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UNSTABLE SOLUTIONS OF A CLASS OF HILL
DIFFERENTIAL EQUATIONS*

BY

. GABRIEL HORVAY
McDonnell Aircraft Corporation

1. Introduction. Linear differential equations with periodic coefficients play an im-
portant role in problems of engineering and physics. The best-known of these equa-
tions is Mathieu's equation. A somewhat more complicated equation is

k)
W + [0-067%¥ + 016 + 60 + 016 + 0262 ]v = 0 (1a)

which reduces to Mathieu’s equation for
0: = 00, 0:1 = 0‘_1 = 01, 0_2 = 02 = 0,

where the asterisk is used to denote the conjugate complex quantity.
This paper is concerned with the determination of the solutions

+”
oY) = eV creit¥ 2
of Eq. (1a) subject to the restrictions
=6, 05,=0, 6,=0, (1b)
and
01 =0(n), 0 =O0O(u?), 3)

where p is a small positive quantity. It will be seen that solution of the problem in-
volves the determination of the “characteristic exponent” ¢ from the equation

sin ixg = /D sin x/8,, (4)

where D denotes the expansion
D=1+4Csi+ Ce+ Cqn + Cs28® + Csde + - - - (5)

in the three real combinations
‘ 5=0_0;, =000, 7 =300_0+08) (6a)

of the four quantities, real and imaginary parts of 6, and 6;. D is a power series in p?
since

6=0), e=0@Y), 7=0(Y. (6b)

The coefficients C of the series depend on 0y alone.

The numerical evaluation of the coefficients of the expansion is the principal aim
of this paper. This is best accomplished by first re-expressing the “doubly infinite”
Hill determinant D in terms of its “simply infinite” principal subdeterminants D,,

* Received June 13, 1946.
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D = f(Do, D1, Dy, - - - ), (N
and then expanding D, into the series
=1+ A%+ Ale+ A+ AP + - (3)

The coefficients of the expansions (7) and (8) are tabulated in Tables II and I re-
spectively for a convenient range of 8o. For the sake of simpler printing the notation

Afiip ={n, deint} (8)

will be used whenever the subscript of 4 becomes excessively long.

The practical solution of Eq. (1) is carried out in four steps. First, the determi-
nants D,, Egs. (8), are evaluated by means of Table I. Next D, Eq. (7), is determined
from Table I1. The third step consists in solving Eq. (4) or one of its variants (13a, b,
c) for o, and the last step is the determination of the coefficients c; of solution (2). A
convenient method for carrying out this last step is discussed in Section 2. The deriva-
tions of the formulas for {n, §'¢p*} and for the coefficients of (7) are presented in
Section 3. A numerical example is given in Section 4.

The present paper is based on a study which was recently undertaken at the
McDonnell Aircraft Corp. under the sponsorship of the Bureau of Aeronautics, U. S.
Navy Department. The study was prompted by recent instances of control difficulties
of some helicopters and rotor blade failures of others. As will be shown in a separate
paper,! the natural modes in which hinged rotor blades flap can be represented by
solutions of Eq. (1) multiplied by suitable damping factors. It will be found that the
stability of the blade motion decreases as the speed of advance of the helicopter in-
creases (as p increases). Nevertheless, instability does not set in, because an aero-
dynamic damping effect outweighs, at all feasable speeds, the tendency towards in-
stability which results from the flapping motion.

The writer’s thanks are due to his colleague, Elizabeth J. Spitzer, for checking the
derivations and the numerical work. The writer also wishes to express his indebted-
ness to Messrs. W. R. Foote, H. Poritsky and J. J. Slade, who in their paper on
rotational instability of shafts? applied a Laplace expansion to a doubly infinite de-
terminant, and thus suggested the present approach.

2. Method of solution. The solution of Eq. (1a) is assumed in the standard form

uo

oY) = e E cretY, (2)

—o0

Substitution of expression (2) into Eq. (1a) leads to the infinite set of homogeneous
equations for the coefficients ci(0):

k=-—2: 020- 4+016-3+ [(0’- 2‘i)2+00]6_2+0_16_1+0_260 = 0,

=—1: 026_3+01c_a+ [(0— 3) 2400 |c_1+6_100+6_201 =0, (9)
k=0: B2_2+01_1+ [02+00 Jco+0_161+0_s02 =0,

! G. Horvay, Rotor blade flapping motion, to be published soon.
* W. R. Foote, H. Poritsky and J. J. Slade, Critical speeds of a rotor with unequal shaft flexibilities,
mounted in bearings of unequal flexibility, Journal of Applied Mechanics, 10, A77, 1943,
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=—1: 826_1+01c0+ [(o414) 2400 Je1+0_102+6_2c5 =0,
k=—-2: Osco+0101+ [(0424) 2460 Jca+0_16346_2c4=0,

The equations are consistent if their determinant, A(s), vanishes. The consistency
criterion

A(g) =0 (10)
can be expressed in the much simpler form3-
sin ire = + /D sin #/0o, 4)

where

1 6.,y 6_3y. O 0
011 1 0_1y1 0_2y 0
D=A0)=1{: Oy0 biyo 1 6_3y0 0_sy0 - (11a)
0 Oyr 6iy1 1 6ayn
0 0 02y2 61y 1

is the determinant of system (9) for ¢ =0 when each equation is divided by the coeffi-

cient of the diagonal term, and
1

T -k

D is either positive or negative, and so is f,. Thus the quantity v/D sin 7/, is
either real or pure imaginary. In the first case set

