UNSTABLE SOLUTIONS OF A CLASS OF HILL DIFFERENTIAL EQUATIONS* BY ## GABRIEL HORVAY ## McDonnell Aircraft Corporation 1. Introduction. Linear differential equations with periodic coefficients play an important role in problems of engineering and physics. The best-known of these equations is Mathieu's equation. A somewhat more complicated equation is $$\frac{d^2v}{d\psi^2} + \left[\theta_{-2}e^{-2i\psi} + \theta_{-1}e^{-i\psi} + \theta_0 + \theta_1e^{i\psi} + \theta_2e^{2i\psi}\right]v = 0 \tag{1a}$$ which reduces to Mathieu's equation for $$\theta_0^* = \theta_0, \quad \theta_{-1}^* = \theta_{-1} = \theta_1, \quad \theta_{-2} = \theta_2 = 0.$$ where the asterisk is used to denote the conjugate complex quantity. This paper is concerned with the determination of the solutions $$v(\psi) = e^{\sigma \psi} \sum_{-\infty}^{+\infty} c_k e^{ik\psi} \tag{2}$$ of Eq. (1a) subject to the restrictions $$\theta_0^* = \theta_0, \quad \theta_{-1}^* = \theta_1, \quad \theta_{-2}^* = \theta_2$$ (1b) and $$\theta_1 = O(\mu), \qquad \theta_2 = O(\mu^2), \tag{3}$$ where μ is a small positive quantity. It will be seen that solution of the problem involves the determination of the "characteristic exponent" σ from the equation $$\sin i\pi\sigma = \sqrt{D}\sin \pi\sqrt{\theta_0},\tag{4}$$ where D denotes the expansion $$\mathcal{D} = 1 + C_{\delta}\delta + C_{\epsilon}\epsilon + C_{\eta}\eta + C_{\delta}^{2}\delta^{2} + C_{\delta\epsilon}\delta\epsilon + \cdots$$ (5) in the three real combinations $$\delta = \theta_{-1}\theta_1, \qquad \epsilon = \theta_{-2}\theta_2, \qquad \eta = \frac{1}{2}(\theta_1^2\theta_{-2} + \theta_{-1}^2\theta_2)$$ (6a) of the four quantities, real and imaginary parts of θ_1 and θ_2 . D is a power series in μ^2 since $$\delta = O(\mu^2), \qquad \epsilon = O(\mu^4), \qquad \eta = O(\mu^4). \tag{6b}$$ The coefficients C of the series depend on θ_0 alone. The numerical evaluation of the coefficients of the expansion is the principal aim of this paper. This is best accomplished by first re-expressing the "doubly infinite" $Hill\ determinant\ D$ in terms of its "simply infinite" principal subdeterminants D_n , ^{*} Received June 13, 1946. $$\mathcal{D} = f(D_0, D_1, D_2, \cdots), \tag{7}$$ and then expanding D_n into the series $$D_n = 1 + A_{\delta}^n \delta + A_{\epsilon}^n \epsilon + A_{\eta}^n \eta + A_{\delta}^{\eta 2} \delta^2 + \cdots$$ (8) The coefficients of the expansions (7) and (8) are tabulated in Tables II and I respectively for a convenient range of θ_0 . For the sake of simpler printing the notation $$A_{\delta^i \epsilon^j \pi^k}^n \equiv \left\{ n, \, \delta^i \epsilon^j \eta^k \right\} \tag{8'}$$ will be used whenever the subscript of A becomes excessively long. The practical solution of Eq. (1) is carried out in four steps. First, the determinants D_n , Eqs. (8), are evaluated by means of Table I. Next \mathcal{D} , Eq. (7), is determined from Table II. The third step consists in solving Eq. (4) or one of its variants (13a, b, c) for σ , and the last step is the determination of the coefficients c_k of solution (2). A convenient method for carrying out this last step is discussed in Section 2. The derivations of the formulas for $\{n, \delta^i \epsilon^j \eta^k\}$ and for the coefficients of (7) are presented in Section 3. A numerical example is given in Section 4. The present paper is based on a study which was recently undertaken at the McDonnell Aircraft Corp. under the sponsorship of the Bureau of Aeronautics, U. S. Navy Department. The study was prompted by recent instances of control difficulties of some helicopters and rotor blade failures of others. As will be shown in a separate paper,¹ the natural modes in which hinged rotor blades flap can be represented by solutions of Eq. (1) multiplied by suitable damping factors. It will be found that the stability of the blade motion decreases as the speed of advance of the helicopter increases (as μ increases). Nevertheless, instability does not set in, because an aerodynamic damping effect outweighs, at all feasable speeds, the tendency towards instability which results from the flapping motion. The writer's thanks are due to his colleague, Elizabeth J. Spitzer, for checking the derivations and the numerical work. The writer also wishes to express his indebtedness to Messrs. W. R. Foote, H. Poritsky and J. J. Slade, who in their paper on rotational instability of shafts² applied a Laplace expansion to a doubly infinite determinant, and thus suggested the present approach. 2. Method of solution. The solution of Eq. (1a) is assumed in the standard form $$v(\psi) = e^{\sigma \psi} \sum_{-\infty}^{+\infty} c_k e^{ik\psi}. \tag{2}$$ Substitution of expression (2) into Eq. (1a) leads to the infinite set of homogeneous equations for the coefficients $c_k(\sigma)$: $$k = -2: \qquad \theta_{2}c_{-4} + \theta_{1}c_{-3} + \left[(\sigma - 2i)^{2} + \theta_{0} \right]c_{-2} + \theta_{-1}c_{-1} + \theta_{-2}c_{0}$$ $$k = -1: \qquad \theta_{2}c_{-3} + \theta_{1}c_{-2} + \left[(\sigma - i)^{2} + \theta_{0} \right]c_{-1} + \theta_{-1}c_{0} + \theta_{-2}c_{1}$$ $$k = 0: \qquad \theta_{2}c_{-2} + \theta_{1}c_{-1} + \left[\sigma^{2} + \theta_{0} \right]c_{0} + \theta_{-1}c_{1} + \theta_{-2}c_{2}$$ $$= 0, (9)$$ $$k = 0: \qquad \theta_{2}c_{-2} + \theta_{1}c_{-1} + \left[\sigma^{2} + \theta_{0} \right]c_{0} + \theta_{-1}c_{1} + \theta_{-2}c_{2}$$ $$= 0, (9)$$ ¹ G. Horvay, Rotor blade flapping motion, to be published soon. ² W. R. Foote, H. Poritsky and J. J. Slade, Critical speeds of a rotor with unequal shaft flexibilities, mounted in bearings of unequal flexibility, Journal of Applied Mechanics, 10, A77, 1943. $$k = -1: \qquad \theta_2 c_{-1} + \theta_1 c_0 + \left[(\sigma + i)^2 + \theta_0 \right] c_1 + \theta_{-1} c_2 + \theta_{-2} c_3 = 0,$$ $$k = -2: \qquad \theta_2 c_0 + \theta_1 c_1 + \left[(\sigma + 2i)^2 + \theta_0 \right] c_2 + \theta_{-1} c_3 + \theta_{-2} c_4 = 0,$$ The equations are consistent if their determinant, $\Delta(\sigma)$, vanishes. The consistency criterion $$\Delta(\sigma) = 0 \tag{10}$$ can be expressed in the much simpler form^{8,4} $$\sin i\pi\sigma = \pm \sqrt{D}\sin \pi\sqrt{\theta_0},\tag{4}$$ where $$\mathfrak{D} \equiv \Delta(0) = \begin{vmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \theta_{-1}y_{2} & \theta_{-2}y_{2} & 0 & 0 & \cdot \\ \cdot & \theta_{1}y_{1} & 1 & \theta_{-1}y_{1} & \theta_{-2}y_{1} & 0 & \cdot \\ \cdot & \theta_{2}y_{0} & \theta_{1}y_{0} & 1 & \theta_{-1}y_{0} & \theta_{-2}y_{0} & \cdot \\ \cdot & 0 & \theta_{2}y_{1} & \theta_{1}y_{1} & 1 & \theta_{-1}y_{1} & \cdot \\ \cdot & 0 & 0 & \theta_{2}y_{2} & \theta_{1}y_{2} & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{vmatrix}$$ (11a) is the determinant of system (9) for $\sigma = 0$ when each equation is divided by the coefficient of the diagonal term, and $$y_k = \frac{1}{\theta_0 - k^2} \,. \tag{11b}$$ \mathcal{D} is either positive or negative, and so is θ_0 . Thus the quantity $\sqrt{\mathcal{D}} \sin \pi \sqrt{\bar{\theta}_0}$ is either real or pure imaginary. In the first case set $$q = \sqrt{\mathcal{D}} \sin \pi \sqrt{\theta_0} = -\sqrt{-\mathcal{D}} \sinh \pi \sqrt{-\theta_0}. \tag{12a}$$ In the second case set $$q' = q/i = -\sqrt{-D}\sin \pi \sqrt{\theta_0} = -\sqrt{D}\sinh \pi \sqrt{-\theta_0}.$$ (12b) Then the solution of the transcendental equation (4) is given by $$\pm \sigma = \frac{1}{\pi} \log (q/i + \sqrt{1 - q^2}) + mi \qquad (m = 0, \pm 1, \pm 2, \cdots),$$ $$= \frac{i}{\pi} \arctan \frac{-q}{\sqrt{1 - q^2}} + mi \qquad \text{for } -1 \le q \le 1, \qquad (13a)$$ $$= \frac{1}{\pi} \log (q + \sqrt{q^2 - 1}) + (m - \frac{1}{2})i \text{ for } q \le -1, q \ge 1,$$ $$= \frac{1}{\pi} \log (q' + \sqrt{q'^2 + 1}) + mi \text{ for } q \text{ imaginary}.