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ON THE MECHANICAL BEHAVIOUR OF METALS IN THE
STRAIN-HARDENING RANGE*

BY

G. H. HANDELMAN, C. C. LIN and W. PRAGER

Brown University

1. Introduction. The present paper is concerned with certain stress-strain rela-

tions purporting to describe the mechanical behaviour of quasi-isotropic metals in

the strain-hardening range. As a preparation for a more precise characterization of

these relations, let us consider the tension test of a metal like copper or aluminum

which does not flow under a constant stress, but exhibits strain hardening. If the test

involves loading only, i.e., if the reduced tensile stress1 a or the tensile strain « in-

crease throughout the test, the resulting diagram of reduced stress versus strain will

have the general appearance of the curve OPQ in Fig. 1. On the other hand, if the

test specimen is unloaded after a cer-

tain point, such as P, has been reached

along this curve, the stress-strain dia-

gram for unloading is found to be very

nearly a straight line PA which is par-

allel to the tangent of the curve OPQ

at 0. After complete unloading, the

specimen shows a permanent extension

which corresponds to the permanent

strain represented by OA.

To simplify the discussion, let us

assume at present that the material is

incompressible. A longitudinal extension

e of the isotropic specimen is then ac- Fig. 1. Typical curve of reduced stress vs. strain,

companied by a uniform lateral con-

traction of the magnitude e/2. If the discussion is restricted to states of stress and

strain which can be reached by a single loading followed by one complete or partial

unloading at the most, the mechanical behaviour of the material in simple tension is

therefore completely defined by the curve OPQ. It will be assumed in the following

that for the materials under consideration the stress-strain diagram in simple com-

pression (OP'Q' in Fig. 1) is obtained by reflecting the curve OPQ with respect to

the origin 0, and that the practically important portion of the curve Q'OQ, i.e., the

portion corresponding to small and moderate strains, is represented with sufficient

accuracy by a development of the form

e = a + 03(t3 + a6tr* + • • • , (1)

where a3, a6, ■ ■ ■ are constants. (The coefficient of the linear term on the right-hand

side of (1) must be unity since a is the reduced stress. No even powers of <r can occur

* Received September 17, 1946.
1 The reduced stress is defined as the quotient of the stress by Young's modulus.
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on the right-hand side of (1), because the stress-strain diagrams for tension and com-

pression are assumed to be congruent.)

In the case of simple tension or compression, the mechanical behaviour of the ma-

terial during the first loading is readily represented by a finite relation of the form (1);

the behaviour during the first unloading, however, is most naturally represented by

the differential stress-strain relation

dt = da, (2)

for this form avoids explicit reference to the state of stress at which the unloading

began. Accordingly, it is often convenient to write Eq. (1), too, in differential form:

dt = a(<r)da. (3)

Here, a(a) =dt/da = l+3a3ai+5a6a* + ■ ■ • equals the quotient of Young's modulus

by the so-called tangent modulus. To arrive at a complete analytical description of the

mechanical behaviour of the material in simple tension and compression, we must sup-

plement the preceding equations by analytical criteria for loading and unloading.

For tension (a > 0) loading corresponds to da > 0 and unloading to da < 0; for compres-

sion' (<r <0) these criteria must be reversed. A satisfactory criterion for loading and

unloading is therefore furnished by the sign of ada — d^a1).

The present paper is concerned with the extension of this analysis to general

states of stress and strain which can be reached by a single loading followed at most

by one complete or partial unloading. In the case of simple tension or compression, a

differential stress-strain relation of the form (3) which is valid for the first loading can

always be integrated under the initial condition e = 0 for a = 0 and is thus equivalent

to a finite stress-strain relation. For more general states of stress, however, a suitably

generalized form of the differential stress-strain relation (3) may be integrable or not.

The distinction between differential and finite stress-strain relations for the first load-

ing is therefore no longer a purely formal matter, but acquires physical significance.

One of the main results of the following discussion consists in the remark that the

assumption of a finite stress-strain relation for the first loading is incompatible with

certain postulates concerning the mechanical behaviour under those changes of stress

which constitute neither loading nor unloading. This is shown in Section 3. Sections 2

and 4 are devoted to the discussion of finite and differential stress-strain relations,

respectively. Section 5 gives a method of correlating experimental results with the

present theory. Finally, Section 6 contains a discussion of the limitations of the

theory.