Vi (11b)

g = VD sin 7v/8, = — v/— D sinh 7/ — 6,. (12a)
In the second case set
¢ =¢q/i= —/—Dsin /0y = — /D sinh =/ — 0. (12b)
Then the solution of the transcendental equation (4) is given by
1
T .
i - —q .
= — arctan ——— + mi for —1=¢=1, (13a)
T Vi=g
1
=—log(g+veg—1)+m—3i for = —-1,¢21, (13b)
T
1 —
=—1log (¢’ +Vq2+ 1) + mi for ¢ imaginary. (13c)
™

3 Whittaker and Watson, 4 course of modern analysis, Cambridge, 1927, p. 416.
* M. J. O. Strutt, Lamésche, Mathieusche und verwondte Funktionen in Physik und Technik, Springer
1932 (Edward Bros., 1944), p. 22.
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Once D is known, the calculation of o from (13) is simple matter. For any m there
are two solutions ¢, and g which differ only in sign

g2 = — 01. (143)
Let oy be the solution with the positive real part
o1 = o, + oy, g, 2 0. (14b)

The function v:(¥) (or v:(¥)) associated with o, (or with a2) is readily obtained by plac-
ing o1 (or o2) into the system (9) which is now limited to the equations k= —N,
—N+1,---, =1, +1, - .-, +N. Assuming ¢;=0 for k< —N and k>N, one
can solve the 2N equations for ¢c_y, ¢_y41, - - -, €1, €1, - - +, Cx in terms of the arbi-
trary constant ¢y, and then use equation £ =0 as a check. The greater is N, the more
harmonics are taken into account, and the more accurate is the solution. In practice
the calculations are most conveniently carried out by solving equations k=N and

= — N for ¢y and c_y in terms of the variables c¢y—1, ¢xy—2 and ¢_n41, c_n42, Tespec-
tively. The results are then substituted into equations k=N—1 and k= —N+1;
similarly ¢y and ¢_n41 are determined. Continuing the process one finally arrives at
equations k= +1 and k= —1 involving the two variables ¢; and ¢_, only, and the
parameter ¢o which can be assumed as 1. One eliminates one of the unknowns, say c_,
determines from the real and imaginary parts of the remaining equation the real and
imaginary parts of ¢;, and then, retracing the steps, obtains in succession the numeri-
cal values of ¢_,, ¢2, 2, - - -, N, C_n.

Evidently, in principle, it is immaterial what m¢ (m=0, +1, +2, - - - ) is used
in the o of Egs. (9). For instance, the set of equations k= —N to +N with m=2,
the set of equations k= —-N—-2 to +N—2 with m=4, and the set of equations
k=—N+3 to +N+3 with m= —1 are identical. Thus, as one passes to the limit
N>, any m and any 2N 41 adjoining equations will lead to the same function
v1(¥) [or v2(Y)]. In practice, where one is limited to a finite number of equations,
2N+1, it is best to use the centrally located equations k= —N to 4+ N with an m
which makes ¢y the dominating term in the series (2).

In general v,, associated with oy, and v;, associated with o, are linearly independent
functions. An exceptional case arises when ¢,=0, and o, is an integral multiple of 3.
Then substitution of o1 and o3 into the system (9) leads to the same function

+w
1 = €M) ety (v =0or3}). (15a)

The second, linearly independent, solution is now a “quasiperiodic function” :t
+ﬂ +Q
vy = eV [¢ Dot + > d;,e"‘\"], (v»=0,7%. (15b)
For convenience the functions (15a) will be called “purely periodic” functions.
Determination of the purely periodic solutions (15a) forms the subject matter of

most investigations on Mathieu and Hill differential equations. The purely periodic

“ M. J. O. Strutt, loc. cit., p. 23. As an exception there may be two purely periodic solutions. For in-
stance, for 6p=4, 6, =0,=0, one obtains v, =cos 2y, va=sin 2y.
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solutions are usually of greatest interest, because they separate the u-regions of sta-
bility (¢,=0; v; and v, are oscillatory) from the p-regions of instability (o, >0, v—
as y—»). A purely periodic solution can be obtained, cf. Eqs. (12), (13), only when
¢’ =0 (D=0, or perhaps 8, =k2), or when ¢= + 1 (D and 6, are such that /D sin 7/,
=1 orv/—=D sinh m/—8,=1). In general 6,=k? does not provide a purely periodic
function.

In the present analysis the principal interest is attached to the unstable solutions

+0

n(¥) = eV 2 i, (g, > 0) (16)
of (1) which, after multiplication by a damping factor e—"¥/2, are still stable. These
solutions are in the “transition region” which extends from the p-value for which v(y)
is purely periodic to the u-value for which e~"¥/29(y) is purely periodic. It will be seen
in Reference 1 that a rapidly advancing helicopter usually operates in the transition
region. o
3. Expansion of Hill’s infinite determinant. It will be convenient to call the de-
terminant O, Eq. (11a), a doubly infinite determinant to indicate that it extends to
infinity both upward and downward. Simply infinite determinant are the principal
subdeterminants of D,

1 6_ 1Yn 0-:)'.. 0 * l

01Yn41 1 0_1ynp1 O_gynpn . 1 0_1Yn43 0-_2Yn43
D, = | Osyny2 G142 1 0_sYny2 |3 Ean=1| - O1yns2 1 0_1Yn42 O_1Yny2|. (17a, b)
0 02Ynizs  Orynis 1 . . O2Yni1 Oiynp1 1 0_1Yn41
. . . . . 0  Oyn Oiya 1