$$ (13b) $$= \frac{1}{\pi} \log \left(q' + \sqrt{q'^2 + 1} \right) + mi \qquad \text{for } q \text{ imaginary.}$$ (13c) ³ Whittaker and Watson, A course of modern analysis, Cambridge, 1927, p. 416. M. J. O. Strutt, Lamésche, Mathieusche und verwondte Funktionen in Physik und Technik, Springer 1932 (Edward Bros., 1944), p. 22. Once \mathcal{D} is known, the calculation of σ from (13) is simple matter. For any m there are two solutions σ_1 and σ_2 which differ only in sign $$\sigma_2 = -\sigma_1. \tag{14a}$$ Let σ_1 be the solution with the positive real part $$\sigma_1 = \sigma_r + i\sigma_i, \qquad \sigma_r \ge 0.$$ (14b) The function $v_1(\psi)$ (or $v_2(\psi)$) associated with σ_1 (or with σ_2) is readily obtained by placing σ_1 (or σ_2) into the system (9) which is now limited to the equations k=-N, -N+1, \cdots , -1, +1, \cdots , +N. Assuming $c_k=0$ for k<-N and k>+N, one can solve the 2N equations for c_{-N} , c_{-N+1} , \cdots , c_{-1} , c_1 , \cdots , c_N in terms of the arbitrary constant c_0 , and then use equation k=0 as a check. The greater is N, the more harmonics are taken into account, and the more accurate is the solution. In practice the calculations are most conveniently carried out by solving equations k=N and k=-N for c_N and c_{-N} in terms of the variables c_{N-1} , c_{N-2} and c_{-N+1} , c_{-N+2} , respectively. The results are then substituted into equations k=N-1 and k=-N+1; similarly c_{N-1} and c_{-N+1} are determined. Continuing the process one finally arrives at equations k=1 and k=1 involving the two variables c_1 and c_1 only, and the parameter c_0 which can be assumed as 1. One eliminates one of the unknowns, say c_1 determines from the real and imaginary parts of c_1 , and then, retracing the steps, obtains in succession the numerical values of c_1 , c_2 , c_2 , \cdots , c_N , c_N . Evidently, in principle, it is immaterial what mi $(m=0, \pm 1, \pm 2, \cdots)$ is used in the σ of Eqs. (9). For instance, the set of equations
k=-N to +N with m=2, the set of equations k=-N-2 to +N-2 with m=4, and the set of equations k=-N+3 to +N+3 with m=-1 are identical. Thus, as one passes to the limit $N\to\infty$, any m and any 2N+1 adjoining equations will lead to the same function $v_1(\psi)$ [or $v_2(\psi)$]. In practice, where one is limited to a finite number of equations, 2N+1, it is best to use the centrally located equations k=-N to +N with an m which makes c_0 the dominating term in the series (2). In general v_1 , associated with σ_1 , and v_2 , associated with σ_2 , are linearly independent functions. An exceptional case arises when $\sigma_r = 0$, and σ_i is an integral multiple of $\frac{1}{2}$. Then substitution of σ_1 and σ_2 into the system (9) leads to the same function $$v_1 = e^{i\nu\psi} \sum_{-\infty}^{+\infty} c_k e^{ik\psi}, \qquad (\nu = 0 \text{ or } \frac{1}{2}).$$ (15a) The second, linearly independent, solution is now a "quasiperiodic function":4a $$v_2 = e^{i\nu\psi} \left[\psi \sum_{-\infty}^{+\infty} c_k e^{ik\psi} + \sum_{-\infty}^{+\infty} d_k e^{ik\psi} \right], \qquad (\nu = 0, \frac{1}{2}).$$ (15b) For convenience the functions (15a) will be called "purely periodic" functions. Determination of the purely periodic solutions (15a) forms the subject matter of most investigations on Mathieu and Hill differential equations. The purely periodic ⁴ⁿ M. J. O. Strutt, *loc. cit.*, p. 23. As an exception there may be two purely periodic solutions. For instance, for $\theta_0 = 4$, $\theta_1 = \theta_2 = 0$, one obtains $v_1 = \cos 2\psi$, $v_2 = \sin 2\psi$. solutions are usually of greatest interest, because they separate the μ -regions of stability $(\sigma_r = 0; v_1 \text{ and } v_2 \text{ are oscillatory})$ from the μ -regions of instability $(\sigma_r > 0, v_1 \to \infty \text{ as } \psi \to \infty)$. A purely periodic solution can be obtained, cf. Eqs. (12), (13), only when q' = 0 $(\mathcal{D} = 0, \text{ or perhaps } \theta_0 = k^2)$, or when $q = \pm 1$ $(\mathcal{D} \text{ and } \theta_0 \text{ are such that } \sqrt{\mathcal{D}} \sin \pi \sqrt{\theta_0} = 1$ or $\sqrt{-\mathcal{D}} \sinh \pi \sqrt{-\theta_0} = 1$). In general $\theta_0 = k^2$ does not provide a purely periodic function. In the present analysis the principal interest is attached to the unstable solutions $$v_1(\psi) = e^{\sigma_r \psi} \sum_{-\infty}^{+\infty} c_k e^{i(\sigma_i + k)\psi}, \qquad (\sigma_r > 0)$$ (16) of (1) which, after multiplication by a damping factor $e^{-n\psi/2}$, are still stable. These solutions are in the "transition region" which extends from the μ -value for which $v(\psi)$ is purely periodic to the μ -value for which $e^{-n\psi/2}v(\psi)$ is purely periodic. It will be seen in Reference 1 that a rapidly advancing helicopter usually operates in the transition region. 3. Expansion of Hill's infinite determinant. It will be convenient to call the determinant \mathcal{D} , Eq. (11a), a doubly infinite determinant to indicate that it extends to infinity both upward and downward. Simply infinite determinant are the principal subdeterminants of \mathcal{D} , $$D_{n} = \begin{vmatrix} 1 & \theta_{-1}y_{n} & \theta_{-2}y_{n} & 0 & \cdot \\ \theta_{1}y_{n+1} & 1 & \theta_{-1}y_{n+1} & \theta_{-2}y_{n+1} & \cdot \\ \theta_{2}y_{n+2} & \theta_{1}y_{n+2} & 1 & \theta_{-1}y_{n+2} & \cdot \\ 0 & \theta_{2}y_{n+3} & \theta_{1}y_{n+3} & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{vmatrix}; \quad E_{n} = \begin{vmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \theta_{-1}y_{n+3} & \theta_{-2}y_{n+2} \\ \cdot & \theta_{1}y_{n+2} & 1 & \theta_{-1}y_{n+2} & \theta_{-1}y_{n+2} \\ \cdot & \theta_{2}y_{n+1} & \theta_{1}y_{n+1} & 1 & \theta_{-1}y_{n+1} \\ \cdot & 0 & \theta_{2}y_{n} & \theta_{1}y_{n} & 1 \end{vmatrix}.$$ (17a, b) The first extends to infinity downward, the second upward. Simply infinite determinants are also the auxiliary subdeterminants $$S_{n} = \begin{vmatrix} \theta_{1}y_{n} & \theta_{-1}y_{n} & \theta_{-2}y_{n} & 0 & \cdot \\ \theta_{2}y_{n+1} & 1 & \theta_{-1}y_{n+1} & \theta_{-2}y_{n+1} & \cdot \\ 0 & \theta_{1}y_{n+2} & 1 & \theta_{-1}y_{n+2} & \cdot \\ 0 & \theta_{2}y_{n+3} & \theta_{1}y_{n+3} & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{vmatrix}; \quad T_{n} = \begin{vmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \theta_{-1}y_{n+3} & \theta_{-2}y_{n+3} & 0 \\ \cdot & \theta_{1}y_{n+2} & 1 & \theta_{-1}y_{n+2} & 0 \\ \cdot & \theta_{2}y_{n+1} & \theta_{1}y_{n+1} & 1 & \theta_{-2}y_{n+1} \\ \cdot & 0 & \theta_{2}y_{n} & \theta_{1}y_{n} & \theta_{-1}y_{n} \end{vmatrix}. \quad (18a, b)$$ S_n differs from D_n only in the first column; T_n differs from E_n only in the rightmost column. One readily establishes the recurrence relations $$D_{n} = D_{n+1} - \theta_{-1} y_{n} S_{n+1} + \theta_{1} \theta_{-2} y_{n} y_{n+1} S_{n+2} - \epsilon y_{n} y_{n+2} D_{n+3}$$ $$+ \epsilon^{2} y_{n} y_{n+1} y_{n+2} y_{n+3} D_{n+4},$$ (19a) $$S_n = \theta_1 y_n D_{n+1} - \theta_{-1} \theta_2 y_n y_{n+1} D_{n+2} + \epsilon y_n y_{n+1} S_{n+2}. \tag{19b}$$ A Laplace expansion of the doubly infinite determinant \mathcal{D} along a dividing line between row k=0 and k=-1 leads to the following expression involving only simply infinite determinants of type D_n , E_n , S_r , T_n : $$\mathcal{D} = D_0 E_1 - S_0 T_1 + y_0 y_1 (\theta_{-1} \theta_2 D_1 T_2 + \theta_1 \theta_{-2} S_1 E_2) - \epsilon (y_0 y_2 D_1 E_3 + y_1^2 D_2 E_2 + y_0 y_1 S_1 T_2) + \epsilon^2 (y_0 y_1 y_2 y_3 D_1 E_4 + y_0 y_1^2 y_2 E_2 D_3 + y_0 y_1^2 y_2 D_2 E_3).