotation
28D sin of tan A = 22? sin ¢} (5.29)

of G’ about its axis; this is the required thickening of teeth of @’ to produce the same
thickness tooth on @ after the displacement ADi has taken place.

These equations along with (5.18) and the general theory outlined above, suffice
for the design of hobs and shaving tools for producing involute helical teeth and for
investigating the effect of displacement of axes and angles, of resharpening dulled
tools, etc.

As an example, suppose two external gears G, G, designed for pitch-point contact,
are mounted so that their axes A, A’ are at the correct distance D apart but with a
wrong relative inclination, so that the angle T between A, A’ is incorrect and (5.17)
does not hold for =. What effect does this have on the mating action of the gears?

Since Egs. (5.3), (5.3) are not affected by the angle between the axes, correct mating
action with the proper ratio of speeds w/w’ is still possible for either one side of the teeth
or the other, but the matter of contact on both sides or of backlash or interference due
to insufficient space hetween the teeth still remains to be examined. In the spherical
triangle BB'E of Figs. 4, 7 the sides A\, , A} are unaffected, but with £ now changed to
2 new values ¢, , @1 for ¢, , ¢ result; these may be determined from the last and the
first equations (3.10). For these values ¢, , ¢! and = it is possible to replace the nominal
pitch radii R, , R} by new pitch radii R, , R, determined from (5.13), (5.14) and to
consider a new pitch-point contact condition with a distance D between the axes de-
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termined from (5.11). Assuming a zero backlash condition, and supposing that, say,
G’ has the correct tooth thickness, one determines its value (A®"), at R, , and applying
(5.18), one obtains tooth thickness AB, at B, . Finally, allowing the gear @ to undergo
a displacement ADi = (D — D)1 till the distance between A, A’ has its correct initial
value D, one adds (5.28) to A6, to obtain the tooth thlckness of G at R, for the zero-
ba,cklash condition corresponding to D, =, and this may be compared with the design
tooth thickness of G. If ¢ corresponds to a hob or to a shaving tool of involute profile,
the above analysis shows that if it is set at an incorrect angle £ or at a wrong distance
D, (or both), a correct involute gear shape will be produced, but possibly a wrong tooth
thickness. (There is also, of course, the effect of varying depth of penetration.)

The analysis of Secs. 3, 4 for obtaining contact between mating gears can be re-
garded as the equivalent of the first necessary condition for such contact and avoidance
of interference; it is analogous to the vanishing of the first derivative f’(z) for conditions
of obtaining a maximum of a function f(x), or more precisely, to the vanishing of the
two partial derivatives df/dz, df /9y for a maximum of a function f(z, y) of two variables
z, y. In such maxima problems, in addition to the first necessary conditions, there also

" exist other conditions, for instance, sufficient eonditions for a local maximum involving
second derivatives. Similarly, in the problem of contact of two physical gears G, G’
further conditions have to be examined in addition to the tangency of the tooth surfaces,
to avoid interfecence and assure that at no time is any point inside the gear G trying
to occupy a position inside G'.

A case of great technical importance is the case of contact of two external gears
under the conditions of Theorem A and Case V, if

D> R,+ R, (5.30)

and if contact is of the common pitch-point type or “near it”’, that is reducible to pitch-
point contact by a continuous change of D and =. It is with this important case in mind
that Fig. 2 was drawn, and the directions of axes on it were chosen, the positive direc-
tions of z, 2’ pointing toward the region of contact. For this case the second-order
conditions are easily verified by considering the curvatures of the two involute helical
surfaces at the contact points. As will be recalled from Sec. 2, an involute he'ical surface
is a ruled surface. For each of the contacting helical surfaces at the point of contact,
the lines of zero curvature are the generators g, ¢/, and they lie in the common tangent
plane. For external gears in contact under the conditions stated, the centers of curvature
for the second principal direction of curvature lie to opposite sides of the common
tangent plane. This insures avoidance of interference near the contact point.

