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THE BOUNDARY LAYER IN A CORNER*

BY

G. F. CARRIER

Brown University

1. Introduction. The laminar flow of a relatively non-viscous fluid through a chan-

nel is characterized by the presence of a thin boundary layer along the walls. In

straight channels, such boundary layers are usually assumed to have the velocity

distribution determined by Blasius [l ] for the flow past a flat plate, and the flow

pattern in the neighborhood of any corner is not mentioned. It seems of interest to

develop here the change in the Blasius flow implied by such a corner.

2. The boundary layer problem. We shall consider the laminar flow of an incom-

pressible fluid which impinges with the uniform velocity V on the edges x = 0 of the

half planes y = 0, z = 0.

The Navier-Stokes equations and the continuity condition which govern such

flows are
(v-grad) v + p-1 grad p = vAv, (1)

div v = 0. (2)

Here v is the velocity with components u, v, w; p is the pressure, v the kinematic

viscosity, and p the density.

As v. Karman has pointed out [2], the essence of the treatment of such equations

in a boundary layer problem is to eliminate higher order terms (by a perturbation

scheme or otherwise) in such a manner that the order of the equations is not decreased.

In this way no boundary conditions need be relaxed. We may accomplish this by using

what is essentially Prandtl's coordinate transformation [l], namely

V = y/(r*/F)«»f f = z/(vx/V)"\ (3)

We also define the parameter £ = (p/ Vx)lli.

Since the flow both within and outside the boundary layer may be expected to

be essentially in the x direction and slowly varying in x, we may attempt to find a solu-

tion in the form
« = V[u0(r), f) + £«i07, f) + £2m2 + • • • ] (4)

v = + £*»»+•■•)' (5)

w = V(£wi + f2w2 + • • • ) (6)

P — pVKPo + £pi +•••)• (J)

We commence the series for v and w with a term of order £, because we wish a solution

for which v/ V, w/ V, are small. Furthermore, if we included terms flo, Wo, the following

set of equations would contain terms of order £-1 with no contribution from the

viscous terms of Eqs. (1) and (2).Thus the solutions wherein i>o, Wo were not identically

zero would not provide results corresponding to the phenomenon under investigation.!

* Received Aug. 30, 1946.

f Actually, the fact that our results constitute a solution which obeys the differential equation and

boundary conditions is sufficient justification for taking Poe?p0=0.
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The substitution of Eqs. (4) to (7) into Eqs. (1) and (2) leads to the system

Mo V <>Po f dpo
 (rjdtlo/dr) -f- fdwo/df) -f- Viduo/di) -f- Widtlo/dfi   

2 2 drj 2

/a2 a2 \

~ W + ~df2)
Mo + £( ■ ••)+••■ = 0 (8)

dpo d.p\ /«or dvi 5di"| 3Vi \

^ +••) + ••• =° (10)ar af

n 3mo f du0 dvi dwi-—+4- 1+5(...) + ... =0. (ii)
2 5jj 2 df dij 3f

The solution of this system of equations requires that the coefficient of each power

of £ in each equation vanish. The first order approximation to the result is defined by

the vanishing of the coefficients of £°. The result can be expected to be valid only when

the remaining terms of the series are negligible, that is when £ is small. Thus the

solution, like that for the flat plate, is valid only at sufficiently large distances from

the leading edges of the planes.

We now note that the terms of Eqs. (9) and (10) vanish only if p0 = const; the

£° term of Eq. (11) vanishes if we write

«o = g,t(v, f). = i(vg,t ~ gr). wi = - £,)•

Thus it remains to find g(ij, {) such that,

g(0. f) = g,(0. f) = g(v, 0) = gr(v, 0) = 0

and

lim g,r(v, f) = 1,

the implied symmetry condition

g(a, b) = g(b, a),

and the differential equation implied by Eq. (8)

im ( + £irrr + h\gig,<,{ + g,g,rr} = (12)

We may expect that far from the corner the solution will be essentially that for

the flat plate. Hence, we write

g(v, n = Mv)Mn + Kv, f) (13)

where/o is that solution of

2}'" + ff" = 0

such that/(0) =/'(0) = 0= 1. This function is tabulated in [l ].

Equations (12) and (13) lead to the equation



1947] THE BOUNDARY LAYER IN A CORNER 369

A,„r + K{t{ + 2a(t], + 2a(f, »;)A,ff

+ ^(>7» t)K + &(f> f)*r + b(htKit + Khvtt) = f). (14)

where

ofo, f) = J/oM/o' (f), ft(*. n = */o'' M/o' (f)

-4(^7, f) = £ {/oW/o" W/o (f) [l - /o (r) ] + /o(f)/o" (f)/o (v) [l - fo (»))]}•

This equation may be integrated once each over tj and f taking account of the

boundary conditions to yield (when <p= — 25Arf)

A<P + 2a(ij, t)d<p/dT] + 2a(f, ri)d<p/d{ + 6(ij, f) f <pdt) + 6(f, i?) f <pd{
J 0 ^ 0

— j *<pdv + <Pt J* vdfj = -hMv, f)- (15)+

The boundary conditions are

*>(0, f) = <p(v, 0) = lim v(j], f) = 0.

This last form of the equation seems best suited for numerical evaluation. The relaxa-

tion method [3] appears to be the most appropriate for the determination of <p so

we form the difference equation derived from Eq. (IS) by taking points spaced unity

apart in rj and f. The subscripts m and « are used to index these point positions. The

difference equation is

^Pm+l.n "4~ —l,n "4~ ^m,n—1 *Pm,n+l ^*Pmn ~f~ ®mn(^m+l»n *Pm—l,n)

/» n /» m

tpdr\ + b„m I <pd£
o J 0

+ .01 £(^>m,n+l — V>n.n-l) J' <fid{ + (^m+l.n _ V»-l,n) J + A mn = 0. (16)

In this equation the integrals may be evaluated by the simple trapezoidal rule since

the function <p is very "smooth" although if more accuracy is desired a simple graphi-

cal method is conveniently employed.

r
V

Table 1

<t>( 1. f)
1 2 3 4 5 6 7 8 ft (l)

00 0 000000
0 .58 1.00 1.00 .64 .25 .08 .02 .00
0 1.00 1.60 1.46 .86 .28 .08 .02 .00
0 1.00 1.46 1.23 .61 .16 .04 .01 .00
0 .64 .86 .61 .24 .03 .01 .00
0 .25 .29 .16 .03 .01 .00
0 .08 .08 .04 .01 .00 .00
0 . 02 . 02 . 01 .00
0 00 . 00 . 00

0
.330
.630
.846
.955
.992
.999

1.000
1.000
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The numerical procedure is this: guess values for <p at all points m, k^8. Replace

the zero on the right side of Eq. (12) by Qm„ and compute each Qmn (the residuals).

Then revise the guesses for the <pmiK in such a way as to decrease the Qmn, disregarding

the changes in the values of the terms containing integrals. When considerable im-

provement has been made, recompute the Qmn using the complete equation (12) and

0 i £ 5 •

Fig. 1. Contours of constant V in corner boundary layer.

repeat the foregoing procedure. It is not necessary to get extremely accurate values

of <p (especially since a, b, A are not known too finely) because the velocity Mo=/o (l)

fi (?) D will be accurate to three places when <p is known to the one hun-

dredths digit. The functions/0' and <p are tabulated in Table I and contours of con-

stant «o are shown in Fig. 1.
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