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1. Introduction. This paper is concerned with the general problem of structural

stability in the elastic or plastic range. Two slightly different formulations of this

problem are found in the literature. According to the first, one considers a deformable

body which, initially, is free from stresses, and which is then subjected to a system

of loads of gradually increasing intensity. As long as these loads are sufficiently small

the equilibrium configuration which the body assumes under their influence will be

stable; one asks for that intensity of the loads for which this equilibrium configuration

first becomes unstable. According to the second formulation of the problem of struc-

tural stability, one considers a given configuration of a deformable body and an equi-

librium system of body and surface stresses and asks whether, in the presence of these

initial stresses, the given configuration is stable or not. This second point of view is

adopted in this paper because:

(1) it clearly separates the stability problem from the problem of finding the

stresses produced by the given loads, and

(2) the manner in which the initial stresses are produced is irrelevant for the solu-

tion of the stability problem. In particular, it is by no means necessary that the initial

stresses are produced by loads which are applied to an otherwise stressfree body;

they may be produced by temperature changes or may partly be due to previous over-

straining of the body.

Once this second point of view is adopted, stress-strain relations enter into the dis-

cussion at one point only: we must be able to predict the infinitesimal changes in

stress which correspond to the infinitesimal strains associated with a system of in-

finitesimal displacements from the considered equilibrium configuration. As the rela-

tions between these infinitesimal changes in the stresses and strains are essentially

linear, the only difference between the elastic and plastic ranges consists in the fact

that in the plastic range a different set of coefficients must be used in these linear

relations according to whether the change of stress constitutes "loading" or "unload-

ing," while no such distinction need be made in the elastic range.

In Section 2, the general problem of structural stability is reduced to an eigen-

value problem for the displacements from a configuration of indifferent equilibrium

to a neighbouring configuration of this type. Except for the consideration of plastic

deformations, we follow Biezeno and Hencky1 in this derivation, but simplify the dis-

cussion by the systematic use of tensors. In Section 3, a variational principle is derived

which is equivalent to the eigen-value problem formulated in Section 2. As an ex-

ample for the application of this principle, the lateral buckling of an unevenly heated

lamina is treated in Section 4.

* Received June 5, 1946.
1 C. B. Biezeno and H. Hencky, Proc. Roy. Acad. Amsterdam, 31, 569-592 (1928).
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2. The eigen-value problem associated with the general problem of structural sta-

bility. We consider a given configuration of a deformable body and an equilibrium system

of body and surface stresses which is given to within an arbitrary factor X. If X is

sufficiently small, this equilibrium configuration will be stable-, we ask for that value of\

for which it becomes indifferent, assuming that the additional stresses which are produced

by infinitesimal displacements from the given equilibrium configuration are linearly re-

lated to the corresponding infinitesimal strains. This critical value of X will be called

the safety factor of the considered equilibrium configuration. With respect to a system

of rectangular Cartesian coordinates x,, let us denote the components of the given

stresses by X<r„- and the components of an infinitesimal displacement from the given

equilibrium configuration by «<. If the unit vector along the outward normal to the

surface is denoted by the surface stresses are

\Tj = XffiyM,-. (1)

The quantities a a must satisfy the equilibrium conditions

Oii.i = 0, (2)

where the subscript i after the comma denotes differentiation with respect to Xi, and

the usual summation convention regarding repeated subscripts is adopted.

The infinitesimal strain associated with the displacements Ui is given by

= £(«../ + (3)

Since the relation between this strain and the corresponding additional stress r,-,- is

assumed to be linear, we have

Tij — Cijkitki, (4)

where Can is a fourth order tensor which is symmetric with respect to i and j and

with respect to k and I. If, in particular, t<, and ei; are assumed to be related to each

other by the generalized law of Hooke, we have

Cijki = 2Go(SikSki (5a)
\ 1 — 2v /

where Go denotes the modulus of rigidity, v Poisson's ratio, and 8a is the Kronecker

delta. If the body under consideration can be expected to behave like an isotropic

elastic solid for an infinitesimal displacement from the given equilibrium configura-

tion,2 i.e. if the stresses Xo-,,- do nowhere exceed the elastic limit of the material, the

expression (5a) may be used in connection with the stress-strain relation (4). On the

other hand, where the stresses Xtr,-,- exceed the elastic limit, different expressions must

be used for Ci,*i according to whether the stresses r*,- associated with the strains

constitute "loading" or "unloading." We reserve the complete discussion of suitable

stress-strain relations beyond the elastic limit for another paper and give but one ex-

ample here. Defining the stress deviation as Sij = <Tij — %<rkkf>a and its intensity as