2. Finite stress-strain relations. Using rectangular Cartesian coordinates Xi,

(i= 1, 2, 3), we denote the displacement from the standard state by u{, the strain by

e„- and the reduced stress by For the small deformations to which the following

discussion is restricted, the strain is given by

+ «>.<). (4)

where stands for dui/dx,, etc. Adopting the usual summation convention regard-

ing repeated subscripts, we define the mean normal strain as

e = ha, (5)
and the strain deviation as

e%j — tij e8n, (6)
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where is the Kronecker delta. Similarly, the reduced mean normal stress s and the

deviation s^ of the reduced stress are defined as

s = (7)

and
Sij ~ (Tij s5{jt (8)

According to the definitions of the deviations et) and s,-,-, we have

en = 0, su = 0. (9)

The task of generalizing the finite stress-strain relation (1) is simplified by the

remark that the first term on the right-hand side represents that part of the total

strain e which is recovered upon complete unloading. The remaining terms on the right-

hand side of (1) accordingly represent the permanent strain. In Fig. 1 the total strain

is represented by the segment OB, the recoverable strain by AB, and the permanent

strain by OA.

Setting

fij = ('a + t'i'i, (10)

where denotes the recoverable and ty the permanent strain, we may assume that

the recoverable strain is related to the reduced stress by means of the generalized law

of Hooke:

Ui = (1 + v)Sij+(l - 2v)s5ij. (11)

Here v denotes Poisson's ratio. We are then left with the task of supplementing (11)

by a relation which expresses the permanent strain occurring during the first loading

in terms of the reduced stress. For an isotropic material, this relation can only con-

tain scalar constants in addition to the tensors , tr,,- and 5,;, and their invariants.

Furthermore, the principal axes of e// and must coincide. Under the pressures com-

monly encountered in the testing of materials, no permanent change of volume is

observed, i.e., €^' = 0 and e'J = e'J. A state of hydrostatic pressure therefore does not

produce any permanent strain, and two states of stress which differ only by a state of

hydrostatic pressure may be expected to produce identical permanent strains. The

permanent strain e[J is thus independent of 5 and depends only on the deviation s,>

Furthermore, if the stress-strain diagrams for simple tension and simple compression

are congruent, a reversal of the signs of all stresses may be expected to produce a mere

reversal of the signs of all principal strains. Finally, if the ratios of the principal

stresses are kept constant during the loading process, the ratios of the principal per-

manent strains, too, can be expected to remain constant.

In a recent paper,2 W. Prager established the most general stress-strain relation

which is compatible with the preceding postulates. With the notations

J2 ~ 2SijSiii J3 = 3SijSjkSki, (12)

and
txj = SikSkj 2^; j, (13)

Prager's stress-strain relation can be written in the form

2 W. Prager, Strain-hardening under combined stresses, J. Appl. Phys. 16, 837-840 (1945).
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u'i = F(J2, jI) [P(J2, jI)sh + Q(/,, A)J* tiil (14)

where P and Q must be homogeneous in the components of the stress deviation, the

degree of P exceeding that of Q by 4. The expressions (12) are second and third order

invariants of the stress deviation s<3- (the first order invariant su vanishes). The tensor

(13) is the deviation of the square saskj of the stress deviation s,y.

Combining (11) and (14), we obtain the desired generalization of the finite stress-

strain relation (1):

tii = (1 + *)$„ + (1 - 2v)sSij + F(Ji, j\) [P(/2, 7a)Jii + Q(Jt, A)Ja (15)

3. Neutral changes of stress. Inadmissibility of finite stress-strain relations. In

the case of simple tension or compression the sign of adc = d(%a2) proved to be a satis-

factory criterion for loading and unloading. Accordingly, one might consider the pos-

sibility of using the sign of a ado# as a criterion in the general case. If, however, the

term "loading" is reserved for such changes of stress which are accompanied by a

change of the permanent strain, this criterion is not satisfactory. Indeed, on account

of (8) and the second Eq. (9), we have

(Tijdffij — (s»j* i s8ij)(dsij I dsfttj) —* SijdSij I 3sds. (16)

If loading were to correspond to <Tijdffij> 0, a change of stress for which dsij=0 might

therefore constitute loading in spite of the fact that such a change of stress is not

accompanied by a change of the permanent strain. To avoid this difficulty, we shall

use the sign of sijdsij=djt as the desired criterion, an increase of Ji corresponding to

loading, a decrease to unloading.

