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A PROBLEM IN THE PROPAGATION OF SHOCK*

BY

MONROE H. MARTIN

University of Maryland

Introduction. This paper deals with a single problem in the rectilinear motion of

a gas, namely, what is the subsequent behavior of a gas initially at rest if its initial density

is a constant po in the region | x | < 1 and a constant p2 < Po in the region | x\ > 1 ?

The behavior of the gas is an idealization of the behavior of the atmosphere in

an infinitely long right circular cylinder after an explosion within the cylinder.

It is assumed that the pressure p and density p of the gas are related by the isen-

tropic law p = k2py where k2 is constant for all x and all t. Under the law of conserva-

tion of energy1 (Rankine-Hugoniot equation) there is a change2 in entropy across a

shock and the results in the paper may be regarded as an approximation to the actual

state of affairs only in the case where the change in density across the shock is very

small with a correspondingly small change in entropy.

At times the author has not hesitated to restrict attention to a monatomic gas

(7 = 5/3) in order to avoid formal mathematical difficulties.3 The behavior of the gas

undergoes marked changes as the difference pa — pi between the initial densities is per-

mitted to vary.4

If po —P2 is sufficiently small the two initial shocks give rise to shocks traveling in

opposite directions towards infinity as t increases indefinitely. Up to a certain instant

the shocks travel with constant velocity greater than the velocity of sound in the un-

disturbed gas. After this instant their velocity of propagation decreases monotonically

with time, to approach the velocity of sound in the undisturbed gas as the shocks

recede to infinity.6 The behavior of the gas between the two shocks is followed up to a

stage when the mapping6 of Riemann's (r, s)-plane upon the (*, <)-plane loses its one-

to-one character. The further behavior of the gas still awaits determination.

Plates 1 and 2 at the end of the paper present qualitatively the variation of density

(or pressure), over the gas for p0 — p2 sufficiently small.

1. Fundamental principles. Assuming that the pressure p is a monotonic increas-

ing function of the density p and denoting the velocity by u, the partial differential

equations

* Received March 8, 1946.

1 See Riemann-Weber, Die partiellen Differentialgleichungen der Mathematischen Physik, 6th ed.,

Friedr. Vieweg & Sohn Brawnschweig, 1919, vol. 2, pp. 549-550.

2 Indeed under the Rankine-Hugoniot hypothesis it follows from formula (10) on p. 513 of Riemann-

Weber, op. cit. that the entropy of the gas in back of the shock depends upon the ratio of the densities of

the gas on the two sides of the shock. This ratio changes as the shock propagates and consequently the

the entropy of the gas in back of the shock is not constant.

3 The examination of other values of y has been begun by R. C. Rand in his doctorate thesis entitled

The rectilinear motion of a gas subsequent to an internal explosion. A copy of this thesis is on file in the li-

brary of the University of Maryland.

4 R. C. Rand, loc. cit.

6 See, however, the last sentence in §6 of the present paper.

6 For a discussion of this mapping see Riemann-Weber, loc. cit., pp. 533-536 or The rectilinear motion

of a gas, Amer. J. Math. 65, 391-401 (1943). This paper will be cited as I.
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p(m< + uxu) + G*px =0, pi + (pu) x = 0, _ G2 = G2(p) = p',

for u, p become

ft + arz =0, st + /3 sx = 0, a = u + G, fi = u — G, (1)

if we set

« = r + s, i (G/p)dp = r — s > 0.
J o

(2)

Clearly u, p are monotonic increasing functions of r+s, r — s respectively and

a = a(r, j) = r + 5 + G(p(r — s)), & = /9(r, j) = r + 5 — G(p(r — s)) (3)

satisfy

a(- 5, - r) = - 0(r, s), /3(- s, - r) = - a(r, s). (4)

A point of the («, p)-plane, or its correspondent by (2) in the (r, s)-plane, is said

to represent or be a state of the gas. The points of the (r, s)-plane representing states

of the gas comprise a half-plane r 2:s termed the state plane. Points representing states

having the same velocity (density) lie on the lines r+s = const. (r — s=const.) and

the velocity (density) of a state increases with the distance of the point (r, s) from

the line of zero velocity r= —s (the line of zero density r = s). The velocity is positive

or negative according as (r, s) lies above or below the line r= —s.

In general a solution r = r(x, t), s = s(x, t) of (1) transforms a region of the (x, t)-

plane into a region in the state plane and is single valued. The inverse transformation

T: x=x(r, s), t = t(r, s) is not necessarily single-valued and i^ regarded as assigning

the state (r, s) to its transform (*, t). Corresponding to (1) there is the system

xr — ptr = 0, x, — at, = 0, (5)

of partial differential equations for x(r, s), t(r, s) in T. The Jacobian / of T is

J = - (a - fi)tTt. = - 2Gtrt.. (6)

If x, t are solutions of (5), the system of Pfaff

x — at — v x — (it — v
dw = (x — at)dr + (a: — /3t)ds, dv = 2 dr — 2 ds,

a — /3 a — f)

is completely integrable, and conversely. When we write

x — at = wT, x — fit = w„ (7)

the integrability condition for the second equation becomes7

(a - |8)w„ — Pr(Wr — ID,) - 0. (8)

Taking w a solution of (8) it follows from (7) that a transformation T is

fiwT — aw, Wr — W,
Tw: x = , t =  

a — & a — /3

The following theorem is a direct consequence of (4).

