
361

ON PROJECTILES OF MINIMUM WAVE DRAG*

BY

WILLIAM R. SEARS

Cornell University**

1. Introduction. The wave resistance of slender bodies of revolution in symmetri-

cal supersonic flow was calculated approximately by von Karmdn,1 by means of a

distribution of singularities along the axis of the projectile. The individual singularity

is characterized by a potential of the form r) = {(x — £,-)2—a2r2}-1'2, where x, r

are cylindrical coordinates, x being measured downstream from the nose of the projec-

tile and r radially from the axis, £,• is the value of x corresponding to the singularity,

a is the cotangent of the Mach angle of the undisturbed flow, so that

a = V(U/ay - 1,

U and a being the stream velocity and the velocity of sound in the undisturbed flow.

It will readily be verified that 4>i(x, r) is a solution of the linearized potential equation

for supersonic flow with axial symmetry

/ U2 \ d2<j> d2<f> 1 d<f>
( 1) — = —-4   • (1)
\a2 / dx2 dr2 r dr

Von Karman calculated the wave resistance by integrating the transport of mo-

mentum across a cylindrical surface enclosing the body. In his approximation, the

integral is independent of r and can be evaluated in the limit r—>0. The result isf

R= -xp f f f'(x)f(0 log | * - {| dxdt, (2)
J o J o

where R is the wave resistance and f{x) is the function specifying the distribution of

singularities along the x axis. For bodies of finite length /, f(x) is found to be indenti-

cally zero forx>/; hence both integrals in (2) can be replaced by integrals from 0 to I.

For slender bodies, von Kirman showed that approximately

U dS
/(*) = --> (3)

2ir dx

where S is the cross-sectional area of the body. ♦

In the present paper we shall amplify the analogy, already mentioned by von

Karman, between the wave resistance of a slender projectile and the induced drag of a

wing. It will be shown that this analogy suggests a useful form for the calculation of

* Received June 11,1946.
** This work was undertaken while the author was employed by Northrop Aircraft, Inc.

1 Th. de K&rm&n, The problem of resistance in compressible fluids, Atti del V Convegno della "Fonda-

zione Alessandro Volta," Rome, 1935, pp.,222-276.
t Von Kdrmdn1, Eq. (9.12). It might be mentioned that this formula is most easily obtained from

Eq. (9.11) of the same reference by first integrating by parts with respect to x in order to obtain a form

symmetrical in x and J; it will then be found that a double integral carried over half the first quadrant

of an x, t plane can be identified with half the same integral carried over the entire quadrant.
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the wave drag. The properties of projectiles of minimum wave drag for given length

and volume, and for given length and caliber, will then be investigated.

2. The induced-drag analogy. Formula (2) for the wave drag can be written in

the form

R = - xp f f'(x)F(x)dx
J o

(2')

or, after integration by parts, assuming /(0) =/(/) =0; i.e. that the body has sharp

points at front and rear,

R = xp f ' f(x)F'(x)dx, (2")
J 0

where

F(x) = f '/'({) log | * - * | d(. (4)
J o

In the form (2"), von Kdrmdn's analogy between the wave resistance and the

induced drag of a finite wing in the Prandtl lifting-line theory2 is evident: f(x) is

proportional to the circulation distribution over the span of the wing, F'(x) is the

corresponding downwash distribution, and R is the induced drag.

It is also useful to put (4) in another form, sometimes more convenient for calcula-

tion. Let us introduce the coordinates 0 and t? defined by

1
x = — (1 + cos 6), 0 g 6,

) (5)
£ = — (1 + cos 0), 0 ^ t.

2

The expression for F(x) then becomes

/ rv
F(x) = — I /'({) log | cos 6 — cos t? | sin Md, (6)

2 J o

provided that /d/(S)^^ = 0, as is always the case for closed bodies, in accordance with

(3). Now the definitions in (5) can be taken to cover the range

and/'(£) can arbitrarily be defined to be an odd function of t?. Then (6) can easily be

put into the form

F(x) = y/ /'(f) log

or, after integration by parts,

sin sin

1 r* e - #
F(x) = —I /(f) cot —~dd. (7)

2 v —x +•

1L. Prandtl, Tragfliigeltheorie I, from Vier Abhandlungen zur Hydrodynamik and Aerodynantik,