Whereas for uniaxial stress any change of stress constitutes either loading or un-

loading, we have three kinds of change of stress in the general case, according to

whether J2 increases, remains constant, or decreases. An infinitesimal change of stress

for which dJi — 0, will be called a neutral change of stress. For instance, any change of

stress which affects only the mean normal stress, but leaves the stress deviation un-

touched, is a neutral change of stress. A more interesting example of a neutral change

of stress is given by

<Tij =

a 0 0

0 0 0

0 0 0

dc i j —

0 dr 0

dr 0 0

0 0 Oj

(17)

Equation (17) represents the stress system which arises from a combined tension and

torsion test of a thin walled circular cylinder. Specifically, consider such a test piece

which is pulled to an arbitrary tensile stress a. If the traction is then kept constant

and a small torque applied, the resulting systems of stress and increments of stress

are represented by Eq. (17).

Let us now suppose that for the first loading {dJi>0) we have the finite stress-

strain relation (15) and for unloading (dJ2<0) the generalized-law of Hooke in the

differential form
den = (1 + v)dsn + (1 — 2 v)dshij. (18)

The simultaneous use of the stress-strain relations (15) and (18) will lead to .obvious

difficulties, unless these relations give identical strain increments for neutral changes
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of stress. We shall show that, in general, this continuity condition is not fulfilled. In-

deed, if (15) is written in differential form, the first two terms on the right-hand side

equal the right-hand side of (18); the continuity condition therefore requires the van-

ishing of the remaining terms on the right-hand side of the differential form of Eq.

(15). Consider, for example, the stress and increment of stress given by Eq. (17). A

simple computation will show that

Sit —

ds {j —

|<7 0 0

0 — 0

0 0 -\<J

0 dr 0

dr 0 0

0 0 0

a2 0 0

ta =0 -W 0

,0 0 -£<r2 j

0 \<rdr 0

dtii = \adr 0 0

0 0 0

as well nsdJi — dJ3 = 0. For this special case the differential form of Eq. (14) reduces to

dti'i = F(Jt, A) [P(/2, Jl)dsti + j\)j3 dtij\, (19)

where Jz and J3 are evaluated for an arbitrary state of pure tension. Since this state

of stress satisfies the condition for a neutral change of stress (dJi = Q), dt[] must vanish.

We find then, upon substituting the values of dsn and dtij previously computed, that

F(/,f A) [P(Jt, A) + MJt, A)Jz c] = 0. (20)

Now let us return to the finite stress-strain relation, Eq. (15), for the case of pure

tension. The first component of the strain tensor (the other non-vanishing terms

differ from this only by a constant factor) becomes

€ii = <r + IF(Jt, A) [P(7„ A)' + mJ*, A)JsA (21)

The invariants appearing in Eq. (20) have been evaluated for an arbitrary state of

pure tension. Consequently, Eq. (20) is valid for pure tension and the second term in

Eq. (21) equals zero. (A similar remark holds true for each of the other non-vanishing

strain components.) Therefore, the stress-strain relation will reduce to Hooke's law

for pure tension if the continuity condition is to be fulfilled. On the other hand, we

have seen in Section 1 that the stress-strain law for tension need not be linear. Thus

the most general finite stress-strain law coupled with Hooke's law for unloading will

not be sufficiently flexible to represent a tensile test if the continuity condition is to

be fulfilled. It is necessary, therefore, to turn to differential stress-strain relations if

both loading and unloading are to be adequately represented.

4. Differential stress-strain relations. A system of differential stress-strain rela-

tions can be obtained from the properties discussed in Section 2 provided certain of

these are rewritten in such a way as to be directly applicable in differential form.