$$ (20) Since, by virtue of (1b) $$E_n = D_n^* = D_n, (21a)$$ $$T_n = S_n^* \qquad (\neq S_n, \text{ when } \theta_1^* \neq \theta_1, \theta_2^* \neq \theta_2)$$ (21b) and by virtue of (2) and (19b) $$S_n T_m = O(\mu^2), \tag{21c}$$ a replacement of E_n by D_n and a repeated insertion of (19b) into (20) gradually eliminates all but the D_n type of determinants from the expression for \mathcal{D} . It is also found that θ_1 , θ_{-1} , θ_2 , θ_{-2} appear only in the combinations δ , ϵ , η given in (6a). Thus, by virtue of (6b), the expansion of \mathcal{D} progresses in powers of μ^2 . Using the notation $$y_{0112} = y_0 y_1^2 y_2, (22a)$$ one finds that to μ^{10} terms $$D = D_0 D_1 - \delta y_{01} D_1 D_2 - \epsilon (y_{02} D_1 D_3 + y_{11} D_2^2) + \eta (2y_{011} D_2^2 + 2y_{012} D_1 D_3)$$ $$- \delta \epsilon (4y_{0112} D_2 D_3 + 2y_{0123} D_1 D_4) + \epsilon^2 (y_{0123} D_1 D_4 + 2y_{0112} D_2 D_3)$$ $$+ \epsilon \eta (4y_{01123} D_2 D_4 + 2y_{01234} D_1 D_5 + 2y_{01122} D_3^2)$$ $$- \delta \epsilon^2 (4y_{011234} D_2 D_5 + 4y_{011223} D_3 D_4 + 2y_{012345} D_1 D_6) + \cdots$$ (23) The same process can also be carried out for the simply infinite determinant D_n . Disregarding the exceptional case $\theta_0 = k^2$ $(y_k = \infty)$, one finds that to μ^{10} terms $$D_0 = D_1 - \delta y_{01}D_2 + (-\epsilon y_{02} + 2\eta y_{012})D_3 + (-2\delta\epsilon + \epsilon^2)y_{0123}D_4 + 2\epsilon\eta y_{01234}D_5 - 2\delta\epsilon^2 y_{012345}D_6 + \cdots,$$ (24a) and D_n is obtained from D_0 by increasing the subscripts in the latter's expression by n. (24b) It will be convenient to introduce at this point the notation $$\sum y_{356} = y_{356} + y_{467} + y_{578} + \cdots, \qquad (22b)$$ $$\sum y_{12} \sum y_{356} = y_{12} \sum y_{356} + y_{23} \sum y_{467} + y_{34} \sum y_{578} - \cdots$$ (22c) Noting that $$\lim D_n = 1, \tag{25}$$ one obtains, by repeated application of (24), $$D_{0} = (1 - \delta y_{01})D_{2} + (-\delta y_{12} - \epsilon y_{02} + 2\eta y_{012})D_{3} + \cdots$$ $$= [1 - (y_{01} + y_{12})\delta - y_{02}\epsilon + 2y_{012}\eta]D_{3} + \cdots$$ (26a) $$=1+A_{\delta}^{0}\delta+A_{\epsilon\epsilon}^{0}+A_{\eta\eta}^{0}+\cdots, \qquad (26b)$$ where $$A_{\delta}^{0} = -\sum y_{01}, \quad A_{\epsilon}^{0} = -\sum y_{02}, \quad A_{\pi}^{0} = 2\sum y_{012}, \quad A_{\delta^{2}}^{0} = \sum y_{01} \sum y_{23}, \cdots$$ (27) The coefficient of a general term, like $\delta \epsilon^2$, is obtained as follows: Equation (24a) gives rise to the following symbolic products containing $\delta \epsilon^2$: $$[-\delta y_{01}][-\epsilon y_{02}][-\epsilon y_{02}],$$ (a) $$[-\delta y_{01}][\epsilon^2 y_{0123}], \tag{b}$$ $$[-\epsilon y_{02}][-2\delta\epsilon y_{0123}], \tag{c}$$ $$[1][-2\delta\epsilon^2 y_{012345}]. \tag{d}$$ It is found that (a) contributes $$-\sum y_{01} \sum y_{24} \sum y_{57} - \sum y_{02} \sum y_{34} \sum y_{57} - \sum y_{02} \sum y_{35} \sum y_{67}$$ (28a) to $A_{\delta\epsilon}^0$. (Note that no subscripts can be repeated, nor can any be skipped as one passes from one \sum to the next \sum ; furthermore (a) gives rise to three distinct summation expressions, because $y_{k,k+1}$ can appear in the first place, in the second place, and in the third place.) The relation (b) yields $$-\sum y_{01} \sum y_{2345} - \sum y_{0123} \sum y_{45}, \tag{28b}$$ which (c) yields $$2\sum y_{02}\sum y_{3456} + 2\sum y_{0123}\sum y_{46} \tag{28c}$$ and (d) yields $$-2\sum y_{012345}$$ (28d) The contributions (28a, b, c, d) sum up to $\{0, \delta \epsilon^2\}$. By increasing the subscripts of the expressions (28) by 2, one obtains $$A_{\delta\epsilon^{2}}^{0} = -\sum y_{23} \sum y_{46} \sum y_{79} - \sum y_{24} \sum y_{56} \sum y_{79} - \sum y_{24} \sum y_{57} \sum y_{89} - \sum y_{23} \sum y_{4567} - \sum y_{2345} \sum y_{67} + 2 \sum y_{24} \sum y_{5678} + 2 \sum y_{2345} \sum y_{68} - 2 \sum y_{234567}.$$ (29) The determination of the other $\{n, \delta^i \epsilon^j \eta^k\}$ is similar. The numerical values of the coefficients $\{n, \delta^i \epsilon^j \eta^k\}$ are given in Table I to 5 decimal places, for θ_0 ranging from +0.9 to -1.0 (the interesting range in helicopter theory). In the evaluation of $\{n, \delta^i \epsilon^j \eta^k\}$ the first 51 y_m were
taken into account. (The accuracy obtainable is thus equivalent to the use of a 101-row approximant to \mathcal{D} .) y_0 to y_{20} were computed in some instances to 6, in some instances to 7 decimal places; y_{21} to y_{50} were computed to 7 decimal places. It is expected that the entries of Table I are in error by not more than 2 units in the fifth decimal place. It is readily seen that the present method is not limited to Eq. (1), but can be extended to the general Hill differential equation where $\theta_m e^{im\psi}$ form a convergent series. For the special case of Mathieu's equation ($\epsilon = \eta = 0$), one finds by (23) and (27) that $$\mathcal{D} = D_1(D_0 - \delta y_{01}D_2) = 1 - 2\delta \sum_{k=0}^{\infty} \frac{1}{\theta_0 - k^2} \cdot \frac{1}{\theta_0 - (k+1)^2} + O(\delta^2)$$ $$= 1 - 2\delta \frac{\pi \cot \pi \sqrt{\theta_0}}{(4\theta_0 - 1)\sqrt{\theta_0}} + O(\delta^2). \tag{30}$$ ⁵ An experienced computer can calculate a column of Table I in somewhat less than a day. This formula was used by H. Bremekamp in 1926 in a study of the flow of electrons in metals.⁶ 4. Example (a). Given $\theta = 0.2$, $\theta_1 = 0.19685 + 0.33465i$, $\theta_2 = 0.03875 - 0.10258i$. Determine v_1 , v_2 . One finds $\delta = 0.15074$, $\epsilon = 0.01202$, $\eta = -0.01635$, and, by Table I, $D_0 = 1.8422$, $D_1 = 0.9434$, $D_2 = 0.9934$, $D_3 = 0.9980$, $D_4 = 0.999$, $D_5 = D_6 = 1.000$. Likewise, by Table II, $\mathcal{D} = 2.3291$. Therefore, $q = \sqrt{\mathcal{D}} \sin \pi \sqrt{\theta_0} = 1.5052$ and by (13b) $\sigma_1 = 0.30782 + i/2$, $\sigma_2 = -0.30782 - i/2$. The associated functions $v_1(\psi)$ and $v_2(\psi)$ are determined from the equation system (9). Normalizing to $c_0 = 1$, and using the equations k = -4 to k = +4, one obtains⁷ $$v_{1} = (-0.1898 + 1.9817i)e^{+0.3078\psi} \left\{ -0.0958 \cos \frac{\psi}{2} + \sin \frac{\psi}{2} + 0.2076 \cos \frac{3\psi}{2} - 0.0083 \sin \frac{3\psi}{2} - 0.0125 \cos \frac{5\psi}{2} - 0.0038 \sin \frac{5\psi}{2} + 0.0008 \cos \frac{7\psi}{2} + 0.0019 \sin \frac{7\psi}{2} + \cdots \right\}$$ $$v_{2} = (1.6652 + 0.7467i)e^{-0.3078\psi} \left\{ \cos \frac{\psi}{2} + 0.4484 \sin \frac{\psi}{2} + 0.2107 \cos \frac{3\psi}{2} + 0.0188 \sin \frac{3\psi}{2} + 0.0041 \cos \frac{5\psi}{2} + 0.0101 \sin \frac{5\psi}{2} + 0.0005 \cos \frac{7\psi}{2} + 0.0020 \sin \frac{7\psi}{2} + \cdots \right\}.$$ 5. Example (b). Given $\theta_0 = 0$, $\theta_1 = 0.37249 + 0.63323i$, $\theta_2 = 0.13875 - 0.36728i$. Determine σ . One finds $$q = \pi \sqrt{D\theta_0} \cdot \sin \pi \sqrt{\theta_0} / \pi \sqrt{\theta_0} = \pi \sqrt{0.4392} = 2.082,$$ $$\sigma_1 = -\sigma_2 = 0.4339 + i/2.$$ ⁶ M. J. O. Strutt, loc. cit., p. 26. ⁷ Note that the use of $\sigma_1 = 0.30782 - i/2$ leads to the above expression of v_1 when c_1 is normalized to 1, and to the conjugate complex of the above when c_0 is normalized to 1. TABLE I.* Numerical values of $\{n, \delta^i e^j \eta^k\}$. | | | 1 ABI | LE I. Numo | ericai vaiue | S OI \n, 0 | εη- ζ. | | | |--|----------------------|------------------|-------------------|----------------------------|-------------------|------------------------|-------------------|-------------------| | θ. | = .9 . | .8 . | .7 | .6 | .5 | .45 | .4 | .35 | | { 0 , δ } | 7.83180 | 4.63590 | 3.70199 | 3.38325 | 3.38203 | 3.48245 | 3.65865 | 3.92977 | | {0, €} | 90665
6.36577 | 24871
3.51924 | .00257
2.63695 | .16467
2.270 5 0 | .30899
2.14607 | .38655
2.15140 | .47423
2.20218 | .57886
2.30622 | | $\{0, \eta\} \\ \{0, \delta^2\}$ | 55015 | 30117 | 22352 | 19037 | 17858 | 17822 | 18162 | 18937 | | (0, δε) | .52473 | . 27858 | . 20047 | . 16578 | . 15052 | .14789 | .14837 | .15229 | | $\{0, \delta_{\eta}\}$ | 15952 | 08611 | 06307 | 05310 | 04908 | 04867 | 04928 | 05105 | | $\{0, \delta^2\}$