7 Cf. Riemann-Weber, loc. cit., pp. 536-538 or pp. 393-394 of I.
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Theorem 1. Given w = w(r, s) a solution of (8), another solution is w = w(—s, —r)

and Tw, Ta map points which are reflections of each other in the line of zero velocity

r=—s, into points which are reflections of each other in the line x = 0.

As a corollary, we see that if w{r, s)=w{ — s, —r) points which are reflections of

each other in the line r = — s, are carried by Tw into points which are reflections of each

other in a: = 0.

The theorem is obvious a priori on physical grounds. Given any motion of the

gas, its particles may be reflected in the plane x = 0 to gain another motion.

Taking r = r0 = const., the second equation in (1) upon multiplication by d/3/ds

becomes

d(x- fit, 0)
0, + PPx = ;   = 0,

d(x, t)

and therefore a solution of (1) is given implicitly by8

r = r0, x- (31 = ¥(/3), (9)

^(13) denoting an arbitrary function of (3. Corresponding to s = so = const., a solution

of (1) is obtained from

x — at = $(a), J = .Jo. (10)

For a fixed 5 in (9) the state (r0, s) is assigned9 to all points of the straight line

x—pt=ty(fi). This line is termed a propagation line and the state (r0, s) is said to be

propagated along it. Physically the state (r0, s) is propagated through the gas with a

velocity /3 with respect to a fixed plane.

Let us assume that Tw puts the states of a region R of the state plane in (one-to-

one correspondence with the points of a region X of the (*, <)-p'ane- The transform

by Tw of a segment of r = const. (5=const.) in R is a curve in X termed an r-curve

(s-curve). The r and s-curves provide a curvilinear coordinate system on X from which

the state of the gas may be read off at any point of X.

From (5) the slope of an r(s)-curve10 is 1 /a (1//S); from (9), (10) the propagation

lines drawn from the points of an r(5)-curve have slope 1 //3 (1/a). Therefore the

tangents drawn to s(r)-curves at the points of an r(s)-curve are propagation lines and, in

so far as they do not intersect, may be used to assigned the states on the r{s)-curve to the

points of the region covered by them.

Two r(5)-curves C, C transforms of r=r0 (s=s0) under Tw, T„ respectively are

said to be propagated from each other if the propagation lines drawn from points of

C, C which are transforms of the same state are identical.

Lemma 1. Two r[s]-curves C, C transforms by Tw, T& of r = r0 [s = s<)] are propagated

from each other if, and only if w,{r0, s) = wt(r0, s) \wr{r, s0) = wT(r, s0) ].

From (7) parametric equations of C, C are

C: x — a(r0, s)t = w,(r0l s), x — /3(r0, s)t = w.(r0, s),

C: x — a(r0, s)t = wr(r0, s), x — /S(r0, s)t = w.(r0, s).

' Cf. Riemann-Weber, loc. cit., p. 518.

9 Cf. Riemann-Weber, loc. cit., pp. 516-520.

10 First noted by R. C. Rand.
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Along a propagation line propagating the state (r0, s) we have x—/3(r0, s)t- const.

Hence propagation lines drawn from a point on C and a point on C, both transforms

of the same state (r0, s) will be identical if, and only if, w,(r0, s) —w,(r0, s).

It is interesting to note that tangents drawn to C, C at points which are trans-

forms of the same state are parallel.

Lemma 2. Given two r\s]-curves C, C which are propagated from each other, curve C

will pass through a point (Sc, t) on the propagation line propagating the state (r0, S),

[(f. So) ] from C if and only if wr(r0, s) = £ — a(r0, s)i[u>,(f, s0) = £—j8(f, s0)/]- This con-

dition determines wr(r<t, 5) [a>,(r, 50) ] uniquely.

The first part of the lemma follows from the parametric equations of C. To prove

the second part we set r = r0, w = w in (8) to obtain an ordinary, linear differential

equation for wr since w,=w, is a known function of s. This determines w, uniquely,

for w, is known when s = S.

2. Shocks and buffer waves. Under the assumption that G increases with p it

follows that G = G(p(r — s)) is an increasing [decreasing] function of r[s] for fixed

5[r]; from (3), one concludes that a[/3] is an increasing function of r[s] for fixed s[r].

Lemma 3. If initially r = r0for — 00 <x < + <*> and s = si or s2 as *<0 or x>0 with

Si <sit subsequently the state of the gas is unchanged exterior to the " buffer region" between

the lines x = 8(r0, Si)t, x=f3(r0, s2)t. Within this region the state (r0, s) with Si <s<j2 is

propagated11 along the propagation line x = j3(r0, s)t.

Initial states are propagated along the propagation lines

* ~ 0(>"o, s{)t = ki < 0, x — 0(ro, st)t = k2 > 0, /3(r0, s 1) < 0(ro, *2),

which diverge as shown in Figure 1 to assign the state (r0, Si) to the region on the left

of OA 1 and the state (r0, 52) to the region on the right of OA2. To obtain the states in

*= to

— X

the buffer region AxOA2 one sets ^(/3)s0 in (9) and draws the propagation line

x=/3(r<i, s)t from 0. Along this propagation line the state is (r0, s) and as 5 ranges from

Si to 52 the propagation line turns from OAi to OA 2 to assign states to all points of the

11 Cf. Riemann-Weber, loc. cit., pp. 520-521.
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buffer region. It will be observed that the states vary continuously along a line

/ =<o>0.