The first extends to infinity downward, the second upward. Simply infinite determi-
nants are also the auxiliary subdeterminants

6yn  O0_1yn B2y 0

O2yn41 1 0_1yn41 O_2yn41 . 1 0_1yn43 O_2ynys O
Sn = 0 01Yn42 1 B_1Yns2 R To=|" 01Yny2 1 0_1yn42 0 . (183, b)

0 02Yns3  O1Yn4s 1 . ° O2yns1 O1¥nta 1 9—2}'"'“
. . . . 0 O2yn 61yn 0_1yn

S, differs from D, only in the first column; T, differs from E, only in the rightmost
column. _
One readily establishes the recurrence relations

D, = Dnyy = 0_19aSns1 + 010_2YnYn41Snt2 — €¥n¥ny2Dnya
+ EYnYnt1Ynt2YnteDnsas (19a)
Sa = 01YnDnt1 — 0_102YnYnt1Dns2 + €YnYnt1Sns2. (19b)

A Laplace expansion of the doubly infinite determinant D along a dividing line
between row =0 and k= —1 leads to the following expression involving only simply
infinite determinants of type D,, E,, S,, Tx:

D = DoE, — SoT1 + )’oyl(o—;OszTz + 610_55:1Ey)
- e(yoyleEa + yfszz + yoyleTz)
+ ez(yoynyzyaD1E4 + }'oy:yzEzpa + yqyf}’zpﬂEs)- (20)
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Since, by virtue of (1b)
En = D: = Dm (213.)

T.=Sr (5 S, when8; = 6, 0; = 05) (21b)
and by virtue of (2) and (19b)
SaTm = O(s?), (21¢c)

areplacement of E, by D, and a repeated insertion of (19b) into (20) gradually elimi-
nates all but the D, type of determinants from the expression for D. It is also found
that 6y, 0_4, 6, 6_; appear only in the combinations §, ¢, 7 given in (6a). Thus, by virtue
of (6b), the expansion of D progresses in powers of u2. Using the notation

Yoz = yoyfyz, (22a)
one finds that to u!® terms
D = DoD) — 6ynD1D2 — €(y02D1Ds + ynD:) + 7)(2)’0111): + 2y012D1D5)
— 8e(4y0112D:D3 4+ 2y0123D1D4) + €2(y0123D1D4 + 2y0112D:2D3)
+ 671(41V01123D2D4 + 2)’01234D1Ds + 2yosz§)
— 0e%(4y011234D2D5 + 4y011203D3D4 + 2¥012345D1D¢) + - - - & (23)

The same process can also be carried out for the simply infinite determinant D,
Disregarding the exceptional case §o=~%? (y,= ), one finds that to u!° terms

Dy = Dy — dyaiD2 + (— €yo2 + 21y012)Ds + (— 28e + €®) yo123Ds
+ 2eny01234D5 — 20€*yo12348Ds + - - - (24a)

and D, is obtained from D, by increasing the subscripts in the latter’'s expression by 7.
(24b)
It will be convenient to introduce at this point the notation

D yass = Yass + Yo+ Yors + - - ¢ (22b)

Z 3’122 Yas6 = Y12 2 Yass + yzaz Yaor + Va2 Vere — - - - . (22¢)
Noting that
lim D, =1, (25)

one obtains, by repeated application of (24),
Dy = (1 — 6y01)D2 + (— 8y12 — €Yoz + 29y¥012)Ds + - - -
= [1 = (yo1 + 312)5 — yo2e + 2y01m]Ds + - - - . (26a)
14 A8+ dve+ A+ - - -, (26b).

where

0

A: == yu, Adc=— 2 yo, A: =22 you, A:’ =2 Y02, Y (27)
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The coefficient of a general term, like 8¢€?, is obtained as follows: Equation (24a)
gives rise to the following symbolic products containing 6e?:

[— 8ym][— eyoe] [— eyee], (a)
[— 8501] [€2y0123], (b)
[— eyoe][— 28€ey0123), (c)
(11— 25¢*yorzaas]. ()

It is found that (a) contributes

— D YD, Y Ve — D Yoz 2 YD Yer — O Yoz 2 Y152 Yer (28a)

to Aj.. (Note that no subscripts can be repeated, nor can any be skipped as one
passes from one ), to the next Y ; furthermore (a) gives rise to three distinct summa-
tion expressions, because ¥, 41 can appear in the first place, in the second place, and
in the third place.) The relation (b) yields

— Do Y1 Yasus — D Yores 2 Yasy (28b)

2D Y022 Yase + 22 Yor23 2 Yas (28¢)

- 22 Yo12345. (28d)

The contributions (28a, b, ¢, d) sum up to {0, 862}. By increasing the subscripts of
the expressions (28) by 2, one obtains

Aaoe’ = - Z }&32 }'402 Y19 — 2 qu ysoz Y19 — Z qu ywz Yso
- Z yzaz Yase1 — Z yzsuz yer + 22 yuZ Yse18
+ 2D Y3452 Yos — 2" yassser. (29)

The determination of the other {n, 8%in*} is similar.

The numerical values of the coefficients {#, diint} are given in Table I to 5
decimal places, for 8, ranging from +4-0.9 to —1.0 (the interesting range in helicopter
theory). In the evaluation of {n, 8'e¢in*} the first 51 y, were taken into account.
(The accuracy obtainable is thus equivalent to the use of a 101-row approximant to
D.) yo to y20 were computed in some instances to 6, in some instances to 7 decimal
places; yx to yz0 were computed to 7 decimal places. It is expected that the entries of
Table I are in error by not more than 2 units in the fifth decimal place.5

It is readily seen that the present method is not limited to Eq. (1), but can be
extended to the general Hill differential equation where fne'™¥ form a convergent
series.