We shall assume that given the components of the stress tensor <r<,- and the increments

daij there correspond unique strain increments dtij. This implies that the increment

in strain, den, depends only on the state of stress at the given instant, <r,j, and the

increment in stress, da a, and is independent of the way in which this state of stress

has been achieved provided only loading has taken place. In particular, we shall
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assume that this dependence is such that the increments in strain are linear functions

of the increments in stress. Thus dea can be written in the form

dtij = (1 + v)dsij + (1 — 2v)dshij + Cijki dcru, (22)

where the fourth order tensor cijki is a function of <r,3 only. For unloading, the material

is assumed to satisfy the differential form of Hooke's law given in Eq. (18). Loading is

supposed to take place when dJ2>0 and unloading occurs for dJz<0. For a neutral

change of stress, dj2 = 0, the continuity condition requires that Eqs. (18) and (22)

coincide. Consequently,

Cijki d<Tki = 0 whenever dJi = s*j dsn = 0.

Since Ski is a deviator, dJi may also be written in the form dJ^ — Sti daki- Thus the

linear form in d<Jki, c>jki dau, must vanish whenever Ski dau vanishes. The coefficients

of d<Tki in the two forms must be proportional or

Cijki = CijSklt

where the second order tensor C„- is a function of an alone. The stress-strain relations

then become

dtij = (1 + v)dsij + (1 — 2v)dshij + CijdJn, when dj2 S: 0; |

dtij = (1 + v)dsn + (1 — 2v)ds5ij, when dJ2 ^ 0. I

In a certain sense, the term C,j measures the permanent deformation. Indeed, let

us consider the infinitesimal cycle of stress which results when first dan is applied

and then —da, ,y. We assume, in addition, that the material is being loaded when dan

is applied. The permanent increment in strain de[j will then be

dt-j = CijdJ2. (24)

Since the permanent strain is independent of a state of hydrostatic stress for pressures

within the range normally encountered in testing of materials, the tensor C,3 can only

be a function of the components of the stress deviator rather than the stress tensor

itself. Furthermore, there can be no permanent change in volume; that is, dt[{ = 0 or

Cu = 0. Since the tensors dtij, ds^, and 5.-; are symmetric, C,-,-will also be symmetric.

In addition, a reversal of the signs of all the stresses is assumed to produce a reversal

of sign of all the strain increments. This implies that Cn must be an odd function

of the stress components and thus will vanish when all the s,-y vanish.

The material is supposed to become orthotropic under the stress <r,y in the sense

that the C,y can be represented as a power series in the stress deviator s,3- with scalar

coefficients. These coefficients are either constants or else functions of the invariants

of Sij, i.e., functions of Jz and J3. It is convenient at this point to change from the sub-

script notation for tensors to Gibbs' notation; the tensor Cn will be denoted by C

and Stj by S. The multiplications indicated below are the usual matrix multiplications.

Under the assumptions stated above, the tensor C can be written as

00

C = £ a2n+1(/?, /3)S2»+>. (25)
n=0

We note that only odd powers appear in Eq. (25) since C is assumed to be an odd
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function of the stresses. Equation (25) can be simplified further by the Hamilton-

Cayley theorem which states that the tensor S must satisfy its own characteristic

equation.3 For the stress deviator S, this implies that

53 = 7,S + 7J, (26)

where I is the unit tensor. Through Eq. (26), we can reduce4 any power of S greater

than the second to a linear combination of I, S, and S2 with coefficients which are

functions of 72 and 73. For example, consider the reduction of the power S6. According

to Eq. (26),
54 = 72S2 + J 3 S;

thus

S6 = /2S3 + 73S* = 7, S + j\s + J J si.

In general, we can rewrite Eq. (25) as

C = a(Jt, 7,)S2 + 6(7,, 73)S + c(7,, 7,)7SI.

We recall that 0; since S is a deviator, this implies that

2a(7,, 7j)72 + 3c(7,, 7,)7, = 0,

or

Consequently,

27,
c(Jt, 7.) = — g(72, J3).

3 7s

C = a(7,, 7,) [S2 - §721] + 6(7,, 73)S.