In this solution of (1), the inverse transformation T is not single-valued the, seg-

ment of r = r0 being carried by T into the half-plane J S^O.

Physically the buffer region corresponds to a disturbance PiPi affecting two bodies

of gas of different uniform states in contact with one another initially, the end points

of the disturbance traveling with the local velocity of sound in the two bodies of gas.

The passage of this disturbance through the gas is termed a buffer wave.

A shock exists at x = £ if pi p2 and is propagated with a velocity12

. /pi pi-Pi /pi pi —pi
i = «i ± \f = «2 ± A/ ' (11)y pi pi — pi v Pi pi — Pi

where

«i — «(f — 0), pi = p(£ — 0), P\ = p(l- — 0),

t*i = «({ + 0), pt = p({ + 0), pi = />({ + 0).

The curve x = £(t) in the (x, <)-plane is termed a shock curve. It will be sufficient

for the purposes of this investigation to consider progressive condensation shocks

arising when pi>pt and the positive sign is taken in (11). For a shock of this type one

has the condition

Ml — Mj = V(pi — Pt)(pt1 ~ Pi (12)

with

I = («ipi — ttjp2)(pi — p2)_1. (13)

If (ri, 5i), (r2, st) denote the correspondents of (uu pi), («2, p2) by (2) and the state

(r2, Si) on the right of the shock is given, the state (rlt Si) on the left of the shock is not

uniquely determined but, by (12), may be any point of the curve.

r + J = r2 + Si + V(p — Pt^Pi1 ~ P 0. P = P(r ~ s)< p = p(r — s) > p2 (14)

in the state plane. This curve is termed the compatibility curve of the state (r2, s2)

and its equation may be written in the parametric form

r — i {ft + St + v + V(P ~ Pi)(pi1 ~ P-1)}.
(14')

* = 3{>'2+Ss-» + V(P - pi)(pi* — P~l) } , » > t)2,

upon introducing the parameter v = r — s, where, of course, i>2 = r2 —s2.

Lemma 4. The compatibility curve of a state (r2, s2) rises with increasing r from the

point (r2, Si), at which it has a horizontal tangent.

Both derivatives of r, s with respect to v will be positive provided

— G2(p) >   — = 6'(?) where p2 < p < p,
pi P — pi

u See, for example, Riemann-Weber, op. cit. p. 513.
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which inequality holds for p>p2

under the assumption that G in-

creases with p.

We shall now consider the si-

multaneous generation of a shock

and buffer wave13 as pictured in

Figure 2 where B is a buffer region

between two regions R0, R\ of uni-

form state (r0, 50), (n, Ji) respec-

tively and OS is the shock line

separating Ri from the region R2

of uniform state (r2, s2).

Lemma 5. A shock and buffer wave are generated simultaneously13 at the contact of two

bodies of gas of different uniform states (r0, So), (r2l s2) provided the point (r0, s0) in the

state plane lies directly underneath the compatibility curve of the state (r2, s2).

Choosing the state (r2, s2) in i?2 arbitrarily, the state in Ri must be represented by

a point on the compatibility curve of the state (r2, s2); and if this point lies directly

above (ra, -So) the existence of the buffer region B is assured by Lemma 3.

3. The isentropic case. Here p = k1py with k, y> 1 constants and G increases with

p so that the results of §2 remain in force. Moreover

7— 1 1 + 7 3 — y 3 — y 1+7
G = —— (r-s), a = —-r-\ — s, 0 = —— r -] — s, (15)

2 2 2 2 2

and (8) becomes
3 — 7

(r — s)uv, — m(wT — w.) = 0, m =   (16)
2(7 ~ 1)

For monatomic gases 7 = 5/3 one finds a = f(2r+s), /3 = §(r+2s). Also m — l and

(16) becomes

(r — j)w„ — (wr — w.) = 0, (16')

the general solution of which is

  £

w = , R=R(r), S = S(s), (17)
r — s

R{r), S{s) being arbitrary functions. The transformation Tw is

(r + 2s)w, — (2r + s)w, 3 w, — w.
x — > t —  » (18)

r — s 2 r — s

or, from (17)

, r + s ,r> OS ' (»■ + 2j)^ + (2r + j)5'
x = 3  (R — 5) —

t =

(r - s)3 (r - s)2

3(R - S) 3 R' + S'

(r — s)3 2 (r — j)2

(18')

13 Cf. Riemann-Weber, loc. cit., pp. 527-529.
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so that

(19)

3 (r - s)*R" - 2(r - s)(2R' + 5') + 6(R - S)
tr   j

2 (r - s)<

3 (r - sYS" + 2(r - s)(R' + 25') - 6(7? - S)
t, =  >

2 (r - ,)«

primes denoting differentiations of R, S with respect to their arguments.

Lemma 6. For a monatomic gas the compatibility curve of a state (r2, s2) is an arc of

an algebraic curve of eighth degree ending at (r2, s2), about which the points of the arc per-

mit the expansions

3 S 2
r = r2 + v — v2 + k(v — v2) + ■ • • , s = s2 + *(» — v2) + • • • , <c = 1/3d2. (20)

At all other points r is a regular analytic function of s with a positive derivative and r, s

are regular analytic functions (14') of the uniformizing parameter v, with respect to which

they possess positive derivatives.