2 M. A. Biot [J. Appl. Phys., 10, 860-864 (1939)] and, more recently, F. D. Murnaghan [Proc. Nat.
Acad. Sci., 30, 244-247 (1944)] have pointed out that an elastic solid under initial stress can be strictly

isotropic only if the initial stress is of the nature of a hydrostatic pressure. For the conventional structural

materials, however, this small anisotropy caused by the initial stress can be disregarded as long as the

initial stress does not exceed the elastic limit.
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Go — G

and

/ c \ Go — G
Cijkl = 2Go\ bikfijl bijbkl I ~ ' SiySkl for $ij€ij ^ 0

\ 1 — 2v / 5

Gxjki ~~' 2Gii^5,{5ji "j ~ &<kfor Sfjtij 0.

(5b)

(5c)

Here Go denotes the value which the modulus of rigidity assumes in the elastic range,

while G=G(S) is the so-called tangent modulus of rigidity. In the elastic range G = G0,

and (5b) as well as (5c) reduce to (5a). The stress-strain relations which are obtained

by substituting (5b) and (5c) into (4) were suggested by J. H. Laning in an unpub-

lished paper (1942); they constitute a generalization of stress-strain relations which

the present author had used in earlier papers.3 We note that Cijki = Ckia, according

to (5a), (5b), and (5c).

A generic particle with the coordinates Xi in the initial state has the coordinates

Xi = Xi+Ui in the considered neighbouring state, and

dx\ = {fiij ~i~ j)dxj — (btj t\j ~f- Wij)dxj, (6)

where the deformation e,-,- is defined by (3) and

«>.•; = - «;.<) (7)

is the rotation associated with the displacement

The infinitesimal force \dfj which is transmitted across the surface element dS in

the initial state equals
X dfj = XT jdS = XaijHidS. (8)

The force which is transmitted to the corresponding material element in the neigh-

bouring state will be written in the form

X d]j = XoijHidS. (9)

Note that the normal vector and the area dS in the initial state are used in (9).

This means that the stress tensor \<iij is defined in the Lagrangian manner4 with the

initial state as the state of reference. Consequently, X?,-,- is not a symmetric tensor;

it will be written in the form

X(Tty X(Tij "I- Tij "l" T\j "I- Tijt (10)

where the terms t,-,-, t'v, and Ty are infinitesimal changes of stress defined in the

following manner:

(1) the tensor r,-,- is symmetric; it represents the change of stress associated with

the infinitesimal strain e,-,- and is given by Eq. (4);

(2) the tensor Ty, too, depends on the strain e<,-; it is antisymmetric and repre-

sents the change of stress necessary to restore the moment equilibrium which is

expressed by the symmetry of a a in the initial state and which is disturbed by the

deformation;

3 W. Prager, Proc. Sth Internat. Congr. Appl. Mech. Cambridge, Mass., 1938, pp. 234-237; Prik-

ladnaia Matematika i Mekhanika S, 419-430 (1941); Duke Math. J. 9, 228-233 (1942).
4 H. Jeffreys has recently given a similar analysis using the Eulerian approach [Proc. Cambridge

Phil. Soc. 38, 125-128 (1942)]. The Lagrangian approach seems more suitable, however, for the problem

under consideration.
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(3) the term t,", finally, depends on the rotation co»3-; it represents the change of

stress, with respect to the fixed coordinate axes, which is produced by this rotation.

Since only first order terms in «,,• and w,-, need be considered in the following analy-

sis, the order in which the deformation and the rotation w,-,- are applied is imma-

terial.

The antisymmetric tensor T'tJ depends only on To find its mathematical ex-

pression, it is therefore sufficient to consider a pure homogeneous deformation, i.e., a

deformation for which Ui,j is independent of the coordinates and it;,,-= e,,-. On

account of (9), the equations of equilibrium for the deformed body are

J" OipiidS = 0, J" (HijXk — aikXj)tiidS = 0

or

^ (Tij.idv — 0, ^ \ (JikX j) ,idv : 0.