$\{0, \epsilon^2\}$ | .00265 | .00143
22658 | .00104
16801 | .00087
14320 | .00081
13403 | .00080
13372 | .00081
13622 | .00083
14199 | | (0, en) | 00590 | 00363 | 00301 | 00278 | 00280 | 00292 | 00306 | 00330 | | $\{0, e\eta\} \\ \{0, \eta^2\} $ | 00638 | 00342 | 00249 | 00208 | 00191 | 00189 | 00190 | 00196 | | (U. 04) | 00463
.00049 | 00248
.00025 | 00178
.00019 | 00150
.00015 | 00136
.00014 | 00133
.00014 | 00133
.00013 | 00136
.00014 | | $ \begin{cases} 0, & \delta^2 \eta \\ 0, & \delta e^2 \end{cases} $ | .00317 | .00170 | .00123 | .00103 | .00095 | .00093 | .00013 | .00096 | | {0, δεη} | 00021 | 00012 | 00009 | 00008 | 00007 | 00007 | 00007 | 00007 | | {1, 8} | -3.27931
-1.26507 | -1.61410 | -1.05991 | 78342 | 61797 | 55795 | 50802 | 46584 | | [1, ε]
[1, η] | 80268 | 63934
38700 | 43033
24905 | 32553
18048 | 26241
13964 | 23943
12488 | 22021
11264 | 20392
10233 | | $\{1, \delta^2\}$ | .04439 | .02131 | .01366 | .00986 | .00759 | .00678 | .00610 | .00553 | | $\begin{array}{c} \{1,\ \delta\epsilon\} \\ \{1,\ \delta\eta\} \end{array}$ | 01646
.00739 | 00763
.00351 | 00471
.00223 | 00328
.00160 | 00243
.00122 | 00213
.00109 | 00187
.00098 | 00166
.00088 | | 11. 83 | 00009 | 00004 | 00003 | 00002 | 00002 | 00001 | 00001 | 00001 | | {1, € ² } | .03150 | .01513 | .00970 | .00701 | .00540 | .00482 | .00434 | .00394 | | $ \begin{cases} 1, e\eta \\ 1, \eta^2 \end{cases} $ | .00132 | .00063 | .00041 | .00030 | .00024 | .00020 | .00019 | .00017 | | | | | | .00004 | .00002 | .00002 | .00002 | | | $\{2, \delta\}$ | 05351
03050 | 05160
02958 | 04981
02872 | 04813
02791 | 04654
02714 | 04579
02678 | 04505
02642 | 04434
02607 | | 2. 7 | 00619 | 00591 | 00565 | 00541 | 00519 | 00508 | 02042
00498 | 00487 | | 2. 62 | .00025 | .00024 | .00023 | .00021 | .00021 | .00020 | .00020 | .00019 | | 2, 6e | .00001 | .00001 | .00001 | .00001
.00002 | .00001 | .00001 | .00002
.00002 | .00002 | | 2, δ
2, ε
2, η
2, δ ²
2, δε
2, δη
2, ε ² } | .00017 | .00017 | .00016 | .00015 | .00015 | .00014 | .00014 | .00013 | | {3, 8} | 01368 | 01349 | 01330 | 01311 | 01293 | 01284 | 01275 | 01267 | | {3. a} | 00914 | 00903 | 00892 | 00881 | 00871 | 00866 | 00861 | .00856 | | 3, η)
3, δ²)
3, δε) | 00092
.00003 | 00090
.00003 | 00088
.00003 | 00086
.00003 | 00086
.00003 | 00084
.00003 | 00084
.00003 | 00083
.00003 | | 3, åe | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | 10000. | | {3, €²} | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | | {4, δ}
{4, ∈} | 00551 | 00546 | 00543 | 00538 | 00534 | 00532 | 00530 | 00528 | | }4, €} | 00401
00024 | 00399
00024 | 00396
00023 | 00393
00023 | 00391
00023 | 00390
00023 | 00388
00023 | 00387
00023 | | $\{4, \eta\} \\ \{4, \delta e\}$ | .00001 | .00001 | .00023 | .00023 | .00023 | .00023 | .00023 | .00023 | | 15. 81 | 00276 | 00275 | 00273 | 00272 | 00271 | 00270 | 00269 | 00269 | | {5, δ}
{5, α}
{5, η} | 00213 | 00212 | 00211 | 00210 | 00209 | 00209 | 00208 | 00208 | | | 00008 | 00008 | 00008 | 00008 | 00008 | 00008 | 00008 | 00008 | | {6, 8} | 00158 | 00157 | 00157 | 00156 | 00155 | 00155 | 00155 | 00155 | | (6, ε)
(6, η) | 00126
00003 | 00126
00003 | 00126
00003 | 00125
00003 | 00125
00003 | 00125
00003 | 00125
00003 | 00125
00003 | | | 1 .00005 | 00003 | 00003 | 00003 | 00003 | 0000 | 0000 | 00003 | | θ• = | .3 | .25 | .2 | .15 | | .1 | .05 | 0** | | {0, 8} | 4.33216 | 4.93480 | 5.87874 | 7.495 | 88 10. | 78515 | 20.74569 | 1.000000 | | {0, €} | .71097 | .88889 | 1.14867 | 1.573 | 91 2. | 41481 | 4.92154 | .250000 | | (U. 2) | 2.48046
20279 | 2.75850
22456 | 3.21013
26021 | 4.000
322 | 81 5.
96 | 62957
45 255 | 10.59568
84825 | .500000
039865 | | 0, 82
0, 8e | .16054 | .17498 | .19957 | .243 | 78 . | 33621 | .62017 | .028683 | | (0, δη)
(0, δ ²)
(0, ε ²) | 05432 | 05977 | 06883 | 084 | 90 —. | 11824 | 22028 | 010290 | | (0, 62) | .00089
15201 | .00098
16827 | .00112
19494 | .001
241 | | 00192
33884 | .00357
63496 | .000166
029835 | | (0, εη) | 00364 | 00416 | 00496 | 006 | 30 | 00905 | 01736 | 000836 | | (0, εη)
(0, η ²)
(0, δ ² ε) | 00208
00144 | 00228
00158 | 00262
00180 | 003
002 | 22 —. | 00448 | - 00832 | 000388 | | 0, 527 | .000144 | .00015 | .00180 | 002
.000 | | 00305
00032 | 00566
.00059 | 000262
.000028 | | $ \begin{array}{c c} (0, \delta^2 \eta) \\ (0, \delta e^2) \end{array} $ | .00103 | .00112 | .00129 | .001 | 60 . | 00222 | .00412 | .000194 | | {0, ben} | 00007 | 00007 | 00008 | 000 | 09 | 00012 | 00023 | 000012 | | {1, δ} | 42975
18993 | 39853
17778 | 37126 | 347 | 26 | 32596 | 30694 | 28987 | | 11. el | 18993
09354 | 17778
08595 | 16712
07934 | 157
073 | 55 —. | 14929
06844 | 14176
06388 | 13496
05980 | | $ \begin{cases} 1, & \eta \\ 1, & \delta^2 \end{cases} $ | .00505 | .00463 | .00426 | .003 | 95 . | 00366 | .00341 | .00319 | | {1, δε} | 00149
.00080 | 00134
.00073 | 00120
.00067 | 001 | 09 –. | 00099 | 00091 | 00083 | | $ \begin{cases} 1, \delta \eta \\ 1, \delta^2 \end{cases} $ | 00080
00001 | 00073
00001 | 00001 | .000
000 | | 00057
00001 | .00053
00001 | .00050
00001 | | {1. e ² } | .00359 | .00330 | .00303 | .002 | 81 . | 00261 | .00243 | .00227 | | $\{1, \epsilon \eta\} $ $\{1, \eta^2\}$ | .00014 | .00014 | .00012 | .000 | 12 . | 00011 | .00011 | .00010 | | {1, ŋ²} | .00002 | .00002 | .00001 | .000 | V1 . | 00001 | .00001 | .00001 | | | | | | | | | | | ^{*} Note 1. $\{\pi, \delta^i e^j \eta^k\}$ which are less than .00001 in magnitude, or for which $\pi > 6$, are not shown. ** Note 2. For $\theta_0 = 0$ $(y_0 = \infty)$ the coefficients $\frac{A_0^0}{y_0}$, $\frac{A_0^0}{y_0}$, \cdots of $\frac{D_0}{y_0}$ are given. TABLE I.
(Continued) | θ == {2, δ} {2, e} {2, π} {2, π} {3, δ} {3, 6} {3, δ} {3, δ} {3, δ} {4, δ} {4, η} {5, δ} {6, ε} {6, η} (0, δ) (0, ε) (0, δ) (0, δ) (0, δ) (0, δ] (| -19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | .25 042970254000468 .00018 .00002 .000013012500084600002 .00001 .00002005240038500022002680020700008012500012400124001240012400124001240012400124001240012424724 | .2042320250700458 .00018 .00002 .00013012410084200002 .00001 .000020052200383000220020700207000080124400124001240003 | 0200 .00 .00 .00 .00 .000100 .00 .00 .00 .00 | 168 | .1 04106 02445 00442 000017 000017 00002 00012 01225 00832 00078 000001 00002 00518 00381 00381 00002 00124 00003 3 7796388013 | .05040450241500433 .00017 .00002 .00002 .00012012170082700078 .00002 .00001 .0000200516003800022002050020500123001230012335 -2.3228375802101322 | 0** 03 98023 80042500017 .00002 .000012012090082300070000200014003780002500205000080015300123000034 | |---|--|--|--|--|--|--
--|--| | (2. e) (2. n) (2. n) (2. n) (2. n) (2. n) (2. e2) (3. e) (3. e) (3. e) (3. e) (3. e2) (4. e) (4. n) (5. e) (6. e) (6. n) (7. e) (9. | 0257300477 .00019 .00002 .00002 .00013012580085100082 .00003 .00001 .00002005260038600207003680020700008001250012500124000030505050505050505050505050012400003 | 0254000468 .00018 .00002 .000013012500084600081 .00002 .00001 .000020052400385000220026800207000080012400124001380125400124 | 0250700458 .00018 .00002 .00002 .00013012410080 .00002 .0001 .00002005220038300022003830002200383000200052400124001240003 | 0200 .00 .00 .00 .00 .000100 .00 .00 .00 .00 | 475 450 018 018 018 018 018 018 018 018 019 01 | .02445
.00442
.00017
.00002
.00002
.00012
.00125
.0026
.00001
.00002
.00518
.00381
.00002
.00266
.00266
.00008
.00154
.00124
.00003
3 | 0241500433 .00017 .00002 .00002 .00012012170082700078 .00002 .00001 .000020051600380003800025002050020500008001230012300003353528375802 | 0238 | | (2. e) (2. n) (2. n) (2. n) (2. n) (2. n) (2. e2) (3. e) (3. e) (3. e) (3. e) (3. e2) (4. e) (4. n) (5. e) (6. e) (6. n) (7. e) (9. | 0257300477 .00019 .00002 .00002 .00013012580085100082 .00003 .00001 .00002005260038600207003680020700008001250012500124000030505050505050505050505050012400003 | 0254000468 .00018 .00002 .000013012500084600081 .00002 .00001 .000020052400385000220026800207000080012400124001380125400124 | 0250700458 .00018 .00002 .00002 .00013012410080 .00002 .0001 .00002005220038300022003830002200383000200052400124001240003 | 0200 .00 .00 .00 .00 .000100 .00 .00 .00 .00 | 475 450 018 018 018 018 018 018 018 018 019 01 | .02445