For monatomic gases equations (14), (14') become

r + s = r2 + si + V^[(r - *)' - (r2 - J2)6]t(r2 - j2)~s - (r - (21)

r = l[r2 + s2 + v + v7y(»' - ^)(»2~' - f"')],

J = hir2 + Si - V + VA(»( — 1>.) (Vi» - ir»)],

from which the statements in the lemma follow straight forwardly.

We return to the general adiabatic case. A point in the state plane represents a

state for which the velocity is subsonic, sonic or supersonic according as the point

lies in, on the boundary of, or exterior to the region.a>0, 0<O between the straight

lines a = 0,0 = 0.

Lemma 7. The angle of inclination 9 of the tangent at a point of an r[s]-curve is less

[greater] than the angle of inclination 0 of the propagation line drawn from this point.

Both angles lie between 0 and ir and are decreasing functions of s[r].

The lemma is obvious in view of (15) and previous results in §1 on the slopes of

r, 5-curves and propagation lines.

Lemma 8. If Tw puts a region R of the state plane in (1-1) correspondence with a

region X of the (x, t)-plane and if the Jacobian J of Tw never vanishes in R, the curvature

of an r \s]-curve in X has a fixed sign and the parts of the propagation lines drawn on the

convex side do not intersect.

4. The first initial value problem. Returning to the problem formulated in the in-

troduction, the correspondents of the initial states (0, po), (0, p2) of the gas are repre-

sented by the points P0(r0, s0), P2(r2, s2) of the state plane in Figure 3a. Both P0, P2

lie on the line of zero velocity r+s = 0, with r®>r2, since pa>p2.

From Lemma 4 we observe that P0 lies directly underneath a point Q(r0, Si) of

the compatibility curve of P2 and therefore, according to Lemma 5, a shock and

buffer wave are generated simultaneously in the gas at ac = l. In Figure 3b the shock
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line from -<4(1, 0) is AQ" and the buffer region is PJAQ'. States in the regions

OAPo , Q'AQ", Q"Ax are represented by points Po, Q, Pt respectively in Figure 3a.

It is obvious from symmetry considerations that a shock line AQ" and a buffer region

/3 = 0

Po AQ' emanate from A{ — 1, 0) and that states in the regions OAP0', Q'AQ", Q"Ax

are represented by points P0, Q, Pi in Figure 3a with Q the reflection of Q in the line

r+5 = 0. In the buffer region emanating from .<4 [.4], we have r = r0[j=Jo] and the

equations of the propagation line are

* — 13(r0, s)t = +1, Jo ^ s ^ Ji, [z — a(r, s„)t = — 1, rx g r g r0]

(n = -50. (22)

As j[r] ranges from Jo[/o] to 5i[rJ the propagation line from A[A] turns from

APo \APq ] to AQ'[AQ'], with t = Gol where G0 = G(p0) at P0'. These propagation

lines intersect on the /-axis above Po to assign different states to their intersection

points. We avoid such a physical impossibility by terminating them on the arcs

Po Q', Po Q' in Figure 3b. The propagation lines assign the states on QPoQ to the

points of Q'Po Q' and we seek a Tw which carries QPoQ into Q'Po Q' and assigns the

same states to the same points of the latter arc. A comparison of (7) with (22) leads

to the following initial value problem.

The First Initial Value Problem. Given two constants r0, sB,find a solution w(1)

of (16) for which w^(r, s0) = — 1, w,(1)(ro, s) = +1.

Before giving the solution for the general adiabatic case, we recall a few facts

concerning the resolvent14 of (16). This resolvent is a two parameter family of solu-

tions v = v(r, s; r0, s0) of the conjugate equation (r — s)vT,+m(vr—v,) =0 meeting the

initial conditions vT{r, s0; r0, s0) = +1, ^(fo, 5; ro, s0) = — 1, and is given by

. fro — s \m r — ro r — r0\
v = (r - ro) ( ) Fi(l - m\ m; - m\ 2; ;  )

\r o — so/ s0 — r0 s — r0/

. / r ~ „ J - Jo J - 5o\
- (j - Jo) I— ) ^i(l - m;m; - m; 2; ;  ),

Vo — Jo/ ro — Jo r — So/

14 See I, in particular §3 and §5.
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where Fi is Appell's first hypergeometric function of two variables. The solution w(1)

of the first initial value problem is obtained by replacing m by —m and changing the sign

of the resolvent.

Monatomic gases present the simplest mathematical problem and from now on

they will receive our attention exclusively. For them m = 1 and

(' - r»)(r - so) + (j - r0)(s - so) r\ - r - (/ - si)
wa>     , (23)

r — s r — s

the last equation holding provided fo+So = 0.

Comparison of (17) and (23) yields

„ 1 2 „ 2 2 , ^
R = r0 — r , S = s — s0, (24)

so that (18') and (19) become

(i) , , . (r ~ sy + 6(rs + roSo) u> , « +
* =-(r + j)     , t =-6- —, (25)

(r - i)» (r - i)»

6 - 9(r - s)~*(as - 2r*) - - 9(r - s)~^r - 2rj), (26)

where the superscripts record that w — wa) in Tw. In the subsonic region of the state

plane a>0, j3 <0 and, therefore in this region

*,(1> < 0, /,(1) > 0, 7(1> > 0. (27)

The square P0QPiQ in Figure 3a is termed the primary region. As p0 increases

from pt the primary region expands from point Pt till eventually Pi leaves the state

plane. We consider only values of po for which the primary region lies entirely in the

subsonic region and forego examination of the several interesting cases which arise15

when this is not the case.