The expression appearing in square brackets is just the tensor ti} which was defined

in Eq. (13). Returning now to the subscript notation we can write the tensor C,,- as

C\j = o(72, 7z)tij -f- 6(72, 73

A further simplification can be made by noting that Ca must be an odd function of the

stress components. Since 72 is even, J3 odd, tij even, and s,/ odd, we must have

2 2

Cn = p{J2, Jz)Sij -+■ q{Ji,

Thus the complete differential stress-strain relations can be written in the form8

i«,f=(l+v)rfj,/+(l — 2v)dsSij+[p(Jt, 7s)s<j+q(Ji, 73)7»<i,]<f72 when dJt^O |

(l+v)<ij<,-(-(l — 2v)ds5i,-, when dj2^0. )

5. Further study of the stress strain relations. Experimental determination. In

this section we shall discuss the relation between the differential form of the stress-

strain relation (cf. (27))

3 M. B6cher, Introduction to higher algebra, The Macmillan Co., New York, 1907, p. 296.

4 This technique has been used recently by Marcus Reiner, Am. J. Math. 67, 350-362 (1945) and

W. Prager, loc. cit.

5 These relations contain, as special cases, the stress-strain laws developed by W. Prager, Proc. Fifth

International Congress of Applied Mechanics, Cambridge, Mass., 1938, pp. 234-237, and by J. H. Laning

in an unpublished paper (1942).
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dtij = \p{J2, + q(Ji, Ji)JsUj\dJz, dJi ^ 0 (28)

and the integral form

Ui = F(J2, A) [P(Jit /!)*/+ Q(Ji, A)J,Uj], (14)

which holds only when the ratios of the principal stresses are kept constant during the

loading process, i.e., if

Si, = ks™, (29)

where sfj' is fixed while k is the scalar variable. We shall then show how a series of

tests necessary to establish the Lode diagram will be sufficient to determine the stress-

strain relations completely. First of all, it is convenient to bring out the homogeneity

properties in the relations (28) and (14) by introducing the symbols

a = j\/j\, 7.) = Ji tn/A, (30)

where a is dimensionless, while 7has the same dimensions as J2. The relation (14)

can be written in the form

t'i'j = X(/2, a) {Sn + /3(a)7,-,} , (31)
where

X(/2, a) s F(Ji, A)P(Jt, A) , /3(a) = J\)/P(J2, A). (32)

Note that is independent of J2, because of the homogeneity relation between P and

Q established in Section 2.

With a similar change of notation, the relation (28) can be written as

dt'ii = G(/2, a) {Sij + } dj2l dj2 £ 0 (33)

where

G(/2, a) = p(Jt, A), (3'(a) s Aq(J*, jl)/pVt, A- (34)

Since we did not establish a homogeneity relation between p and q, we cannot immedi-

ately conclude that is independent of J2. However, we shall see immediately that

this is true and that indeed

F = (35)

We shall also show that G(/2, a) may be obtained from X(/2, a) by the relation

X d\
G(/2, «)=— + — • (36)

2/j dj 2

The relations (35) and (36) will then determine the differential relation (33) com-

pletely once the integral relation (31) is known by a series of experiments of the

special type (29). It is to be noted that the functions G(J2, a) and /3(a) in (33) deter-

mined through the use of (31) will by no means restrict the application of (33) to

processes connected in any manner with (29).

To establish the relations (35) and (36), consider the application of (31) and (33)

to a process of the type (29). Let de[J be the change in «{/ corresponding to a change dk.

Then
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dk
dj, = 2Jt—, da = 0; (37)

k
and (31) gives

., d\ . . / j dk
dtn = —— dJi[Sij + ^7 if J + X{s,/ + Pya) —>

oj 2 k

while (33) yields

du) = G(/„ allsu + pyi^dU

Equating coefficients of and 7,j, we obtain the relations (35) and (36).

-1.4

-1.6

-1.6

Fig. 2a. The a—p diagram (Eq. (38)) of the experimental results of Taylor and Quinney for copper,

aluminum, mild steel and decarburized mild steel. The data for mild steel are too scattered for a definite

curve to be drawn.