For the special case of Mathieu’s equation (e=7%=0), one finds by (23) and (27)
that

which (c) yields

and (d) yields

ot 1
D = Dy(Dy — y0Dg) = 1 — 25,

. 0(562
k=0 00 — k2 00—(k+1)2+ ( )

wcotrm
=1-20———— 2.
25 (400_1)\/00+O(6) | (30)

® An experienced computer can calculate a column of Table I in somewhat less than a day.
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This formula was used by H. Bremekamp in 1926 in a study of the flow of electrons
in metals.®

4. Example (a). Given 6=0.2, 6,=0.196854-0.33465¢, 6.=0.03875—0.10258.
Determine v;, vo. One finds §=0.15074, ¢=0.01202, n= —0.01635, and, by Table I,
Dy=1.8422, D,=0.9434, D;=0.9934, D;=0.9980, D,;=0.999, Ds=D¢=1.000. Like-
wise, by Table II, ©=2.3291. Therefore, q=\/93 sin m/8,=1.5052 and by (13b)
01=0.3078241/2, ;= —0.30782 —14/2. The associated functions 9;(¥) and v;(y) are
determined from the equation system (9). Normalizing to ¢o=1, and using the equa-
tions k= —4 to k= +4, one obtains’

3
v, = (— 0.1898 + 1.9817i)e+°-3°7w{— 0.0958 cos % + sin —z—- + 0.2076 cos 7'[,
3 5 5 7
— 0.0083 sin l — 0.0125 cos _'P — 0.0038 sin —'P + 0.0008 cos —f
.2 2 2 2
'z
+ 0.0019 sm7+ <o }
. 14 . ¥ K}
92 = (1.6652 + 0.74671)e0-3078% cos; + 0.4484 sin Py + 0.2107 cos >
.2 Sy .Y 42
+ 0.0188 sin ? + 0.0041 cos ? + 0.0101 sin 7 + 0.0005 cos —2—

A
+0.00205in-?+~-}.

S. Example (b). Given 8,=0, 8, =0.3724940.633234, 6, = 0.13875 — 0.36728i. De-
termine o. One finds v
' q = m/Dby-sin x/8e/x\/Bs = 7/0.4392 = 2.082,
g1 = — o3 = 0.4339 + i/2.

¢ M. J. O. Strutt, loc. cit., p. 26.
7 Note that the use of ¢;=0.30782—1/2 leads to the above expression of v; when ¢, is normalized to
1, and to the conjugate complex of the above when ¢o is normalized to 1.
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TaBLE 1.* Numerical values of {n, s'ent}.