Arc Po Q', the transform of P0Q by TwW, is tangent to AP0' at Po and ha5 slope

tan 0 = l/a>O. Since /(1) increases by (27) and the acute angle 6 decreases by Lemma

7 with increasing s, arc Po Q' is concave downwards. Likewise arc Q'Pl the trans-

form of QPi by 7», is concave downwards. From (23) and the corollary to Theorem

1 it follows that arcs P0' Q', Q'P{ are concave downwards.

The boundary PoQPiQ of the primary region and the boundary P0' Q'P{ Q' of

its transform under Twa) are in one-to-one correspondence with /(1)>0 holding in

the interior of the primary region. It follows1' that the interiors of the two regions

are in one-to-one correspondence to assign a unique state to each point of the region

Po Q'P! Q' in Figure 3b.
S. The second initial value problem. To extend our knowledge of the states of the

gas we draw propagation lines from the points of the arc Q'P'. These propagation

lines are tangent to r-curves on Q'P\ and according to Lemma 8 do not intersect on

the convex side of Q'P{.

The equation of the propagation line from Q' is

2 (i) ro 4~ Si
s   (2r0 + Si)l = wr (r0, Ji) = — 1 — 2 ,

3 r0 — Si

u A beginning in this direction has been made by Rand, loc. cit.,

M See, for example, G. A. Bliss, Fundamental existence theorems vol. Ill, Amer. Math. Soc. Col-

loquium Publications, reprinted 1934, p. 42.
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and the equation of the shock line from A is, from (13), since r2+s2 = 0,

(r0 + Ji)(ro - ■si)®
x t = 1.

(r0 — si)» — (r2 - sty

The two lines intersect in a point Q" with coordinates

12 r0 12 r0 (r0 — *i)3 — (r2 — s2)3
x"=l+ —   (r0 + ^(ro - 5i)2, t" = —          , (28)

X(r0, si) X(r0, si) r0 — si

where

\(r, s) = (r — s)4 — 2(2r + s)(r2 — s2)J. (29)

Referring to Lemmas 1 and 2 a solution w(2) of (16') transforms QPi into an s-curve

propagated from Q'P{ and containing Q" if

w?\r, *i) = wra>(r, 5i), rx g r ^ r0, w"\r0, *i) = at" - f(r0 + 2si)/", (30)

the latter condition determining w,(2) uniquely on QPi.

s

p" R"2. i 4 %

/9 = 0

u=r + s = o

Fig. 4a. Fig. 4b.

Let the arc Q"P{' in Figure 4b indicate the prolongation of the shock line AQ".

On the right of Q"Pi' the state of the gas is P2(r2, s2) and the states immediately on

the left of Q"P" are represented by points (r, s) on the compatibility curve (21).

Thus Q"P{' is the transform by Twm of the compatibility curve QP?.

On the one hand the slope of Q"P" is

dt tTr' + t, 3 trr' + t,

dx xrr' + x, 2 (r + 2s)trr' + (2r + s)t,

where r = r{s) is defined implicitly by (21) and its derivative r' is

r 8 (r — s)s — 20 (r2 — s2)3(r + 2s)2 — 3(r2 — j2)s

r 8(r — *)a - 20(r2 - j2)»(2r + s)2 - 3(r2 - j2)s
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On the other hand, from (13)

dt (r — s)3 - (r2 — s2)3

dx (r + j)(r — j)3

and a comparison of the two results yields the condition

t. v{r, s)

(31)

tT X(r, s)

along QP2, or

r' = b, n(r, s) = (r - s)4 + 2(r + 2i)(r2 - s2)3, (32)

(2) (2) (2)
bwTr — 2(1 + b)wr, + w„ = 0. (32')

The Second Initial Value Problem. To construct a solution w(2) of (16') meeting

the conditions (30) on the side QP\ of the primary region and the condition (32') along

the arc QP2 of the compatibility curve.

From (24) the first condition in (30) is met by taking

R = fo — r , S(si) = Ji — Jo, (33)

in (17) and, from (28), the second condition determines

m(*"o, Si)
S'(*j) = 2Sl - 4r„ ̂  f • (34)

Hro, si)

The parametric equations of the arc Q"P{' are obtained by placing j = S! in (18')

and substituting for R, S(ji)t S'(5i) from (33), (34). In particular it is readily verified

that*(Pi")>T-
Taking condition (32') in the form (32), and substituting for tr, t, from (19) with

R = r% — r2 it will be found that this condition becomes17

2 + 6 1+6 (r — s)2 (i) (i)
S" + 2 5'+ 6 5 = ^ -(t. -St'), (35)

r — s (r — s)2 3

where 8, t,'\ /,(I) are the rational functions of r, s defined in (32), (26), and r is the

algebraic function of 5 defined in (21) with r2+S2 = 0. Thus to obtain the solution w{2}

of the second initial value problem we set R = r^ — r2 in (17) and choose S to be the solution

of the ordinary differential equation of second order (35), subject to the initial conditions

in (33), (34).

Lemma 9. The value of & at a point P of the compatibility curve QP2 tends /o + oo

as P tends to P2. More precisely b is a positive regular analytic function of the parameter

v on QPi, except at v = v2, where it has a pole of the third order and a Laurent expansion

of the form

b = vl(v - v2) 3(1 + • • • )• (36)

To prove 5>0 we have
3 3 3 3 3 3

\ = v(v — v2) — 3uv2, h = v(v — v2) + 3w»2,

17 The form of the second member in (35) is due to Rand.
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and the equation of the compatibility curve QP2

15jhuv = (v — »')(®3 — »2).