.00442
.00017
.00002
.00002
.00012
.00125
.0026
.00001
.00002
.00518
.00381
.00002
.00266
.00266
.00008
.00154
.00124
.00003
3 | 0241500433 .00017 .00002 .00002 .00012012170082700078 .00002 .00001 .000020051600380003800025002050020500008001230012300003353528375802 | 0238 | | (2, η) (2, δ2) (2, δ2) (2, δ6) (2, 6π) (3, 6π) (3, 6π) (3, 6π) (3, 6π) (3, 6π) (4, 6π) (4, π) (5, δ) (5, π) (6, π) (7, δ) (0, 6π) (0, δπ) | 00477 .00019 .00002 .00002 .0000301258008510085100003 .00001 .00002005260038600022002680020700008001550012400003050501240000305050124090030505012400003 | 00468 .00018 .00002 .00002 .000013012500084600081 .00002 .00001 .00002005240038500022002070020800155001240000311351372.562204.48740 .3549124724 | 00458
.00018
.00002
.00002
.00003
01241
00842
00000
.00001
.00002
00522
00383
00022
00207
00207
00207
00207
00207
00154
00124
00154
00124
00154
00124
00003 | 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 | 450 018 002 002 002 013 233 837 079 002 001 002 520 382 0022 266 206 206 206 207 25 25 342538 1.05015 | .00442
.00017
.00017
.00002
.00002
.00012
.01225
.00832
.00078
.00002
.00001
.00002
.00018
.00022
.00206
.00008
.00154
.00124
.00003
.00154
.00124
.00003
.00154
.00003
.00154
.00003 | 00433
.00017
.00002
.00002
.000012
01217
00827
00078
.00002
.00001
.00002
00380
00380
00022
00003
00123
00123
00123
0003
35 | 00425
.00017
.00002
.00012
.00012
01209
00823
0007
.00002
.00001
00514
00378
00022
00025
00008
00123
0003 | | (2, \delta\) [2, \delta\] [2, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [4, \delta\] [4, \delta\] [4, \delta\] [4, \delta\] [5, \delta\] [5, \delta\] [6, \delta\] [6, \delta\] [6, \delta\] [0, \ | | .00018 .00002 .00002 .00013012500084600081 .00002 .00001 .000020052400385000220026800207000080012400124001031 -9.35137 -2.56220 -4.48740 .3549124724 | .00018 .00002 .00002 .00003 .00013 .000842 .000842 .000802 .00001 .00002 .00002 .000267 .00267 .00207 .00008 .00124 .00124 .00124 .00103 .15 | 00 | 018 | .00017
.00002
.00002
.00002
.00012
.01225
.00832
.00078
.00002
.00001
.00002
.00518
.00381
.00381
.00381
.00266
.00206
.00008
.00154
.00124
.00003
.00124
.00003
.00124
.00003 | .00017
.00002
.00002
.00012
01217
00827
00078
.00002
.00001
.00002
00516
00205
00205
00205
00205
00123
00123
00123
35 | .00017
.00002
.00002
.00012
01209
00823
00077
.00002
00514
00378
00022
00264
00205
00103
00123
00103 | | (2, \delta\) [2, \delta\] [2, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [3, \delta\] [4, \delta\] [4, \delta\] [4, \delta\] [4, \delta\] [5, \delta\] [5, \delta\] [6, \delta\] [6, \delta\] [6, \delta\] [0, \ | | | .00002
.00013
01241
00842
00080
.00002
.00001
.00002
00522
00383
00022
00207
00207
00207
00124
00124
00124
00124
00124
00124
00227 | 0000000000000000 | 002
003
003
233
837
-079
002
001
002
520
-382
-022
-2266
-008
-154
-25
-34258
-1.05015 | .00002
.00002
.000012
.001225
.00832
.00078
.00002
.00001
.00002
.00518
.00381
.00002
.00022
.00206
.00206
.00124
.00124
.00124
.00003
3 | .00002
.00002
.00012
01217
00827
00078
.00002
.00001
.00002
00516
00380
00022
00205
00205
00205
00123
00123
00123
35 | .00002
.00002
.00012
01209
00823
00077
.00002
.00001
00514
00378
00205
00008
00123
00123
00003 | | (2, 6η (2, e²) (2, e²) (2, e²) (2, e²) (3, e²) (3, e²) (3, 6²) (3, e²) (4, e²) (4, e²) (4, η) (5, 6²) (5, η) (6, 6²) (6, η) (7, 6²) (9,
6²) (9, 6²) | | .00002
.00013
01250
00846
00081
.00002
.00001
.00002
00524
00385
00022
00268
00207
00008
00155
00124
00003 | .00002
.00013
01241
00842
00080
.00002
.00001
.00002
00522
00383
00022
00207
00207
00207
00154
00154
00154
00124
00154
00124
00154
00124
00154
00124
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
00154
0 | 0000000000000000 | 002
013
233
 | .00002
.00012
.01225
.00032
.00078
.00002
.00001
.00002
.00381
.00022
.00266
.00206
.00154
.00124
.00003
3 | .00002
.00012
01217
00827
00078
.00002
.00001
.00002
00516
00380
00205
00205
00205
00205
00205
00123
00123
00123
35 | .00002
.00012
01209
00823
00077
.00002
.00001
.00002
00514
00378
00022
00264
00205
00008
00123
00123
00003 | | (2, e ²) (3, δ) (3, η) (3, δ) (3, η) (3, δ) (3, δ) (4, η) (4, η) (5, δ) (5, η) (6, δ) (6, σ) (7, η) (9, δ) (9, η) (9, δ) | .00013012580085100852 .00003 .00001 .00002005260038600207000080012500124000030519.322075.067079.46238 .7514153194 .19281 .00311 | .00013012500084600081 .00002 .00001 .000020052400385000220026800207000080015500124000031 -9.35137 -2.56220 -4.48740 .3549124724 | .00013012410084200080 .00002 .00001 .000020052200383000220026700207000080015400124000315 | .00010000 .00 .00 .000000 | 013 233 | .00012 01225 00832 00832 000078 .00001 .00001 .00002 .00518 .00381 .00381 .00266 .00206 .00206 .00008 .00154 .00124 .00003 | .00012012170082700078 .00002 .00001 .0000200516003800020500205002050000800123001230000335 -2.3228375802 | .00012012090082300077 .000020051400378002050020500008001230012300003 | | 3, \$\delta\} 3, \$\delta\} 3, \$\epsilon\} 3, \$\delta\} 3, \$\delta\} 3, \$\delta\} 4, \$\delta\} 4, \$\delta\} 4, \$\delta\} 4, \$\epsilon\} 5, \$\delta\} 5, \$\delta\} 6, \$\delta\} 6, \$\delta\} 6, \$\delta\} 7, 7 | 012580085100082 .00003 .00001 .0000200526003860002200268002070000800155001240000305050519322075.067079.4623875141531941928100311 | 012500084600081 .00002 .00001 .0000200524003850002200207002080012500124000031 -9.35137 -2.56220 -4.48740 .3549124724 | 012410084200080 .00002 .00001 .000020038300022002070020700207000080154001240000315 | 0100000000000000 | 233 | 01225
00832
00078
00002
00001
00002
00518
00381
00022
00266
00206
00008
3
3 | 01217
00827
00078
.00002
.00001
.00002
00380
00205
00205
00205
00008
00123
00123
00123
00123
00123
00123
00123 | 012090082300077 .00072 .00001 .00002005140037800022002640020500008001230012300003 | | 3. e 3. 7 3. | 0085100082 .00003 .00001 .0000200526003860002200268002070000800124000030505015400035.067079.46238 .7514153194 .19281 .1928100311 | 0084600081000020000100002005240038500022002680020700008001550012400003135137 -2.56220 -4.48740 .3549124724 | 00842
00080
.00001
.00001
.00001
00522
00383
00022
00207
00207
00207
00124
00124
00124
00124
004482
- 1.72447
- 2.84360
.22402
15352 | 0000 .00 .00 .00 .0000000 | 837 | .00832
.00078
.00002
.00001
.00002
.00518
.00381
.00381
.00206
.00206
.00206
.00124
.00124
.00124
.0003
3 | 00827
00078
00072
00002
00516
00380
00022
00205
00205
00123
00123
00123
35 | 00823
00077
.00002
.00001
00514
00378
00022
00264
00205
00008
00123
00123
00003 | | 3. e 3. 7 3. | 0085100082 .00003 .00001 .0000200526003860002200268002070000800124000030505015400035.067079.46238 .7514153194 .19281 .1928100311 | 0084600081000020000200524003850002200268002070000800155001240000311351372.562204.487403549124724 |
00842
00080
.00001
.00001
.00001
00522
00383
00022
00207
00207
00207
00124
00124
00124
00124
004482
- 1.72447
- 2.84360
.22402
15352 | 0000 .00 .00 .00 .0000000 | 837 | .00832
.00078
.00002
.00001
.00002
.00518
.00381
.00381
.00206
.00206
.00206
.00124
.00124
.00124
.0003
3 | 00827
00078
00072
00002
00516
00380
00022
00205
00205
00123
00123
00123
35 | 00077
.00002
.00001
.00002
00514
00378
00022
00264
00205
00008
00123
00123
00003 | | (5, \delta\) (4, \delta\) (4, \delta\) (5, \delta\) (5, \delta\) (5, \delta\) (5, \delta\) (6, \delta\) (6, \delta\) (6, \delta\) (7, \delta\) (8, \delta\) (9, \ | | 00081
.00002
.00001
.00002
00524
00385
00022
00268
00207
00108
00155
00124
00003