6o = 9 .8 .7 .6 .5 .45 .4 .35
0, 5} 7.83180 4.63590 3.70199 3.38325 3.38203 3.48245 3.65865 3.92977
0, ¢} —.90665 —.24871 .00257 .16467 .30899 .38655 47423 .57886
0,7} 6.36577 3.51924 2.63695 2.27050 2.14607 2.15140 2.20218 2.30622
0, &) —.55015 —.30117 —.22352 —.19037 —.17858 —.17822 —.18162 —.18937
0, 3¢} .52473 .2785 .16578 15052 .14789 14837 15229
0, &} —.15952 —.08611 —.06307 —.05310 —.04908 —.04867 —.04928 —.05105
0, 8} .00265 .00143 .00104 .00087 .00081 000! .00081 .00083
0, e} —.41427 —.22658 —.16801 —.14320 —.13403 —.13372 —.13622 —.14199
0, en —.00590 -. -. 1 —.00278 —.00280 —.0029 - —.00330
0, n? —.00638 —.00342 —.00249 —.00208 —.00191 —.00189 —.00190 —.00196
0, %) —.00463 —.00248 —.00178 —.00150 —.00136 —.00133 —.00133 —.00136
0, 8} .0002. .00019 .00015 .00014 00014 .00013 .00014
0, 8¢t} .00317 00170 .00123 .00103 .00095 .00093 . .
0, den) —.00021 —.00012 —.00009 —.00008 —.00007 —.00007 —.00007 —.00007
1, 8} —3.27931 —1.61410 —1.05991 —.78342 —.61797 —.55795 —.50802 —.46584
1, ¢} —1.26507 —.63934 —.43033 —.32553 —.26241 —.23943 —.22021 —.20392
1,9} —.80268 —.38700 —.24905 —.18048 —.13964 —.12488 —.11264 —.10233
1, 8} 04439 .02131 .01366 .00986 .00759 .00678 .00610 .00553
1, 3¢} —.01646 —.00763 —.00471 —.00328 —.00243 —.00213 —.00187 —.00166
1, 89} .00739 -.00351 .00223 .00160 .00122 .00109 .00098 .00088
1, vg —.00009 —.00004 ~—.00003 —.00002 —.00002 —.00001 —.00001 —.00001
1, e - .03150 .01513 .00970 .00701 .00540 .00482 .00434 .00394
1, e} .00132 .00063 .00041 .00030 .00024 .00020 .00019 .00017
1, 53} .00019 00009 00006 .00004 .00002 00002 00002 .00002
2, a‘) —.05351 —.05160 —.04981 —.04813 —.04654 —.04579 —.04505 —.04434
2, ¢ —.03050 —.02958 —.02872 —.02791 —.02714 —.02678 —.02642 —.02607
2,9} —.00619 —.00591 —.00565 —.00541 —.00519 —.00508 —.00498 —.00487
2,8 .00025 .00024 .00023 .00021 .00021 .00020 .00020 .00019
2, 3¢ .00001 .00001 .00001 . 1 . 1 .00001 .00002 .00002
2, &} .00002 .00002 .00002 .00002 .00002 00002 .00002 .00002
2, &) .00017 .00017 .00016 .0001S .00015 .00014 .00014 00013
3, &) ~.01368 —.01349 —.01330 —.01311 —.01293 —.01284 —.01275 —.01267
3, ¢} —.00914 —-. —.00892 —.00881 —.00871 —.00866 —.00861 —.00856
3,9} —.00092 -. —.00088 - —.00086 —.00084 —.00084 —.00083
3, u} .00003 .00003 .00003 .00003 .00003 .00003 .00003 00003
3, 8¢ .00001 .00001 .00001 .00001 .00001 .00001 .00001 00001
3, &) 00002 .00002 .00002 .00002 .00002 00002 .00002 .00002
4, 8) —.00551 — .00546 —.00543 —.00538 —.00534 —.00532 —.00530 —.00528
4, ¢} —.00401 —.00399 —.00396 —.00393 —.0039 - - —.0038
4, 9} —.00024 —.00024 —.00023 —.00023 —.00023 —.00023 —.00023 —.00023
, e} .00001 1 .00001 .00001 .00001 .00001 .00001 .00001
{S. 8} —.00276 —.00275 —.00273 —.00272 —.00271 —.00270 —.00269 —.00269
S, ¢} —.00213 —.00212 —.00211 —.00210 —.00209 —.00209 —.00208 —.00208
5, »} ~—.00008 —.00008 —.00008 —.00008 —.00008 —.00008 — .00008 —.00008
6, ) —.00158 —.00157 —.00157 —.00156 —.00155 —.00155 —.00155 —.00155
6. ¢) —.00126 —.00126 —.00126 —.00125 —.00125 —.00125 —.00125 —.00125
{6, n} —.00003 —.00003 —.00003 —.00003 —.00003 —.00003 —.00003 —.00003
6 = .3 .25 .2 .15 1 .05 (a4
0, 3) 4.33216 4.93480 5.87874 7.49588 10.78515 20.74569 1.000000
0, ¢} .71097 .88889 1.14867 1.57391 2.41481 4.92154 250000
0, 7} 2.75850 3.21013 4.00081 5.62957 10.59568 500000
0, a‘ —.20279 —.22456 —.26021 —.32296 —.45255 —.84825 —.039865
0, de .16054 .17498 .19957 .24378 .33621 .62017 .028683
0, &} —.05432 —.05977 —.06883 —.08490 —.11824 —.22028 —.010290
0, ) .00089 .00098 .00112 .00138 .00192 .00357 .000166
0, ) —.15201 —.16827 —.19494 -—.24186 —.33884 —.63496 —.029835
0, en) —.00364 —.00416 —.00496 —.00630 —.00905 —.01736 —.000836
0, 5} —.00208 —.00228 —.00262 —.00322 - — 00832 —.000388
0, &%) —.00144 —.00158 —.00180 —.00221 —.00305 —.00566 —.000262
0, &%) .00014 .00015 .00018 .00022 .00032 .00059 .000028
0, det} .00103 .00112 .00129 .00160 .00222 .00412 .000194
0, den) —.00007 —.00007 —.00008 ~—.00009 —.00012 —.00023 —.000012
1, 8) —.42975 —.39853 —.37126 —.34726 —.32596 —.30694 —.28987
1,¢) —.18993 —.17778 —.16712 —.15769 —.14929 —.14176 —.13496
1,9} —.09354 —.08595 —.07934 —.07355 —.06844 - —.05980
i, & 00505 . 3 .00426 .00395 .00366 .00341 .00319
1, de —.00149 —.00134 ~.00120 —.00109 —.00099 —.00091 —.00083
1, &y} .00080 .00073 .00067 .00062 .00057 00053 .00050
1, 8) —.00001 —.00001 —.00001 —.00001 —.00001 —.00001 —.00001
1, et} .00359 .00330 .00303 .00281 .00261 .00243 .00227
1, ey .00014 .00014 .00012 .00012 .00011 .00011 .00010
1, g .00002 .00002 .00001 .00001 .00001 .00001 .00001

* Note 1. {n, 3%¢/y*] which are less than .00001 in magnitude, or for which # > 6, are not shown.
) 3 Al D.
** Note 2, For6,=0 (ys= =) the coefficients 3 , + + + of — are given.
Yo Y Yo
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TasLE I. (Continued)