It is obvious that n>0 for v>v2, and X>0 follows from \fi=v2(v3—vl)2— 9uh>l>0 for

v>v2. To establish this inequality, one multiplies the equation of the compatibility

curve by 3vl and observes that 3z/2(r5 —1|) <5®*^ — »ij) holds for v>v2. Now r'>0 by

Lemma 6 and therefore 6>0 for v>v2 by (32).

From (20) one has u = r+s = v — v2+2k(v —»2)s+ • • • , so that

X = 6vl(v — v2)* + • • • , m = 6i<2(» — vt) + • • • , r' = vl(v — v2) *(1 + • • • ), (37)

hold along QP2, and the Laurent expansion for 5 then follows from (32).

It is apparent from (20) and Lemma 9 that the coefficients of the differential

equation (35) present a singular point at s = s2.

Lemma 10. The introduction of v as independent variable in the differential equation

(35) leads to a differential equation for V = S(s(v)) in which the coefficients are regular

analytic functions of v for v^v2.

Retaining the prime to denote differentiation with respect to s and indicating

differentiation with respect to v by a dot, so that S' = V/t, S" = (tV— Vs)/i*, the

differential equation (35) becomes

• 2—2 (l) m

V + (2(2 + 8)i/v - s/S)V + 6iv (1 + 5)7 = (t. - Str ), (38)
3

in which the coefficients are regular analytic functions of v for f >^2 by Lemmas 6

and 9. Moreover if the coefficients are expanded in powers of v — v2 using (20) and

(36), it will be found that they are also regular about v2.

Lemma 11. Provided po — pi>0 is sufficiently small, S and S' are negative for

s-i^sSsi -with S tending to a finite limit and S' to — <*> as s approaches s2.

Since the coefficients in (38) are regular at i> = i>2, the solution determined by

F(d0) = Va, F(t>o) = Vo may be expanded18 in a power series in v — vz, v0 — v2, F0, Vo pro-

vided the absolute values of these quantities are sufficiently small.

Taking v0 for the value of v corresponding to point Q on the compatibility curve,

Va — Vt can be made arbitrarily small by taking p0 — p2 sufficiently small, with the co-

ordinates of Q given by

ro = r2 + Vo — i>2 + k(vo — vt)3 + • • • , Ji = s2 + k(v0 — v2)3 + • • • . (39)

The initial conditions for 5 in (33), (34) lead to the initial conditions

F(»0) = Si - ro, F(»0) = 2i(j>o)[~5i - 2r0 M ^1, (40)
L X(r0, 5i)J

for V. From (37), (39) we obtain the expansions

F(i>o) = - v2(ve - v2) — (v0 — v2y + • • • , F(»0) = — 2(v0 — »») + ••• , (41)

18 J. Horn, Gewdhnlich* Differentialgleichungen beliebiger Ordnung, Sammlung Schubert, vol. 50>

Leipzig, 1905, pp. 27-28.
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valid for sufficiently small |»o —n2|. It follows from (38) that the expansion of F(i>o)

in powers of v0—vt begins with a term of at least first degree in v0—v2.

When the expansions (41) are substituted in the expansion of the solution V in

powers of v — v2, v0—v2, V0, Vo it appears that V may be expanded in powers of v—v2,

vo—v2 provided \v — »2|, \v0—fl2| are sufficiently small. To obtain the linear and quad-

ratic terms of this expansion, we substitute from (41) in Taylor's series

V = F(t>o) + F(»o)(f - «o) + (* " Vo)i + " '

to obtain

V = - v2(v0 — vt) - 2(v0 — v2)(v — Vi) + (v0 - »2)2 + ■ ■ ■ ,

the third term in Taylor's series being neglected since F(»o) contains the factor v0—»2.

It follows that both V, Vare negative for fl2gi>0 for sufficiently small v0—v2>0.

It is clear that 5 tends to a finite negative limit as s tends to s2 and, since i is positive

and tends to zero as v tends to i>2, one concludes that 5' tends to — «> as 5 tends to s2,

provided, of course, that po —p2 is sufficiently small.

The subregion PtQPiRPt in Figure 4a of the primary region is termed the second-

ary region.

Lemma 12. The partial derivatives tf\ tj;2) and the Jacobian Jm = — 2GtfHf* of T„w
are negative in the secondary region for sufficiently small p0—p2>0.

We take R, 5 in (19) as determined by the second initial value problem and find

(2> 1 (i) 35' 95 (2> 1 (i) 3 5" 65' 95
tr = —tr +   — +   — > t. — —t, — - -

2 (r — j)3 (r — s)* 2 2 (r — s)2 (r — s)3 (r — s)*

from which t?'<0 follows from (27) and Lemma 11 for sufficiently small p0 —p2>0.