The experimental determination of the stress strain relations can then be reduced

to that of (31) alone. This can be done by a series of tests of the type (29), which is

of the class described by Lode,6 Taylor-Quinney7 and Hohenemser-Prager.8 Indeed,

6 W. Lodge, Forschungsarbeiten a.d. Gebiete d. Ingenieurwesens, No. 303, VDI-Verlag, Berlin, 1928.

7 G. I. Taylor and H. Quinney, Phil. Trans. Roy. Soc. London (A) 230, 323-362 (1931).
8 K. Hohenemser and W. Prager, Z. angew. Math. Mech. 12, 1-14 (1932). An English translation of

this paper is available as R.T.P. Translation No. 2468 (Durand Reprinting Committee, in care of Cali-

fornia Institute of Technology, Pasadena 4, Calif.).
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the relation /3(a) is merely another presentation of Lode's diagram. It can be easily-

verified that a, 18 are related to Lode's parameters9 n and v by the relations

4 m2(9 - m2)2
a =

jS =

27 (3 + m2)5

9(3 + M2)2 1 - v/n
(38)

2(9 - m2) m2(1 + 2v/fi - 3

This new system has the advantage that /8 gives directly the extent of deviation from

"von Mises' second hypothesis" discussed by Taylor and Quinney, which is equiva-

lent to putting jS = 0. Indeed, one principal aim of Taylor and Quinney is to find out

.3
$

-.1

-.2

-.4

0 LEAD

+ CADMIUM
* GLASS

a
.02 .04 oe .OA .10 .12 .14 .10 JS

Fig. 2b. The a—0 diagram (Eq. (38)) of the experimental results of Taylor and Quinney for lead,

cadmium and glass. The data are too few to allow any curve to be drawn.

this extent and is therefore to determine the value of /3. Figs. 2(a) and 2(b) show the

results of Taylor and Quinney converted into the (a, /3) diagram. This diagram re-

veals any experimental error more strongly, since /3 is essentially related to the slope

of the (ju, v) curve; e.g.,

9 W. Lode, loc. cit., pp. 1 and 12.
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dv 9 — 4/3

dn 9+2/3
for m —» 1,

dv 2/3
— = 1 -\ for ju = 0.
dn 3

It should be noted in passing that a must satisfy the inequality

0 < a < 4/27 (39)

to insure real values of ju.

Having determined /3(a) from (38), we may determine X(/2, a) by noting that

(cf. (31))

12 = }«;;.£■ = X»/2 {1 + 3a/3 + $a2/32}. (40)

For each loading process given by (29) the value of a is fixed, and (40) gives the de-

pendence of X2 on Ji if I* is determined for given values of Ji. A series of tests with

different principal axes will then give the further dependence of X on a.

6. Concluding remarks. In closing, we note some of the limitations of the stress-

strain relations developed in this paper. It has been pointed out previously that these

equations have been developed to cover the case of one loading followed by at most

one unloading. This restriction is quite essential, for relations (27) are not applicable

for a second loading. For example, if we consider a simple tensile test, the stress-strain

diagram obtained from (27) for the second loading would be a mere translation of the

diagram for the first loading. This does not agree with the experimental results. Sec-

ondly, we note that these equations apply only to metals which exhibit strain-harden-

ing. They are not applicable, for example, to materials which yield under constant

shearing stress or satisfy von Mises' yield condition, Ji — const.

It is hoped that the results presented here will provoke experimental work to

test their validity. Among the various features which should be tested are two as-

sumptions made in developing the differential stress-strain laws. The first hypothesis

(cf. Section 4) states that the increments in strain are uniquely determined by the

components of the stress tensor an and the increments da a without reference to the

previous history of loading provided only one loading has taken place followed by

at most one unloading. The range in which such a hypothesis is valid should be ex-

plored empirically. Secondly, the assumption involved in the transition from Eqs.

(24) to (25) should be examined carefully. According to these two relations, the prin-

cipal axes of the increment in permanent strain de[J will coincide with the principal

axes of the existing state of stress sa independent of the increments in stress dan,

provided only loading takes place. This conclusion should be tested by experiment.