[Vol. 1V, No. 4

[] 3 .25 2 15 1 .08 [
2, 8} —.04365 —.04297 —.04232 —.04168 —.04106 —.04045 —.03987
2, ¢} —.02573 —.02540 —.02507 —.0247S —.02445 —.02415 —.02385
2,7} —.00477 —.00468 —.00458 —.00450 —.00442 —.00433 —.00425
2, 8} .00019 .00018 .00018 .00018 .00017 .00017 .00017
2, e} 00002 .00002 00002 .00002 .00002 .00002 .00002
2, &n} 00002 .00002 .00002 .00002 .00002 .00002 .00002
2, &) .00013 .00013 .00013 .00013 .00012 .00012 .00012
3,8) —.01258 —.01250 —.01241 —.01233 —.01225 —.01217 —.01209
3. ¢} —.00851 —.00846 —.00842 —.00837 —.00832 —.00827 —.00823
3,9} —.00082 —.00081 —.00080 —.00079 —.00078 —.00078 —.00077
3, 8 .00003 .00002 .00002 .00002 00002 .00002 .00002
3, 3¢ .00001 00001 .00001 .00001 .00001 .00001 .00001
3, &) .00002 .00002 00002 .00002 00002 .00002 .00002
4, 8} —.00526 —.00524 —.00522 —.00520 —.00518 —.00516 —.00514
4, ¢} —.00386 —.00385 .003 —.00382 —.00381 —.00380 —.00378
4, 0} —.00022 —.00022 —.00022 —.00022 —.00022 —.00022 - 2
5, 3} —.00268 —.00268 —.00267 —.00266 —.00266 —.00265 —.00264
S, ¢} —.00207 —.00207 —.00207 —.00206 —.00206 —.00205 —.00205
() -. - .0000: - 8 —.00008 —.00008 —-.
6, 8} —.00155 —.00155 —.00154 —.00154 —.00154 —.00153 —.00153
6,-¢] —.00124 —.00124 —.00124 —.00024 —.00124 —.00123 —.00123
6, 9 —-. —.00003 - 3 —.00003 - -. 3 -. 3 —.00003
[ —.08 -1 -.15 -.2 -.28 -3 -.35 -.4
0, 5} —19.32207 —9.35137 —6.04482 —4.40273 —3.42538 —2.77963 —2.32283 —1.98371
0, ) —5.06707 —2.56220 —1.72447 —1.30380 —1.05015 —.88013 + —.75802 —.66590
0, 7} —9.46238 —4.48740 —2.84360 —2.03119 —1.55045 —1.23488 —1.01322 —.84989
0, &) . 75141 .35491 .22402 .159 .12120 .09616 .07860 .06569
0, 3¢} —.53194 —.24724 —.15352 —.1074S —.08037 —.06274 —.05042 —.04144
0, 3n) .19281 .09051 .05679 04017 .03036 .02396 .01947 .01617
0, 3) —.00311 —.00146 - - —.00048 —.00038 - 1 —.00026
0, ¢} .56222 .26550 .1675S .11919 .09061 .07188 .05874 .04908
* {0, &g .01609 .00775 .00500 .00363 .00281 .00226 .00188 .00160
0, n? .00724 .00338 .00211 .00149 .00112 .00088 .00072 .00059
, S} .00488 .00227 .00141 0009 .00074 .00059 .00047 .00039
, 8} —.00048 —.00023 —.00014 —.00010 — .0000:! - — 0000 —.00004
0, 3¢} ~.00357 —.00167 —.00103 —.00073 —.000S8S —.00044 —.00035 —.00029
0. den) .00023 .00010 . .00004 .00003 .00003 .0000! .00001
1, 8} .27445 —.26046 —.24772 .23607 —.22538 —.21553 —.20643 —.19
e} —.12880 —.12318 —.11808 —.11332 —.10897 —.10494 —.10120 —.09772
1, 9] —.05614 —.05282 —.04981 .04707 —.04457 —.04227 —.04016 —.03821
1, & .00299 .00281 .00264 .00249 .00235 .00223 .00211 .00201
1, 8¢ —.00076 —.00069 —.00064 —.00059 —.00054 —.00050 —.00047 —.00043
1, &} .00046 .00043 .00040 .00038 .00036 .00034 .00032 .00030
. 8) —.00001 —.00001 —.00001 -. 1
1, &) .00213 .00200 .00188 .00178 .00168 .00159 .00151 .00143
1, en . 9 00009 .00008 .00008 .00007 .00007 . 7 .
1, n? . 1 .00001 .00001 .00001 .00001 .00001 . 1
2, 8} .03929 —.03873 —.0381 .03766 —.03714 —.03663 - 14 .03566
2, ¢} —.02357 —.02328 —.02301 —.02275 —.02249 —.02223 —.02198 —.02174
2,9) —.00417 -. —.00401 —.00394 —.00387 —.00380 —.00373 —.00367
2, 8 .00016 .00016 .00016 .00015 .00015 .00015 .00015 .00014
2, 3¢ .00002 - .00002 00002 +.00002 .00002 00002 .00002 .00002
L ) .00002 .00002 .00001 .00001 .00001 .00001 .00001 .00001
2, &) .00011 .00011 .00011 .00011 .00011 .00010 .00010 .00010
3, 8) —.01201 —.01193 —.01185 —.01178 —.01170 —.01163 —.01155 —.01148
3, ¢ —.00818 —.00814 —.00809 —.00805 —.00801 —.00796 —.00792 —.00788
3, 1) —.00077 —.00076 —.00075 —.00075 —.00074 —.00073 —.00073 —.00072
3, & .00002 , .00002 .00002 .00002 00002 .00002 .00002 .00002
3, ¢ .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001
3, &) 00002 .00002 .00001 .00001 .00001 .00001 .00001 .00001
4, 3} ~.00512 —.00510 —.00509 —.00507 —.00505 .00503 —.00501 —.00500
4, ¢} ~.00377 —.00376 —.00375 —.00374 —.00372 —.00371 —.00370 —.00369
4,9} ~.00022 —.00022 —.00021 —.00021 —.00021 .0002 —.00021 —.00021
S, 3} ~.00264 —.00263 —.00262 —.00262 —.00261 —.00261 —.00260 —.00259
S, ¢} —~.00204 —.00204 —.00204 —.00203 —.00203 —.00202 —.00202 —.00202
5, n) -. 8 - 8 —-. 8 —.00008 —-. 8 —.00008 —.00008 8
6, 8) —.00153 —.00153 —.00152 —.00152 —.00152 —.00152 —.00151 —.00151
6, ¢} —.00123 —.00123 —.00123 —.00122 —.00122 —.00122 —.00122 —.00122
6, 9} - 3 -. 3 - 3 —.00003 —.00003 —.00003 —.00003
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6o —.45 -.5 —.58 —-.6 -7 —-.8 -9 -1.0
0, &} —1.72274 —1.51622 —1.34910 —1.21138 —.99849 —.84237 —.72362 —.63067
0, ¢} —.59385 —.53588 —.48819 —.44823 —.38497 —.33706 —.29947 —.26917
0,7) —.72520  —.62733 —.54879 —.44863 —.38670 —.31617 —.26349 —.22300
0, &) .05584 .04813 04195 .03691 02924 02374 .01965 01652
0, 3¢} —.03464  —.02936 —.02516 —.02176 —.01666 —.01306 —.01043 —.00846
0, &) .01368 01172 .01016 .00888 .00695 00559 .00457 00380
0, &) —.00022 —.00019 —.00016 —.00014 —.00011 - —.00007 -