1 | 00080 .00002 .00001 .0000200522003830002200207002070000800124001240000315 | 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 | 002
001
002
520 | .00002
.00001
.00001
.00002
.00518
.00381
.000022
.00206
.00206
.00008
.00154
.00124
.00003
3 | .00002
.00001
.00002
00516
00380
00022
00205
00205
00123
00123
00123
35 | .00002
.00001
.00002
00514
00378
00022
00264
00205
00103
00123
00103
4 | | (5, \delta\) (4, \delta\) (4, \delta\) (5, \delta\) (5, \delta\) (5, \delta\) (5, \delta\) (6, \delta\) (6, \delta\) (6, \delta\) (7, \delta\) (8, \delta\) (9, \ | | .00002
.00001
.00002
00524
00385
00022
00268
00207
00008
00155
00124
00003
1 | .00002
.00001
.00001
.00002
00323
00323
00207
00207
00008
00124
00124
0003
15 | 0000000000000000 | 002
001
002
520 | .00001
.00002
.00518
.00381
.00022
.00266
.00206
.00008
.00154
.00124
.00003
3 | .00001
.00002
00516
00380
00022
00205
00205
00008
00123
00123
00003
35 | .00001
.00002
00378
00022
00264
00205
00008
00123
00123
00003 | | 3. e ² 4. δ 4. ϵ 4. ϵ 5. δ 5. ϵ 5. π 6. δ 6. π θ (0, π | 0001
.00002
00526
00386
00022
00207
00008
00155
00124
00003
05
19.32207
5.06707
9.46238
.75141
53194
.19281
00311 | .00001
.00002
00524
00385
00022
00268
00207
00008
00155
00124
00003
1 | .00001
.00002
00522
00383
00022
00267
00207
00124
00124
00124
00003
15 | .00
.00
.00
.00
.00
.00
.00
.00
.00
.00 | 001
002
520
382
022
266
206
008
154
003
25
-3.42538
-1.05015 | .00001
.00002
.00518
.00381
.00022
.00266
.00206
.00008
.00154
.00124
.00003
3 | .00001
.00002
00516
00380
00022
00205
00205
00008
00123
00123
00003
35 | .00001
.00002
00378
00022
00264
00205
00008
00123
00123
00003 | | 3. e ² 4. δ 4. α 4. α 5. δ 5. α 5. α 6. α 6. η 0. δ | .000020052600386000220026800207000080015500124000030519.322075.067079.46238 .7514153194 .1928100311 | .000020052400385000220026800207000080015500124000031 -9.35137 -2.56220 -4.48740 .3549124724 | .000020052200383000220026700207000080012400124000315 -6.04482 -1.72447 -2.84360 .2240215352 | 0000000000000000 | 520 | 00518
00381
00022
00266
00206
00008
00154
00124
00003
3
-2.77963
88013 | 00516
00380
00022
00265
00205
00123
00123
00003
35 | 00514
00378
00022
00264
00205
00008
00153
00123
00003 | | 4. e} 4. 7 5. 6} 5. 6} 5. e} 6. 8 6. e} 6. n} 0. 6 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. | 00386000220026800207000080015500124000030519.32207 -5.06707 -9.46238 .7514153194 .1928100311 | 00385
00022
00268
00207
00008
00155
00124
00003
1
1
935137
2.56220
4.48740
.35491
24724 | 00383
00022
00207
00207
00008
00154
00124
00003
15 | 00
00
00
00
00
00
00
00 | 382 - 022 - 266 - 206 - 206 - 008 - 154 - 024 - 003 25 - 3.42538 - 1.05015 | .00381
.00022
.00266
.00206
.00008
.00154
.00124
.00003
3
-2.77963
88013 | 00380
00022
00025
00205
00008
00123
00123
00003
35 | 00264
00205
00008
00153
00123
00003
4 | | 4. e} 4. 7 5. 6} 5. 6} 5. e} 6. 8 6. e} 6. n} 0. 6 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. | 00386000220026800207000080015500124000030519.32207 -5.06707 -9.46238 .7514153194 .1928100311 | 00385
00022
00268
00207
00008
00155
00124
00003
1
1
935137
2.56220
4.48740
.35491
24724 | 00383
00022
00207
00207
00008
00154
00124
00003
15 | 00
00
00
00
00
00
00
00 | 382 - 022 - 266 - 206 - 206 - 008 - 154 - 024 - 003 25 - 3.42538 - 1.05015 | .00381
.00022
.00266
.00206
.00008
.00154
.00124
.00003
3
-2.77963
88013 | 00380
00022
00025
00205
00008
00123
00123
00003
35 | 00264
00205
00008
00153
00123
00003
4 | | (4. η) (5. δ) (5. ε) (5. η) (6. δ) (6. ε) (6. η) (7. ε) (9. ε) (9. δ) (9. ε) (9. δε) (| 0002200268002070000800155001240000305 -19.32207 -5.06707 -9.46238 .7514153194 .1928100311 | 000220026800207000080015500124000031 -9.35137 -2.56220 -4.48740 .3549124724 | 0002200267002070000800154001240000315 -6.04482 -1.72447 -2.84360 .2240215352 | 00
00
00
00
00
00
00
2 |
022
266
206
008
024
003

 | .00022
.00266
.00206
.00008
.00154
.00124
.00003
3
-2.77963
88013 | 00265
00205
00008
00153
00123
00003
35 | 00264
00205
00008
00153
00123
00003
4 | | 5, 5} 5, e} 5, e} 5, n} 6, s} 6, a} 6, a} 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 00268
00207
00008
00155
00124
00003
05
-19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | 0026800207000080015500124000031 -9.35137 -2.56220 -4.48740 .3549124724 | 00267
00207
00008
00154
00124
00003
15
-6.04482
-1.72447
-2.84360
.22402
15352 | 00
00
00
00
00
00
2
-4.40273
-1.30380
-2.03119
.15940 | 266 206 208 154 00325 -3.42538 -1.05015 | .00266
.00206
.00008
.00154
.00124
.00003
3
-2.77963
88013 | 00265
00205
00008
00153
00123
00003
35 | 00264
00205
00008
00153
00123
00003
4 | | 5, ε 5, η 6, δ 6, ε 6, π 7 7 7 7 7 7 7 7 7 | 00207
00008
00155
00124
00003
05
-19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | 00207
00008
00155
00124
00003
1
-9.35137
-2.56220
-4.48740
.35491
24724 | 00207
00008
00124
00124
00003
15
-6.04482
-1.72447
-2.84360
.22402
15352 | 00
00
00
00
2
-4.40273
-1.30380
-2.03119
.15940 | 206 008 154 024 00325 -3.42538 -1.05015 | .00206
.00008
.00154
.00124
.00003
3
-2.77963
88013 | 00205
00008
00153
00123
00003
35 | 00205
00008
00153
00123
00003
4 | | 5. η} 6, δ} 6, σ} 6, σ} 6, σ} 6, η} 6, σ} 7, σ} 9, σ} 9, σδ 10, | 0000800155001240000305 -19.32207 -5.06707 -9.46238 .7514153194 .1928100311 | 000080015500124000031 -9.35137 -2.56220 -4.48740 .3549124724 | 0000800154001240000315 -6.04482 -1.72447 -2.84360 .2240215352 | 00
00
00
00
2
-4.40273
-1.30380
-2.03119
.15940 | 008 154 024 00325 -3.42538 -1.05015 | .00008
.00154
.00124
.00003
3
-2.77963
88013 | 00008
00153
00123
00003
35
-2.32283
75802 | 000080015300123000034 -1.98376659 | | $ \begin{array}{c c} (6, \delta) \\ (6, \epsilon) \\ (6, \eta) \end{array} $ $ \begin{array}{c c} \theta_0 & = \\ (0, \delta) \\ (0, \epsilon) \\ (0, \delta^2) \\ (0, \delta^2) \\ (0, \delta \epsilon) \\ (0, \delta \eta) \\ (0, \delta^3) ($ | 00155
00124
00003
05
-19.32207
-5.06707
-9.46238
.751141
53194
.19281
00311 | 00155
00124
00003
1
-9.35137
-2.56220
-4.48740
.35491
24724 | 00154
00124
00003
15
-6.04482
-1.72447
-2.84360
.22402
15352 | 00
00
00
2
-4.40273
-1.30380
-2.03119
.15940 | 154 | .00154
.00124
.00003
3
-2.77963
88013 | 00153
00123
00003
35
-2.32283
75802 | 00153
00123
00003
4
-1.9837
6659 | | 6, -ε 6, η | 00124
00003
05
-19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | 00124
00003
1
-9.35137
-2.56220
-4.48740
.35491
24724 | 00124
00003
15
-6.04482
-1.72447
-2.84360
.22402
15352 | 00
00
2
-4.40273
-1.30380
-2.03119
.15940 | 024
 | 3
-2.77963
88013 | 00003
35
-2.32283
75802 | 00123
00003
4
-1.9837
6659 | | (6, -ε)
(6, π)
(7, δ)
(9, ε)
(0, π)
(0, δε)
(0, δη) | 00124
00003
05
-19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | 00124
00003
1
-9.35137
-2.56220
-4.48740
.35491
24724 | 00124
00003
15
-6.04482
-1.72447
-2.84360
.22402
15352 | 00
00
2
-4.40273
-1.30380
-2.03119
.15940 | 024
 | 3
-2.77963
88013 | 00003
35
-2.32283
75802 | 00123
00003
4
-1.9837
6659 | | (6, η) θ ₀ = {0, δ} 0, q 0, η 0, δ ² 0, δ ₀ 0, δη 0, δ ³ | 00003
05
-19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | 00003
1
-9.35137
-2.56220
-4.48740
.35491
24724 | 00003
15
-6.04482
-1.72447
-2.84360
.22402
15352 | 00
2
-4.40273
-1.30380
-2.03119
.15940 | 25
-3.42538
-1.05015 | 3
-2.77963
88013 | 00003
35
-2.32283
75802 | 00003
4
-1.9837
6659 | | $\theta_0 = \{0, \delta\}$ $\{0, \epsilon\}$ $\{0, \epsilon\}$ $\{0, \delta^2\}$ $\{0, \delta\epsilon\}$ $\{0, \delta\eta\}$ $\{0, \delta^2\}$ $\{0, \delta^2\}$ $\{0, \delta^2\}$ $\{0, \delta^2\}$ $\{0, \delta^2\}$ | 05
-19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | 1
-9.35137
-2.56220
-4.48740
.35491
24724 | 15
-6.04482
-1.72447
-2.84360
.22402
15352 | 2
-4.40273
-1.30380
-2.03119
.15940 | 25
-3.42538
-1.05015 | 3
-2.77963
88013 | 35
-2.32283
75802 | -1.9837
6659 | | $ \begin{cases} 0, \delta \\ 0, \epsilon \\ 0, \eta \\ 0, \delta^2 \\ 0, \delta \epsilon \\ 0, \delta \epsilon \\ 0, \delta \eta \\ 0, \delta^3 \\ 0, \delta^3 \\ 0, \delta^3 \\ 0, \delta^3 \\ 0, \delta^2 \\ 0, \delta^3 $ | -19.32207