To prove <s(2) < 0 we have

2 + 5 1 + 8 (f — 5)2 (i) - (i)
5" + 2 5' + 6   -5 = - (/. - St! ),

f — s (f — i)2 3

where f = r(s) is the function of 5 defined in Lemma 6 and S = S(f, s), t}1)=t$1)(r, s),

tf1' =t{l'(f, s). When 5" is eliminated from tj2) it is found that ij2>=.45'+.B5+C,

where

A =
(f - s)(r - s)2 ['+ 7 ~ tH] > 6<f ~ ~(4 ~ "rD"

' - [■+s - (tH)1 >9<- - "-!(f - <>-' (s-

_ 1 (1) , I / f — A2,-r-(D -CD. 1 /?-(!) , t(1)\
C —  ts H 1   ) (htr — t, ) <   (btr + I, ),

2 2 \ r - s) 2

in view of the inequalities

2f] = r\ — ii < r — s f — s < r0 — s0 = 2r0,
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valid in the secondary region, tf* has a negative upper bound and i'1' a positive lower

bound in the secondary region independent of po. Moreover r0, n tend to r2 as po

approaches p2. In view of Lemma 9 we have ^4>0, B>0, C<0, and therefore Zj2'<0

by Lemma 11 for sufficiently small p0 — p2.

We shall now investigate the mapping by Twm of the secondary region upon the

(x, J)-pIane. Taking R, S in (18') as determined above in the solution of the second

initial value problem, Twm is

(2> _ (r + 5)(3r° ~ f~) ~ 4™2 _ r + 5 v _ 2r + 5 <j,

{r-sY (r - s)* 0r-s)2 '

rl — rs 3S 3 S'
/«> = 3

(r - j)' (r - s)3 2 (r - s)2

From Lemma 11 it follows (at least for p0 — p2 sufficiently small) that x(2), t(2) become

infinite as the point (r, s) of the secondary region approaches the side RP2. We shall

accordingly consider first the mapping by Twm of the subregion UQPiTU, the line

TU being parallel to RP2.

Sides PiQ, TU transform into s-curves PC Q", T"U". From Lemma 12 t decreases

and from (5) x increases as r increases along PiQ, TU. We conclude from Lemma 7

that P{'Q", T"U" are concave downward as shown in Figure 4b.

Side PXT transforms into an r-curve PI T" which is concave upwards.

Arc QU of the compatibility curve transforms into the shock curve Q"U". Along

QU x and / are monotonic decreasing functions of v, as is the slope dt/dx of Q"U",

for, from (31)

d /dl\ Xf +

dv\dx) (r + s)2(r — s)*

inasmuch asX>0, /u>0 hold on QU. The shock curve is accordingly concave upwards

to imply that the velocity of propagation of the shock decreases as t increases.

Finally we let U approach P2 along QP2. The s-curve T"U" recedes to infinity in

the (x, J)-plane and the secondary region, exclusive of side RPi, is accordingly mapped

in (1-1) fashion by Tww upon a region indicated by P{'Q"P[ R" in the (x, Z)-plane

to determine the states of the gas in this region.

The slope of the r-curve P[' T" at T" tends to \/a(ru s2) as T" recedes to infinity.

The slope of the shock curve at U" is, from (11),

dt _ /p2 p —

dx V p p —

P 2

p P — pi

where p denotes the density for the state U and p = p(p). As U—>P2 we have p—>p2,

which implies dt/dx—»1/G2. This means that the velocity of propagation of the shock

tends toward the local velocity of sound in the exterior body of gas through which

the shock travels as it recedes to infinity.

The determination of the states of the gas in the region P"Q"7{' R" may now be

left to symmetry considerations or Theorem 1,
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6. The third initial value problem. We take up the problem of determining the

states of the gas in the region of the (x, <)-plane lying above the curve R"Pi Pi Pi R"

in Figure 4b.

P/ R

£ = 0

<x = o u= r+j = o

Fig. 5a.

Propagation lines drawn from Pi'R" in Figure 5b have slope 1//3<0 and, from

Lemma 8 can intersect only on the concave side of Pi' R". We shall prove that they

do not meet in the region ac>0 if p0 — P2 is sufficiently small. Since <j> is a monotonic

decreasing function of s by Lemma 7, it will be sufficient to prove that the /-intercept

T of a propagation line is a monotonic decreasing function of s.

In the equation of a propagation line t =fi~lx-\-T we replace x, t by the coordinates

of a point on Pi'R" obtained from T„w to obtain

T = -

from which

#(V j) (n - s)S' + 5 + r\ - fo

P(ri, s) P(rh i)(r! - s)2

dT s)(r! — s)*S" + 4j(ri — s)S' + 4sS + 45(ri' — rl)

ds /32(ri, j)(ri — s)>

After S" is eliminated by (35) it will be found that dT/ds<0 holds for sufficiently

small po — Pi- The principle of the argument is essentially the same as the one employed

to prove that t, <0 in Lemma 12 and is omitted.

From symmetry considerations propagation lines drawn from Pi' R" do not in-

tersect in the region oc<0. Propagation lines drawn from Pi'R" and Pi' R" symmetri-

cally placed with respect to the t-axis intersect upon it and, excepting the two drawn

from Pi", Pi', assign different states to their points of intersection. This is avoided

in Figure 5b by terminating the propagation lines on arcs P{"N'", Pi" N'", the

coordinates of Pi" being x = 0, t= —ws(2)(rt, Si)//9(ri, Si).
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By Lemma 1 an r-curve, the transform of PiR by Tww will be propagated from

Pl'R" provided
(3) (2)

w. (rj, s) = w, (ru s) for s2 ^ s Si *i, (42)

and by Lemma 2 will contain P{ ', in case

(3) &\?U ^l) (2) (2)
Wr (ri, Si) - —   w. (ri, Si) = — w, {rlt si). (43)

0(ri, si)

At points symmetric to the <-axis states have the same density and opposite veloci-

ties. From the corollary to Theorem 1 this will be the case in the region above

N"'P{ ' N"' if this region is the transform by Tw of a region in the state plane sym-

metric to the line r-fs = 0, provided w(r, s) =w( — s, — r) holds in this region.