Since these equations must hold not only for the entire body, but also for an arbitrary

portion of it, we must have

iii.i = 0, (11) (OijXk — <iikXj),i = 0. (12)

For the considered pure deformation, t4"= 0 and

Zi.j = + ui.i — + t'i-

Using the symmetry of the tensors an and m in addition to the Eqs. (10), (11), (2),

and neglecting higher order terms, we may therefore write (12) in the form

T.'j — Tji = 2Tij ~ ~ Vjktki)- (13)

The tensor depends only on To find its mathematical expression, it is suffi-

cient to consider a rigid body rotation, i.e., a system of displacements Ui which de-

pend linearly on the coordinates Xi and satisfy «,-,/= —By this rotation the

components of the infinitesimal force transmitted across a given surface element are

transformed according to

dfi = (Sij + Uij)dfj = (dij + u>ij)dfj = dfi + Uijdf j. (14)

For the considered rigid body rotation r<,=r^ = 0. Using (8), (9), and (10), we

may therefore write (14) in the form

Uj = — \arikfj) kj. (15)

Returning now to the consideration of arbitrary infinitesimal displacements m„

we write in accordance with (10), (13), and (15):

\a,j = Ac,-j + Tij + j — CTjktki) ~~ Xo-.tWiy. (16)

On account of (2), the equilibrium condition (11) furnishes therefore

[ra + §\(<nktkj — <7jk*ki) — AoaUfcj],. = 0, (17)

and the condition dfi = dfi furnishes

[th + m<Tiktkj — Ojktk,) — \oikUkj]ni = 0. (18)
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Except for our more general definition of the tensor r,,-, Eqs. (17) and (18) agree with

those derived by Biezeno and Hencky. Biot8 obtained the same relations from his

non-linear theory of elasticity, and Neuber6 has recently discussed the formal rela-

tion of the differential equations (17) to the fundamental equations of elasticity. As

was already pointed out by Biot, Eqs. (17) differ somewhat from the equations which

Trefftz7 derived using an unconventional definition of stress. If the given state of

stress, is homogeneous and if the coordinate axes have the directions of the prin-

cipal axes of this state of stress, Eqs. (17) reduce to the form given by Southwell.8

By means of (3), (4), and (7), the quantities t^, and co<7- can be expressed in

terms of the first derivatives of the displacement w,. In this manner an eigen-value

problem for the displacement Ui is obtained. The smallest eigen-value X is the desired

safety factor for the given distribution of initial stresses. We refrain from formulating

this eigen-value problem explicitly, because in all but the most simple cases its exact

solution would hardly seem possible.

3. The variational principle associated with the general problem of structural sta-

bility. The form of Eqs. (17) and (18) suggests the existence of an equivalent varia-

tional principle from which approximate solutions of stability problems can be ob-

tained. Indeed, let us establish the Euler equations and natural boundary conditions

of the variational problem

5^* \Cpgrgtpq€Tt -f~ \<Jpq{^Urtp1lT€rp€rq)]dV = 0, (19)

where only the displacements uv and hence strains epq are to be varied, but not the

stresses <rpq and the coefficients Cpqr, which depend on the stresses. If the integrand

of the left-hand side of (19) is denoted by F, the Euler equations and natural bound-

ary conditions are

Since

we have

d / dF \ 6F
—( — ) = °, (20) — W< = °. (21)
oXi\dUj,i/ oUjti

dtpq
2 jpOiq "f* jq) j

dF

dUj,i

dUj,i

— 2Cijki(ki + X [icikii jtk — ffiktjk — <r ja€»a- ]

= 2 th + X [(Tiictkj — a jktki — 2<r,-jt«j[.y].

Equations (20) and (21) thus are indeed identical with (17) and (18).

The variational principle (19) can be used in very much the same manner in which

the principles of minimum potential energy and minimum complementary energy

are used in elasticity:9 by reasonable assumptions concerning the displacements w<

* M. A. Biot, Phil. Mag. (7), 27, 468-189 (1939).
6 H. Neuber, Z. angew. Math. Mech. 23, 321-330 (1943). The author is indebted to Professor

E. Reissner for the reference to this paper.

' E. Trefftz, Z. angew. Math. Mech. 13, 160-165 (1933).
8 R. V. Southwell, Phil. Trans. Roy. Soc. London (A), 213, 187-244 (1913).
9 See, for instance, E. Volterra, Atti Accad. Lincei, Rend. (6), 20,424-428, 463-467 (1934); 21, 14-19

(1935); 23, 329-332 (1936).
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the class of admitted functions is restricted and the variational problem simplified.

In using this technique, we must see to it that the restrictions imposed on the displace-

ments Mi do not rule out the possibility of fulfilling the boundary conditions (17).

4. An example. To illustrate the manner of application of the variational principle

formulated in Section 3, let us discuss the lateral buckling of an elastic, prismatic

beam of the length I which is built in at both ends. We assume that the cross section

of this beam is doubly symmetric. Taking the origin of the coordinates at one end

of the beam, we let the axis of *i coincide with the axis of the beam and the axes of

x2 and x3 with the axes of symmetry of the cross section *i = 0. To simplify the expres-

sion (5a) for the coefficients Cmi, we shall assume that v = 0. This assumption is in

conformity with the spirit of the engineering theory of the bending of beams; in

using it we must keep in mind that Young's modulus Eo equals twice the modulus of

rigidity Go if v = 0.