-5.06707
-9.46238
.75141
53194
.19281
00311 | -9.35137
-2.56220
-4.48740
-35491
24724 | -6.04482
-1.72447
-2.84360
.22402
15352 | -4.40273
-1.30380
-2.03119
.15940 | -3.42538
-1.05015 | -2.77963
88013 | -2.32283
75802 | -1.9837
6659 | | (0, e)
(0, η)
(0, δ ²)
(0, δε)
(0, δη)
(0, δ ³) | -5.06707
-9.46238
.75141
53194
.19281
00311 | -2.56220
-4.48740
.35491
24724 | -1.72447
-2.84360
.22402
15352 | -1.30380
-2.03119
.15940 | -1.05015 | 88013 | ·75802 | 6659 | | (0, e)
(0, η)
(0, δ ²)
(0, δε)
(0, δη)
(0, δ ³) | -5.06707
-9.46238
.75141
53194
.19281
00311 | -2.56220
-4.48740
.35491
24724 | -1.72447
-2.84360
.22402
15352 | -1.30380
-2.03119
.15940 | -1.05015 | 88013 | ·75802 | 6659 | | (0, η)
(0, δ ²)
(0, δε)
(0, δη)
(0, δ ³) | -9.46238
.75141
53194
.19281
00311 | -4.48740
.35491
24724 | -2.84360
.22402
15352 | -2.03119
.15940 | _1 55045 | .00013 | 1 01222 | .0001 | | (0, δe)
(0, δη)
(0, δ²) | 53194
19281
00311 | .35491
24724 | . 22402
15352 | .15940 | | -1.23488 | | | | {0, δe}
{0, δη}
{0, δ ² } | 53194
.19281
00311 | 24724 | - . 15352 | .13940 | .12120 | .09616 | .07860 | .0656 | | $ \begin{cases} 0, \delta \eta \\ 0, \delta^2 \end{cases} $ | . 19281
00311 | 24/24 | . 13332 | 10745 | 08037 | 06274 | 05042 | 0414 | | (0, 84) | 00311 | | OF470 | 10745
.04017 | .03036 | .02396 | .01947 | .0161 | | {n =2} | | .09051 | .05679
— .00092 | 00065 | 00048 | 00038 | 00031 | 0002 | | 0, εη)
0, εη) | | 00146
.26550 | | | .09061 | .07188 | .05874 | .0490 | | 0. 2 | .56222
.01609 | .20330 | . 16755
. 00500 | .11919
.00363 | .00281 | .00226 | .00188 | .0016 | | 10.70 | | | | | | .00228 | .00188 | .0005 | | 10.00 | .00724 | .00338 | .00211 | .00149 | .00112 | | | .0003 | | (U, 0'e) | .00488
00048 | .00227 | .00141 | .00098 | .00074
00008 | .00059
00006 | .00047
00006 | 0000 | | (0, δ ² η)
(0, δe ²) | 00048 | 00023 | 00014 | 00010
00073 | 00055 | 00044 | 00035 | 0002 | | (0. de) | 00357
.00023 | 00167
.00010 | 00103
.00006 | .00004 | .00003 | .00003 | .00003 | .0000 | | | | | | | | | | | | {1, 8} | 27445 | 26046 | 24772 | 23607 | 22538 | 21553 | 20643 | 1980 | | [1, e] | 12880 | 12318 | 11805 | 11332 | 10897 | 10494 | 10120 | 0977 | | 1, η)
1, δ ²
1, δε | 05614 | 05282 | 04981 | 04707 | 04457 | 04227 | 04016 | 0382 | | $\{1, \delta^2\}$ | .00299 | .00281 | .00264 | .00249 | .00235 | .00223 | .00211 | .0020 | | {1, δe} | 00076 | 00069 | 00064 | 00059 | 00054 | 00050 | 00047 | 0004 | | $\{1, \delta\eta\}$
$\{1, \delta^3\}$ | .00046 | .00043 | .00040 | .00038 | .00036 | .00034 | .00032 | .0003 | | {1, & } | 00001 | 00001 | 00001 | - .00001 | | | | | | {1, e2} | .00213 | .00200 | .00188 | .00178 | .00168 | .00159 | .00151 | .0014 | | $ \begin{cases} 1, e\eta \\ 1, \eta^2 \end{cases} $ | .00009 | .00009 | .00008 | .00008 | .00007 | .00007 | .00007 | .0000 | | $\{1, \eta^2\}$ | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | | | [2, 8] | 03929 | 03873 | 03819 | 03766 | 03714 | 03663 | 03614 | 0356 | | 2, e
 2, η
 2, δ ²
 2, δε
 2, δη | 02357 | 02328 | 02301 | 02275 | 02249
00387 | 02223 | 02198 | 0217 | | 12. " | 00417 | 00409 | 00401 | 00394 | 00387 | 00380 | 00373 | 0036 | | 12. 821 | .00016 | .00016 | .00016 | .00015 | .00015 | .00015 | .00015 | .0001 | | 12. če | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .0000 | | 2. 8n | .00002 |
.00002 | .00001 | .00001 | .00001 | .00001 | .00001 | .0000 | | {2, e ² } | .00011 | .00011 | .00011 | .00011 | .00011 | .00010 | .00010 | .0001 | | | | | | | | - 01162 | 01155 | 0114 | | {3, 8} | 01201
00818 | 01193
00814 | 01185
00809 | 01178 | 01170
00801 | 01163
00796 | 01155
00792 | 0078
0078 | | [3, ε]
[3, η] | 00818
00077 | | 00809
00075 | 00805
00075 | 00801
00074 | 00796
00073 | 00792 | 0007 | | 13. 71 | 00077
.00002 | 00076
00002 | 00073
.00002 | 00073
.00002 | .00074 | .00073 | .00002 | .0000 | | 3, 62 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .0000 | | (3, δe)
(3, e ²) | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .0000 | | | | | | | | | | | | {4, 8} | 00512 | 00510 | 00509 | 00507 | 00505
00372 | 00503 | 00501 | 0050 | | {4, e}
{4, η} | 00377 | 00376 | — .00375 | 00374 | 00372 | 00371
00021 | 00370
00021 | 003
000 | | {4, η} | 00022 | 00022 | 00021 | 00021 | 00021 | 00021 | 00021 | 000 | | 15 2) | | | 00262 | 00262 | 00261 | 00261 | 00260 | 002 | | 13.01 | _ 00244 | | 00262
00204 | 00262
00203 | 00201
00203 | 00201
00202 | 00200
00202 | 002 | | 18, 11 | 00264
00204 | 00263 | | 00203 | 00203 | 00202 | 00008 | 0021 | | (5, δ)
(5, ε) | 00204 | — .00204 | - 00204 | | | (MAA16 | | 000 | | [5, ε]
[5, η] | 00264
00204
00008 | 00263
00204
00008 | 00008 | 00008 | 00008 | 00008 | | 000 | | {5, η} | 00204
00008 | 00204
00008 | 00008 | | | - 00152 | | | | [5, ε]
[5, η]
[6, δ]
[6, ε] | 00204 | — .00204 | 00204
00008
00152
00123 | 00008
00152
00122 | 00008
00152
00122 | 00008
00152
00122 | 00151
00122 | 000
001
001 | TABLE I. (Continued) | θ. = | 45 | 5 | 55 | 6 | 7 | 8 | 9 | -1.0 | |------------------------|--------------|-----------------|------------------|-----------------|-----------------|-----------------|------------------|----------------| | {0, 8} | -1.72274 | -1.51622 | -1.34910 | -1.21138 | 99849 | 84237 | 72362 | 63067 | | (0, €) | 59385 | - .53588 | 48819 | 44823 | - .38497 | - .33706 | - . 29947 | 26917 | | $\{0, \eta\}$ | 72520 | 62733 | - . 54879 | 44863 | 38670 | 31617 | — . 26349 | 22300 | | $\{0, \delta^2\}$ | .05584 | .04813 | .04195 | .03691 | .02924 | .02374 | .01965 | .01652 | | (0, δe) | — .03464 | — .02936 | 02516 | 02176 | 01666 | 01306 | 01043 | 0084 | | $\{0, \delta\eta\}$ | .01368 | .01172 | .01016 | .00888 | .00695 | .00559 | .00457 | .0038 | | 0, 82 | 00022 | 00019 | 00016 | 00014 | 00011 | 00009 | 00007 | 0000 | | 0, €2 | .04172 | .03595 | .03133 | .02757 | .02184 | .01772 | .01467 | .0123 | | (0, en) | .00139 | .00121 | .00107 | .00096 | .00078 | .00064 | .00055 | .0004 | | $\{0, \eta^2\}$ | .00050 | .00043 | .00037 | .00032 | .00025 | .00020 | .00016 | .0001 | | (0, δ²ε) | .00033 | .00028 | .00024 | .00021 | .00016 | .00013 | ,00010 | .0000 | | $\{0, \delta^2 \eta\}$ | 00003 | 00003 | 00002 | 00002 | 00001 | 00001 | 00001 | 0000 | | 0, δε2 | 00025 | 00021 | 00018 | 00016 | 00012 | 00010 | 00008 | 0000 | | (0, δεη) | .00001 | .00001 | .00001 | .00001 | | 100010 | .00000 | .0000 | | (4 1) | 10017 | 10000 | 47/00 | 46074 | 45045 | 44702 | 42000 | 4006 | | {1, δ} | 19017 | 18288 | 17608 | 16971 | 15815 | 14793 | 13882 | 1306 | | {1, €} | 09448 | 09144 | 08859 | 08591 | 08102 | 07664 | 07272 | 0691 | | 11. 7) | 03641 | 03473 | 03318 | 03173 | 02911 | 02682 | 02480 | 0230 | | $\{1, \delta^2\}$ | .00191 | .00182 | .00173 | .00166 | .00151 | .00139 | .00128 | .0011 | | 1, δε | 00040 | 00037 | 00034 | 00032 | 00028 | 00024 | 00020 | 0001 | | $\{1, \delta\eta\}$ | .00029 | .00027 | .00026 | .00025 | .00022 | .00020 | .00018 | .0001 | | {1, e ² } | .00136 | .00130 | .00124 | .00118 | .00108 | .00099 | .00092 | .0008 | | {1, εη} | .00006 | .00006 | .00006 | .00006 | .00005 | .00005 | .00004 | .0000 | | {2, δ} | 03519 | 03473 | 03428 | 03384 | 03300 | 03219 | 03141 | 0306 | | (2, €) | 02150 | 02126 | 02103 | - .02081 | - .02037 | - .01995 | - .01955 | - .0191 | | $\{2, \eta\}$ | 00361 | 00354 | 00349 | 00342 | 00331 | - .00320 | 00310 | 0015 | | $\{2, \delta^2\}$ | .00014 | .00014 | .00014 | .00013 | .00013 | .00012 | .00012 | .0001 | | {2, δε} | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .0000 | | $\{2, \delta_{\eta}\}$ | .00001 | .00001 | .00001 | .00001 | ,00001 | .00001 | .00001 | .0000 | | {2, e²} | .00010 | .00010 | .00010 | .00009 | .00009 | .00009 | .00008 | .0000 | | {3, 8} | 01141 | 01134 | 01127 | 01120 | 01106 | 01093 | 01080 | 0106 | | [3, €] | 00784 | 00779 | 00775 | 00771 | 00763 | 00755 | 00748 | 0074 | | (3, 7) | 00072 | 00071 | 00071 | 00070 | 00068 | 00067 | 00066 | 0006 | | 13. 82 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .00002 | .0000 | | (3, δε) | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .0000 | | (3, €2) | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .00001 | .0000 | | {4, δ} | 00498 | 00496 | 00494 | 00492 | 00489 | 00485 | 00482 | 0047 | | [4, e] | 00368 | 00366 | 00365 | 00364 | 00362 | 00360 | 00358 | 0035 | | {4, η} | 00021 | 00020 | 00020 | 00020 | 00020 | 00020 | 00020 | 0002 | | {5, δ} | 00259 | 00259 | 00258 | 00257 | 00256 | 00255 | 00253 | 0025 | | [5, €] | 00201 | 00201 | 00200 | 00200 | 00199 | 00198 | 00197 | 0023 | | (5, 7) | 00008 | 00008 | 00008 | 00008 | 00008 | 00198