The Third Initial Value Problem. To construct a solution ww of (16') meeting

the symmetry condition w(z)(r, s) =w(3>( — s, —r) and the initial conditions (42), (43)

on the side Pi R of the secondary region.

The solution of this initial value problem

S(— r) + 5(5)
w(V(r, s)   > (44)

r — s

is obtained by setting R= —S( — r) in (17), where S(s) is the function entering in the

solution of the second initial value problem.

The symmetry condition is obviously fulfilled. From (33) we find ww(ru s)

= w(i)(ri, s) arid (42) follows by differentiation. Condition (43) is likewise a conse-

quence of (33).

The subregion PiRP^RPi of the secondary region in Figure 5a is termed the

tertiary region.

The mapping by T„m of the tertiary region upon the (x, /)-plane is not (1-1).

If R is replaced by —S( — r) in (19) one obtains

<3, 3 (r-s) 2S"( - r) + 2(r - s) [2S'(- r) + S'{s) ] + 6 [S( - r) + S(s) ] ^
t     (45)

2 (r-s)*

In particular on r — — 5 (along PiP2)

= ^[^"(s) - 3sS'(s) + 35(5)].

For pa—pi sufficiently small tr(3) is positive along P\Pi in view of (27), (35) and Lem-

mas 9 and 11. On the other hand, if we fix r in (45) and allow 5 to approach 52 it ap-

pears that /r(3) eventually becomes negative because of the behavior of 5, 5' as 5 tends

to 52. Hence there exists a subregion PiP2MPi of the tertiary region within which

/r(3> is nositive, except along MP2 where f'3) = 0.

Differentiating equations (5) partially with respect to r and s and eliminating xr„

we find that t satisfies the partial differential equation (a—fi)lT, =f3,tr—arl, which re-

duces, in the adiabatic case, to
1 7 + 1

(r — s)tr,   (tr — t.).
2 7—I
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P

T*-1— X
i t = o 3znr t (P/)<t < t(Q">

p
p.

m t(P0')<t<t(Q') XI t = t(R")
p p

1_,

p,\

2 t=tCQ') xn tCP,"j< t < min {f(P,'"),f(N")}

P

P.

vn t = tCR') xrz t(p,,")<t<t(p,,")+ e

Plate 1. Variation of density p with distance * for fixed time t.
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IX XCQ")gX<X(N")

Plate 2. Variation of density p with time t for fixed distance x.
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It follows that in a region in which tT is positive and t, is negative, tT(t.) is a monotonic

increasing function of s(r) for fixed r(s).

From t(3)(r, s) =tw( — s, —r) we have tf\r, s) — —r) and thus tf = —1^3)

along PiP2. It follows that is negative along PiPi, and consequently is negative in

a suitably restricted region containing P1P2. When we procede from PiPt to the left

along a line s = const., /^3) decreases and accordingly is negative everywhere in

PiPtMPi.
Along MPi dt{3)/ds is positive and J^3) = — changes sign as (r, s) crosses

MPi. Thus the mapping of the tertiary region cannot be (1-1).

It is clear that 43) vanishes along an arc MP2, the reflection of MP2 in P,Pi.

Within the region P\MPiMP\ we have /(3) >0. The application of Twm to the tertiary

region to obtain further information about the states of the gas must be restricted to

a square P1NP3N within the region PxMPiMP\ with sides on P\M, PiM. Such a

square is carried by Tww into the region P'"N'"Pl"N'" of Figure 5b, within which

the states of the gas may be regarded as known.

The prolongation of the solution into the rest of the (x, /)-plane still awaits solu-

tion and it should be noted here that further extension of the solution may modify

the states assigned above to the region R"P{' Q"Pi' and its reflection in the I-axis.

7. Graphical presentation of variation of density. Plates 1 and 2 portray the varia-

tion of density (and thus the pressure) of a monatomic gas for sufficiently small

P0 — P2 in so far as our analysis permits. They were obtained by comparing Figures 5a

and 5b with the aid of (2). No attempt was made to indicate quantitative changes in

the density, or to determine the curvature of the curved portions of the graphs. The

small circles indicate points at which px and p( undergo jumps. Figures VIII, IX of

Plate 2 are based on the conjecture that x(Q") <x(N").

The coordinates of various points in Figure 5b have been computed from formulas

found in the text and are given below. Once po, P2 are given, r0, r2 are determined from

(2) and Si may be determined graphically as the s-coordinate of Q in Figure 5a.

Po : x = 0, t = 3/2r0,

(ro + Ji)(5r0 + Si) 6 r0
Q: x =     , / =

(r0 - 5i)2 - jj)2

1 2 _L 2. „ 3 r0 + r 1
P1 : x = 0, I = 5— >

4 r,

2r0 + Si fi(r0, Ji) 6r0 M^o, Si)
Q": x = x(Q') + 4 r„   , t = t(Q') + 

(ro - ii)2 X(r„, Sl) V (r0 - ii)2 X(r0, 5i)

PI': t.tru + L"*!*,
2 r\ X(r0, ii) 2 r, X(r0, Si)

ro n{ro, ii)
P>»,.x =0, t = t(P{) + 3— ■

ri Hr0ls1)