Gottingen, 1927, pp. 9-35.
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The induced-drag analogy pointed out above suggests that/(£) be expanded in a

sine series; this is the usual technique employed in the Prandtl wing theory:3

/ x\ IU » ( e\

Substituting in (7) and (2'), we obtain the following expression for the wave drag:

*r3 PU2 * 2
R = --~l2Z"bn (9)

4 L i

—again analogous to a well-known expression for the induced drag of a wing.3

3. Minimum wave drag for given volume and length. The expression for the cross-

sectional area 5 corresponding to (8), in the approximation represented by (3), is

ttP( » ["sin (m — 1)0 sin (n + l)0~h
5 = — \ [t - e + i sin 2e]h - £ bn\ —     j..

4 I 2 L w 1 « + 1 J/
(10)

It is clear that for closed projectiles, pointed front and rear, bi must vanish.* Also,

the total volume occupied by the projectile is

Vol. = j Sdx = - 562) (11)

or, for closed pointed bodies,

Vol. = - " (12)

Hence, for given length and volume, the minimum wave resistance is obtained

when only 62 is different from zero. The geometry of this body is given by

irPbt irl2bi
S = — (sin 6 — | sin 36) =  — sin3 6 (13)

and its wave resistance is
7r3 pU2 2 2

R = 1 b2
2 2

9 pU2
=   IT  Omaxl   )

8 2 \ / /

8 pUW I vr Vol. I2

~ V ~2V2 / L(//2)3J ' (14)

This is eight times the wave drag of von Kirmdn's ogive* of equal length and vol-

ume, or about 11.1 times that of von Kdrmdn's ogive of equal length and caliber. (It

3 Th. von K&rman and J. M. Burgers, Aerodynamic Theory, edited by W.F. Durand, vol.2, J. Springer,

Berlin, 1934, pp. 172-175.
* If biwhile 6s = 6j= • • • =0, the ogive considered by von Kirmln1 is obtained. Its maximum

cross-sectional area is irVbi/i and occurs at its stern, x ==/. According to (9), its wave drag is

(ir®/4)(pI/s/2)Z26i or (pTP/2)Sm^I (dmax//)', where SmKI is its maximum cross-sectional area and <imal is its

maximum diameter, or caliber.
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should be mentioned that this comparison may be misleading in view of the fact that

von Karman's ogive has a blunt stern, so that its wave drag certainly does not repre-

sent its entire resistance, even in the absence of skin friction. Nevertheless, the wave

resistance of that ogive may be taken as a convenient reference.)

The shape of the forward half of the symmetrical projectile represented in (13)

is drawn in Fig. 1, for the case / = 4dmax. For comparison, there is also shown the shape

of von Karman's ogive having the same caliber and one-half the length.

Fig. 1. Profiles of various projectiles of minimum wave drag: (a) volume and length given, (b) caliber

and length given, (c) von K&rmdn's ogive of equal caliber and one-half the length. (Projectiles (a) and

(b) are symmetrical fore-and-aft.)

4. Minimum wave drag for given caliber and length. To attack the problem of the

body shape for minimum wave drag, caliber and length specified, we return to the

expression for the wave drag given in (2') and (4) and employ the methods of varia-

tion calculus. By virtue of the symmetry with respect to x and £, the variation of the

resistance with varying body form assumes a simple form; viz.,

5R = - Sf'(x) J /'(£) log | x - £ | d£dx

+ J /'(*) J Wit) log | * - f |

= — 2rp (* 5f'(x)F(x)dx. (15)
J o ,

In this section we shall provide for the possibility [excluded in obtaining (2")]

that dS/dx, and therefore/^), is discontinuous at the station where the maximum

diameter occurs, x = m. Hence, integrating by parts in (15), and again assuming sharp

points at bow and stern, we write
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SR = — 2rp^F(m)S[f(x)}m - J" 8f(x)F'(x)dx^

« - 2tP|f(i»)«[/(*)]. + V- J" , (16)

where [/(*) ]m denotes the value of the discontinuity in f(x) at x = m, and the area

function S{x) has been assumed to be continuous.