As to the initial state of stress, let us consider the case where

o-n = cx 2, (22)

while all other components of ct,-,- vanish. The constant c in (22) obviously has the

dimension of a stress divided by a length. In an originally unstressed beam with

built-in ends a stress distribution of the type (22) can be produced by changes of

temperature which vary linearly with xt. If the width of the beam (measured in the

direction of x3) is small in comparison to its height, (measured in the direction of *2)

the stresses (22) may produce lateral buckling. The infinitesimal displacements as-

sociated with this type of instability may be described in the following manner:

a generic cross section Xi of the beam undergoes a translation u(x 1) in the direction

of the xg-axis, a rotation — u'(xi) about the x2-axis which makes the cross section

remain normal to the bent centerline of the beam, and, simultaneously, a rotation

—0(x 1) about the tfi-axis; in addition to this rigid body displacement the cross section

undergoes a warping — w(x2, x3)d'(xi) which is associated with the twist — d'(xi). The

corresponding displacement components are

Ml = — £3m'(zi) — W>(*2, *3)0'(*l), m2 = Z30(*l), Ms = u(xi) — *20(*l). (23)

Note that on account of the assumption v = 0 the longitudinal extension dui/dxi is

not accompanied by any lateral contraction. Particularly simple expressions for m2

and u3 are thus obtained. The matrices of the derivatives m,-.,- and of the strains m

therefore are

[— x3u" — w

x3e'

u' - Xie'

L-1#'

— x3u" — w9" — d'dw/dx2 — m' — 9'dw/dx3 ~

0 -6

- *20' e 0

— x3u" — wB" W(x3 — dw/dNi) — \d'{xi + dw/dxz) -

(*3 — dw/dxt) 0 0

— i0'(*2 + dw/dx3) 0 0

(24)

(25)

Since ffu = 0 unless i—j— 1, we need only uk\uki — for the evaluation of the term

with the factor X in (19). Now, for a doubly symmetric cross section the warping func-
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tion w is,odd in X2 as well as in x3. Taking account of this fact, and keeping in mind

that <rix is odd in xi and even in x3, we find that

J <7ii(utiUici — tki(ki)dv = — 2c J u'Q'x\dv = — 2c/3^J* u'd'dxi, (26)

where I3 denotes the moment of inertia of the cross section with respect to the *3-axis.

We now proceed to the evaluation of term Cp<,r,epqer, in (19). With v = 0, Eq. (5a)

takes the form C„tj = 2Go5,t5,j and the stress-strain relation (4) reduces to

7^ = 2Gotij. (27)

In applying this, we shall replace 2Go by Eo whenever i=j. In view of (25), we have

Cpqrtfpqfrt = Tpqtpg = Eo{x3u" + 11)0")2 + 4Go(«12 + <13), (28)

where €12 and €13 depend on the twist 9' and on the warping w per unit twist in pre-

cisely the same manner as in the case of pure torsion. In this case, however, the in-

tegral of 4Go(«?2 + e?3) over the cross section equals GoCd'2, where G0C denotes the tor-

sional stiffness of the beam. Adopting the warping w per unit twist found in the case

of pure torsion, and setting*

T = J w2dA, (29)

where dA denotes the area element of the cross section, we obtain

f CPqT,tPgtr,dv = £0/2 f u'ndxx + E0T f 6"2dxi + GoC f d'2dxu (30)
J J 0 J 0 J 0

where J2 is the moment of inertia of the cross section with respect to the *s-axis.

Substituting the expressions (26) and (30) into (19), we obtain

E0hulv + \cI3d" = 0, E0T6™ - GdCd" + \cI3i1" = 0 (31)

as the Euler equations for our problem, and

6" = 0 for *1 = 0 and Xi = I (32)

as the natural boundary conditions. In addition to these natural boundary conditions,

we have the imposed boundary conditions

6 = u = u' = 0 at *1 = 0 and X\ = I. (33)

The safety factor X is found as the lowest eigen-value of the problem formulated by

Eqs. (31), (32) and (33).

* Note that for the doubly symmetric section considered here the point xit 0, 0 is the shear center

of the cross section X\. Since w is odd with respect to x2 and we have w=0 at this point. These remarks

identify the definition (29) with that given by J. N. Goodier, Eng. Exp. Station, Cornell University, Bulle-

tin No. 27 (1941), p. 9.