Under the condition (1.16) of Theorem B it turns out that the zero curv:ture direc-
tions are coincident (along the coincident rulings g, ¢’), but that the centers of curvature
for the second principal curvature for S, S’ lie on the same side of the tangent plane.
It is therefere impossible to realize the type of contact envisioned in Theorem B between
two external gears G, G'. This statement applies quite aside from the interpenetration
of the teeth of one gear into the base circle of the other gear near the region of the
common perpendicular to their axes (the z-axis).* Even if the active face widths (the
limits of z and 2’ for the involute teeth) for G, G’ are restricted to lie sufficiently far from
the z-axis to avoid this obvious interference, it still turns out that the contact considered

*To a certain extent this may be avoided by proper undercutting of the teeth.
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in Theorem B cannot be realized for external gears. Any attempt to run a pair of ex-
ternal gears under these conditions would merely result in contact of the edge of the
teeth of one against the tooth surfaces of the other. Similar statements apply to Theorem
A for external gears when the inequality

D <R,+ R} (5.31)

holds.

If (5.2), (5.30) holds, under the conditions (1.18), and if contact is of "the common
pitch-point type or near it the conditions considered in Theorem C can be realized
between external gears G, G, and contact always ¢s of the common pitch-point type,
irrespective of the value of D.

If ¢ is an external gear and G is an internal one, then the contact conditions of
Theorem A generally cannot be realized physically due to interference.

Thus, in shaving internal involute gears with involute helical cutters, a conditign
of theoretical interference is obtained. In some cases the amount of this interference is
slight enough not to cause any trouble. In other cases the shaving cutter teeth are
“relieved”’ at the ends to avoid interference. This relieving operation, of course, tends
to destroy the involute helical shape.

If G is internal and G’ external, the conditions of contact of Theorems B, C may
be realized in certain cases, though, of course, the condition (5.30) has to be dispensed
with for Theorem C.

Even for external gears with (5.30) holding other types of contact than of the ‘“near
common pitch-point contact’”’ type are possible. This is not evident from the proofs of
Secs. 3, 5, from which it would appear that in case of Theorem A only two lines of con-
tact I are possible in the mating action of two gears @, @. Indeed, Fig. 4 and Eq. (3.10)
determine two possible directions of the normal and the values of ¢, , ¢! in terms of
N , A, Z, while Egs. (3.11), (3.13) then fix a line I uniquely for each pair ¢, , ¢! .
Actually, however, further contact lines ! may exist due to the fact that on Fig. 4
complete cones and not half-cones C, , C. should be used, that is cones proceeding both
ways from the vertex F. Indeed, for a given ¢, , A, , not only is a possible unit normal
n given by (2.8), but also by its negative. If the signs of both n and n’ are reversed,
two new circles of intersection of C, , C with the unit sphere are obtained on Fig. 4.
The new circle for C, may intersect the (old) circle for C; in two new points, thus giving
rise to two further possible directions for the common normals. To obtain these (when’
they exist) it is necessary to modify Eqgs. (3.10) by changing the signs of their right-
hand members. With the new values of ¢, , ¢! so obtained, Eqgs. (3.11), (3.13) lead to
two new contact lines I. '

As a special case, if with the resulting new values.of ¢, , ¢f , D is given by

R, _ _Ri
COS @1 cos ¢}

) (5.32)

then the two contact lines ! pass through a point @ on the line 00’ lying outside the
segment 00’. The point @ is analogous to the common pitch point P which exists when

1It must be borne in mind that due to elastic yielding at contacting areas (in accordance with the
Hertz theory) the purely geometric conclusions regarding what type of contact is or is not physically
possible may be softened somewhat.
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(5.11) holds. When (5.32) does not hold the new contact may be determined by dis-
placing the lines I through @ by amounts (5.22) in the direction of the z-axis.

For the special case of parallel axes A, A’, as pointed out above, the cones C, , C.
of Fig. 4 degenerate into coincident cones. Now contact is always of the pitch point
type and contact lines passing through both P and @ are possible. On Fig. 9 are shown
the projections of the lines [ on the plane z = 0.

Fia. 9.

The point @ leads to a negative ratio w/w’; any attempt to realize contact along the
tangent lines CD, C'D’ through it by means of external gears is necessarily confined
to a portion between the points of tangency with the base circles, and therefore does
not include the point Q itself as a contact point. It will be recognized that, due to inter-
ference and other difficulties, the angle of rotation will be limited.

Similarly, for helical involute gears and skew axes it is possible to have contact lines
! which intersect the common perpendicular between the two axes outside 00’. While
the Theorem A can be applied to this type of contact, it a,gam does not lead to generally
useful results.