In the form (16) it is clear that the shape of the part of the body forward of the

maximum section at x = m can be held fixed while S(x) is varied over the rear part

to achieve a minimum of R; then the rear shape can be fixed in this minimum-drag

configuration while S(x) is varied in front to minimize R; the result will be the mini-

mum-drag shape for given maximum cross section at x — m. We shall also assume that

the discontinuity of slope represented by [f(x) ]m is not varied in the process; it will

appear later that this is valid. The minimum-drag condition 5i?=0 is then obtained

when

F'\x) = 0 )
>0 £ x £ m,

F(x) = cix + c2)

(17)
F"(x) = 0 )

>m ^ x ;£ /.
F(x) = csx + cj

The analogy with the induced drag of a wing is again useful. The analogous prob-

lem is the following: to determine the spanwise circulation distribution/(*) so as to

obtain minimum induced drag, it being required that the total lift be zero, but that

the lift carried on one side of a station x = m have a given value, equal and opposite to

that carried on the other side of that station. The result obtained in (17) states that

the condition of minimum drag results when the downwash F'(x) is constant in each

of the two parts of the wing.

Fortunately, investigations have been made4,5 of the behavior of the circulation

distribution near a point on a lifting line where the downwash in discontinuous. It

is found that the circulation function is continuous but has a vertical tangent and dis-

continuous curvature at such a point. Applying this result to our projectile problem,

we can conclude that f(x) will exhibit a singularity of this type at x = m. Moreover,

since F{x) can be interpreted as the downwash corresponding to the circulation dis-

tribution S(x), we conclude that F(x) cannot be discontinuous at x = m if we exclude

singularities of this type from the shape function S(x). Accordingly, we write

(ci — Ct)m — ct — c2. (18)

The resistance of the minimum-wave-drag body is easily calculated from (2'); it is

4 A. Betz and E. Petersohn, Zur Theorie der Querruder, Z. angew. Math. Mech. 8, 253-257 (1928);

also Nat. Advis. Com. for Aeron. Tech. Memo. No. 542 (1929).

' H. Multhopp, Die Berechnung der Auftriebsverteilung von Tragfliigeln, Luftfahrtforschung 15,153-

169 (1938).
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R = — irp j— (c3 - Ci)Sma* + (cim + C2) [f(x) ]mj-

U
— P (Cl (19)

where Smax is the cross-sectional area at x=m.

The form of f(x) corresponding to (17), and subsequently the shape of the body,

can be determined by inverting (7) by means of the so-called "Reciprocity Theo-

rem":6

1 r** e-d
/(*) = — F(g) cot ——d*. (20)

2ir •'o 2

The quadratures involved are rather tedious, but can be carried out. The result is

1 C 1 — cos (0 + n) ■)
/(*) = 1 ~~ Ci)(* ~ m) lo81 r + Ita - ci> + tci\i sin 0)-, (21)

2ir v 1 — cos (0 — n) )

where m = (//2)(1 +cos n). It can quickly be verified that this function has the type of

singularity at x = m that was predicted by the wing analogy.

This expression can be integrated again to evaluate the constants C\ and c3 and

then to determine the function S(x). By integrating from x =0 to x =1 it is determined

that (c3 — CiXju— 5 sin 2ix)+irci = 0. Finally, by carrying out the lengthy quadratures

necessary to apply the condition (U/2ir)Sm„= f™f{x)dx, it is found that

u — i sin 2u
cx = 4t/5m« ——  (22)

P sin4 n

The wave resistance (19) then assumes the form

PU>
R =

/^mai \ 2 T2

\ I / sin4 n

Thus the wave drag varies symmetrically about m=l/2 or n=ir/2, and is least if the

maximum cross section is located at mid-length—i.e., for a symmetrical projectile.

The wave drag of this projectile is tt2 times as great as that of von K&rman's ogive of

equal length and caliber. Its shape is indicated in Figure 1.

5. Concluding remarks. A somewhat similar analysis of projectile shapes for mini-

mum wave resistance has been made by Haack,7 who considered only symmetrical

projectiles. The results obtained here are in agreement with Haack's for such projec-

tiles, except for the value of the drag of the minimum-wave-drag body for given length

and volume, which seems to have been tabulated erroneously in the earlier paper.

6 R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, J. Springer, Berlin, 1931,

p. 83.
7 W. Haack, Geschossformen kleinsten Wellenwiderstandes, Bericht 139 der Lilienthal-Gesellschaft fur

Luftfahrt.