0, ) 04172 .03595 .03133 .02757 .02184 .01772 .01467 .01233
0, en) .00139 .00121 .00107 .00096 .00078 . 00055 .00047
0, n?} .00050 .00043 .00037 .00032 .00025 .00020 .00016 .00013
0, 5%} .00033 .00028 .00024 .00021 .00016 .00013 .00010 .00008
0, &%) —.00003 —.00003 —.00002 —.00002 —.00001 —.00001 —.00001 —.00001
0, 8¢t —.00025 —.00021 —.00018 —.00016 —.00012 —.00010 —.00008 —.00007
0, den) .00001 .00001 .00001 .00001

1, 8} —.19017 —.18288 —.17608 —.16971 —.15815 —.14793 —.13882 —.13067
1, ¢} —.09448 —.09144  —.08859 —.08591 —.08102 —.07664 —.07272 —.06917
1,9} —.03641 —.03473 —.03318 —.03173 —.02911 —.02682 —.02480 —.02

1, ) .00191 .00182 .00173 .00166 .00151 .00139 .00128 .00118
1, 3¢} —.00040  —.00037 —.00034  —.00032 —.00028 —.00024  —.00020 —.00018
1, &) .00029 .00027 .00026 .00025 .00022 .00020 .00018 .00017
1, et} .00136 .00130 .00124 .00118 .00108 .00099 .00092 .00085
1, en) . 6 00005 .00005 .00004 .00003
2, 5} —.03519 —.03473 —.03428 —.03384  —.03300 —.03219 —.03141 —.03067
2, ¢} —.02150  —.02126 —.02103 —.02081 —.02037 —.01995 —.01985 —.01917
2,79) —.00361 —.00354  —.00349  —.00342 —.00331 —.00320 —.00310 —.00150
2, &) .00014 .00014 .00014 .00013 .00013 .00012 .00012 .00012
2, Be) .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002
2, &) .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001
2, &} .00010 .00010 .00010 . .00009 .00009 .00008 .00008
3, 8} —.01141 —.01134  —.01127 —.01120 —.01106 —.01093 —.01080 —.01067
3, ¢} —.00784  —.00779  —.00775 —.00771 —.00763 —.00755 —.00748  —.00740
3,9) —.00072 —.00071 —.00071 —.00070 —.00068 —.00067 —.00066 —.00065
3, & .00002 .00002 .00002 .00002 .00002 .00002 .00002 00002
3, de .00001 .00001 .00001 .00001 .00001 00001 .00001 .00001
3, &) .00001 .00001 00001 .00001 .00001 .00001 .00001 .00001
4,3) —.00498  ~.00496  —.00494 —.00492 -. —.00485 —.00482 —.00479
4, ¢} —.00368 —.00366 —.00365 —.00364 —.00362 —.00360 —.00358 —.00356
4, 1) —.00021 —.00020 —.00020 - —.00020 —.00020 —.00020 —.00020
S, 8} —.00259 —.00259  —.00258 —.00257 —.00256 —.00255 —.00253 —.00252
5, ¢) —.00201 —.00201 —.00200 —.00200 —.00199 —.00198 —.00197 —.00197
5.9} —.00008 —.00008  —.00008 —.00008 —.00008 —.00007 —.00007 - 7
16, 8) —.00151 —.00151 —.00150  —.00150 —.00150 —.00149 —.00149  —.00149
6, ¢} —.00122 —.00121 —.00121 —.00121 —.00121 —.00120 —.00120 —.00120
6, 7} —.00003 - -. 3 —.00003 —.00003 —.00003 —.00003 - 3
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TasLE I1. Expansion of D (row 1 Xrow 2 Xrow 3, see Eq. 23).
Numerical tabulation of the coefficients in row 3.
row 1 1 é
6o row 2 DeDs } D\Ds } D\D, D;} D; DlD)} D,D, Dch}
row 3 1 -y —9es -y 2 you 2 yus —4 your —2 yo
.5 1 4.00000 .57143 —4.00000 16.00000 2.28571 9.14285 .26891
.45 1 4.04040 .62598 —3.30579 14.69238 2.27628 8.27740 .26623
.4 1 4.16667 .69445 —2.77778 13.88889 2.31482 7.71606 26916
.35 1 4.39561 .78278 —2.36687 13.52495 2.40856 7.41094 .27845
.3 1 4.76190 . —2.04082 13.60543 .57400 7.35428 29586
.25 1 5.33333 1. —1.77778  14.22222 2.84445 7.58519 .32508
.2 1 6.25 1.31579 -—1.56250 15.62500 3.28948 8.22369 .37380
.18 1 7.84314 1.73160 —1.38408 18.45445 4.07436 9.58673 .46037
.1 1 11.11111 2.56410 —1.23457 24.69135 5.69800 12.66222 .64023
.05 1 21.05263 5.06329 —1.10803 44.32135 10.65956 22.44119 1.19100
o* 1] 1.00000 . 2. .50000 1. 05556
-.05 1 —19.04762 —4.93827 — .90703 —36.28118 —9.40624 —17.91666 —1.03936
-.10 1 —9.09091 —2.43902 — .82645 —16.52891 —4.43458 —8.06287 — .48732
-.15 1 -5.79710 -—1. - .75 —10.08191 —2.79379 —4.85876 — .30533
-.2 1 —4.16667 —1.19048 — .69444 —6.94444 —1.98412 -—3.30686 — .21566
-.25 1 ~3.20000 — .94118 — .64000 —5.12000 —1.50588 —2.40941 — .16280
-.3 1 —2.56410 — .77519 — 59171 —3.94477 —1.19260 —1.83478 — .12823
-.35 1 —2.11640 — .65681 — .54870 —3.13541 — .97306 —1.44157 — .10407
—-.4 1 1.78571 — .56818 -— .51020 -—2.55102 -— .81169 —1.15955 — .08635
—.45 1 —1.53256 — .49938 — .47562 -—2.11388 — .68880 — .95006 — .07289
-.5 1 —1.33333 — .44444 — 44444 —1.77778 — .59259 — .79012 — .06238
-.58 1 —1.17302 - .39960 — .41623 —1.51357 -— .51561 — .66530 — .05399
-.6 1 —1.04167 -— .36232 - .39063 —1.30208 — .452 — .56612 — .04718
-.7 1 — .84034 ~— .30395 -— .34602 ~— .98863 — .35759 ~— .42069 - .03687
-.8 1 — .69444 — .26042 ~— .30864 — .77160 — .28935 -— .32150 — .02953
-.9 1 — .58480 — .22676 — .27701 — .61587 — .23869 — .25126 — .02411
-1.0 1 - .50000 — . - - - .20000 -— . — .02000
row 1 @ o et
6 rOW 2 D\D, DsD, DsD, D\Dy D} D:D, DD, DD,
row 3 yau 2 yun 4 youn 2 yasu 2 youss —4ynuu —4 Yoz —2 yana
.5 -1 —4.57143  1.07563 .01735  1.30612 .06941 .30732 .00071
. —"13312  —4.13870 12 01712 1.16583 106226 227271 200070
.4 -—.13458 —3.85803 .89721 01726 1.07168 .05752 .24922 .00070
.35 —.13922 —3.70547 .85676 .01779 1.01520 .05478 .23498 .00072
.3 —.14793 —3.67714 .84532 .0188S .99382 .05384 .22846 .00076
.25 —.16254 —3.79260 .86688 .02064 1.01136 .05504 .23117 .00083
.2 —.18690 —4.11185 .93450 .02366 1.08206 .05915 .24592 .00095
.18 —-.23019 —4.79337 1.08323 .02904 1.24503 .06834 .28136 .00117
. —.32011 —6.33111 1.42273 .04027 1.62336 .0R948 .00162
. —.59550 -—11.22059 2.50737 .07468 2.84066 .15722 .63478 .00300
0* -.0277 . JA1111 .00347 .12500 .00694 .02778 .00014
-.08 .51968 8.95833 , —1.97974 — 06476 —2.21193 —.12335 - —.00260
-1 .243 4.031 —.88604 —.03026 —.98328 —.05503 —.21610 —.00121
-.15 .15267 2.42938 -.53101 —.01891 —.58539 —.03288 —.12796 —.0007S
-.2 .107 1.653 —.35943 —.01331 -—.39367 —.02218 —.08558 —.00053
-.25 .08140 1.20470 —.26048 —.01002 —.28346 —.01603 —.06129 -
-.3 ©.0641 .91739 -.19728 —.00787 -.21335 —.01210 —.045. —.00031
-.35 .05203 .72078 —.15418 - 7 -.16570 —.00943 —.03544 —.00025
-.4 .04318 .57978 -.12336 —.00527 —.13177 —.00752 —.02 —.00021
—.45 .03644 .47503 —.10054 —.00443 —.1067S - 11 —.02259 —.00017
-.5 .03119 .39506 -—.08317 —.00378 —.08779 —.00504 —.01848 —.00015
-.58 .02700 .33265 —.06967 —.00326 -.07311 —.00421 —.01531 —.00013
-.6 .02359 —.05897 —.00284 - .06154 —.00355 —.01282 —.00011
-.7 .01 .21038 —.04337 —.00221 —.04475 —.00260 —.00923 —.00009
-.8 .01476 .16075 —.03281 -.00176 —.03349 —.00195 —.00684 —.00007
-.9 .01206 .12563 -—.02538 —.00143 -—.02564 —.00150 —.00518 - .00006
-1.0 .01000 - .10000 —.02000 —.00118 —.02000 —.00118 —.00400 —.0000S

* Note 1. For 0y=0 (ye= ®) the coefficients of D/yo are given.