00007 | 00197
00007 | 0000 | | (6, 8) | 00151 | 00151 | 00150 | 00150 | 00150 | 00149 | 00149 | 0014 | | (6, e) | 00131 | 00131 | 00130 | 00130
00121 | 00130
00121 | 00149
00120 | 00149
00120 | | | (6, 7) | 00003 | 00121 | 00003 | 00003 | 00003 | 00120 | | 0012 | | (4.7) | 0003 | 00003 | 00003 | 00003 | 00003 | 00003 | 00003 | 0000 | Table II. Expansion of \mathcal{D} (row 1 \times row 2 \times row 3, see Eq. 23). Numerical tabulation of the coefficients in row 3. | θ. | row 1
row 2
row 3 { | (D_1) (D_1) | $\left\{ egin{array}{l} lacksquare b \ D_1 \ y_{01} \end{array} ight\} = \left\{ egin{array}{l} D_1 D \ -y_0 \end{array} ight.$ | | | η D ₁ D ₂ 2 y ₀₁₂ } | {D ₂ D ₃
-4 y ₀₁₁₂ | $ \begin{bmatrix} D_1D_4 \\ -2 y_{0122} \end{bmatrix} $ | |---|--|--|---|---|--|--|--|--| | .5 | 1 | | | 7143 -4.000 | | | 9.14285 | | | . 45 | | | | 2598 -3.305 | | | 8.27740 | | | . <u>4</u>
. 35 | 1 | | | 9445 —2.777
8278 —2.366 | | | 7.71606
7.41094 | | | .3 | | | 76190 .9 | 0090 -2.040 | 13.6054 | 3 2.57400 | 7.35428 | | | . 25 | | 1 5. | .33333 1.0 | 6667 -1.777 | 78 14.2222 | 2 2.84445 | 7.58519 | .32508 | | .2 | i | 1 6. | 25000 1.3 | 1579 -1.562 | 50 15.6250 | 0 3.28948 | 8.22369 | .37380 | | . 15
. 1 | į | | .84314 1.7
.11111 2.5 | 3160 —1.384
6410 —1.234 | 08 18.4544
57 24.6913 | 5 4.07436
5 5.69800 | 9.58673
12.66222 | | | .05 | | | | 6329 -1.108 | 03 44.3213 | 5 10.65956 | 22.44119 | | | 0* | | 0 1. | .00000 .2 | 5000 0 | 2.0000 | 0 .50000 | 1.00000 | .05556 | | 05 | | 1 -19. | 04762 -4.9 | | 03 -36.2811 | 8 -9.40624 | | | | 10
15 | | | .09091 -2.4
.79710 -1.6 | | | | -8.06287
-4.85876 | | | 13
2 | | | 16667 -1.1 | | | | -3.30686 | | | 25 | | 1 -3. | 200009 | 4118640 | 00 -5.1200 | 0 -1.50588 | -2.40941 | 16280 | | 3 | | | | 7519591 | | | -1.83478 | | | 35
4 | 1 | | | 5681 — .548
6818 — .510 | 370 -3.1354
320 -2.5510 | | -1.44157
-1.15955 | | | 45
45 | | 1 -1 | 532564 | 9938 — .475 | $\frac{-2.3310}{62}$ | 868880 | 95006 | 07289 | | 5 | | | .333334 | 4444444 | 44 -1.7777 | 8 — .59259 | 79012 | 06238 | | 55 | i | | | 9960416 | | | 66530 | | | 6
7 | . | | | 6232 — .390
0395 — .346 | | | 56612
42069 | | | | 1 | | | 6042 — .308 | 64 — .7716 | 028935 | 32150 | 02953 | | — . A | | | | | | | | | | 8
9 | | 1 | .58480 — .2 | 2676 — .277 | | | 25126 | | | 9
-1.0 | | 1 -: | .58480 — .2 | 2676 — .277
0000 — .250 | | | 20000 | | | `−.9 | {D ₁ D ₄ {y ₀₁₂₂ | 1 -: | .58480 — .2 | | | 020000
{ D ₂ D ₆ | | | | 9
-1.0
σον 1
σον 2
row 3 | { D ₁ D ₄
y ₀₁₃₃ | $
\begin{array}{ccc} 1 & - \\ 1 & - \end{array} $ $ \begin{array}{ccc} D_2D_2 \\ 2 & y_{012} \end{array} $ | 584802
500002
{D ₂ D ₄
{4 y ₁₁₁₂ | 0000250
εη
D ₁ D ₆
2 y ₀₁₂₄ | Di 2 yeiiii} | 020000
{D ₂ D _b
-4 y ₁₁₁₂₄ | 20000 \$\frac{\delta^2}{D_1D_4} -4 y_011212 .30732 | 02000
-2 y ₀₁₂₂₆ | | 9
-1.0
**row 1 row 2 row 3 | {D ₁ D ₄
y ₀₁₃₃
13445
- 13312 | $ \begin{array}{ccc} 1 & - & \\ 1 & - & \\ & & \\ 2 & & \\ 2 & y_{013} \end{array} $ $ \begin{array}{c} D_2D_2 \\ 2 & y_{013} \end{array} $ $ \begin{array}{c} -4.57143 \\ -4.13870 \end{array} $ | 584802
500002
{ D ₂ D ₄
4 y ₉₁₁₁₂
1.07563
96812 | 0000250 εη D ₁ D ₆ 2 y ₀₁₂₄ .01735 .01712 | Di 2 yenni 1 .30612 1 .16583 | 0 − .20000
{D ₂ D ₆
−4 y ₁₁₁₃₄
.06941
.06226 | 20000 \$\frac{\delta^2}{D_1D_4} -4 \text{ y}_{011222} .30732 .27271 | 02000 -2 y ₀₁₂₁₄₆ -2 y ₀₁₂₁₄₆ .00071 .00070 | | row 1 # row 2 row 3 | 13445
- 13312
13458 | 1 | 584802
500002
{D ₂ D ₄
4 y ₉₁₁₃
1.07563
96812
.89721 | 0000 — .250 | Di 2 yenn } 1.30612 1.16583 1.07168 | .06941
.06226
.05752 | 20000 \$\frac{\delta e^2}{D_1 D_4}\$ -4 yours: .30732 .27271 .24922 | $ \begin{array}{c}02000 \\ \hline02000 \\02000 \\00071 \\ .00070 \\ .00070 \end{array} $ | | row 1 row 2 row 3 | $ \begin{cases} D_1D_4 \\ y_{1111} \end{cases} $ $13445 \\13312 \\13458 \\13922 $ | 1 | 584802
500002
{ D ₂ D ₄
{ 4 y ₀₁₁₂₃
1.07563
96812
.89721
.85676 | .01735
.01772
.01772
.01772
.01779 | D ₁ 2 y ₀₁₁₁ 3 1.30612 1.16583 1.07168 1.01520 | 0 — .20000
{ D ₂ D ₆
—4 уенты
.06941
.06226
.05752
.05475 | 20000 \$\frac{\delta e^2}{D_1 D_4}\$ -4 yours: .30732 .27271 .24922 .23498 | $ \begin{array}{c}02000 \\ \hline02000 \\02000 \\00071 \\ .00070 \\ .00072 \end{array} $ | | row 1
row 2
row 3 .5 .45 .4 .35 .3 .25 | $ \begin{cases} D_1D_4 \\ y_{0132} \end{cases} $ $13445 \\13312 \\13458 \\13922 \\14793 $ | 1 2 2 D2D1 2 yms 3 -4.57143 -4.13870 -3.85803 -3.70547 -3.67714 | 584802
500002
{D ₂ D ₄
4 y ₉₁₁₃
1.07563
96812
.89721 | 0000 — .250 | Di 2 yenn 1 1.30612 1.16583 1.07168 | .06941
.06226
.05752 | 20000 \$\frac{\delta e^2}{D_1 D_4}\$ -4 yours: .30732 .27271 .24922 | $ \begin{array}{c}02000 \\ \hline02000 \\02000 \\02000 \\00070 \\ .00070 \\ .00070 \end{array} $ | | 9 -1.0 row 1 row 2 row 3 | D ₁ D ₁ y ₉₁₁₃ 13445 13425 13458 13922 14793 16254 18690 | 1 | 584802
500002
{ D ₂ D ₄
{ 4 y ₀₁₁₃₃
1.07563
96812
.89721
.85676
.84532
.86688
.93450 | 0000 — .250 гр ДіДь 2 уним .01735 .01712 .01726 .01779 .01885 .02064 .02366 | Di5000 Di 2 years } 1.30612 1.16583 1.07168 1.01520 .99382 1.01136 1.08206 | D1D620000 {D1D6 - 4 yellism .06941 .06226 .05752 .05475 .05384 .05504 .05915 | 20000 \$\frac{\delta e^2}{D_1 D_1} -4 \frac{\gamma \cdots \cdots \cdots}{27271} -24922 -23498 -22846 -23117 -24592 | 02000 D1D0 -2 y 11146 .00071 .00070 .00072 .00076 .00083 .00095 | | | D ₁ D ₁ y ₀₁₁₁ 13445 13312 13458 13922 14793 16254 18690 23019 | 1 | 584802
500002
{ D.D.
4 yess
1.07563
96812
89721
85676
84532
86688
93450
1.08323 | 0000 — .250 | D ₁ ² 2 y ₀₁₁₁ 30612 1.16583 1.07168 1.01520 .99382 1.01136 1.08206 1.24503 | 0 − .20000
{D ₂ D ₆ − 4 y ₀₁₁₃₄
.06941
.06226
.05752
.05475
.05384
.05504
.05915
.06834 | 20000 \$42 D_1D_1 -4 yourse .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 | 02000 D ₁ D ₀ \ -2 y ₀₁₃₃₆ \ .00071 .00070 .00072 .00076 .00083 .00095 .00117 | | -1.0 now 1 now 2 row 3 .5 .45 .4 .35 .3 .25 .2 .15 .1 | \[\begin{align*} \D_1 D_1 \\ \y \text{min} \end{align*} \] \[13445 \\13312 \\13458 \\13922 \\14793 \\16254 \\18690 \\23019 \\32011 \end{align*} | 1 | 584802
500002
{ D ₂ D ₄
{ 4 y ₀₁₁₃₁
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273 | еп
D ₁ D ₆
2 унин
.01735
.01712
.01726
.01779
.01885
.02064
.02366
.02904
.04027 | D1 2 years 1 | D ₂ D ₆ 20000 | 20000 \$42 D_D, -4 yourss .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 | 02000 D ₁ D ₆ \ -2 y ₀₁₁₁₄₆ \ .00071 .00070 .00070 .00072 .00076 .00083 .00095 .00117 .00162 | | 9 -1.0 now 1 row 2 row 3 .5 .45 .45 .3 .3 .25 .2 .15 .1 .05 0* | D ₁ D ₁ y ₁₁₁₁ 13445 13312 13458 13922 14793 16254 18690 23019 32011 59550 | 1 | 584802
500002
{ D.D.
4 yess
1.07563
96812
89721
85676
84532
86688
93450
1.08323 | 0000 — .250 | Di5000 Di 2 yem; 1.30612 1.16583 1.07168 1.01520 .99382 1.01136 1.08206 1.24503 1.62336 2.84066 .12500 | 0 − .20000
{D ₂ D ₆ − 4 y ₀₁₁₃₄
.06941
.06226
.05752
.05475
.05384
.05504
.05915
.06834 | 20000 \$42 D_1D_1 -4 yourse .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 | 02000 D ₁ D ₀ \ -2 y ₀₁₃₃₄ \ .00071 .00070 .00070 .00072 .00076 .00083 .00095 | | -9 -1.0 now 1 now 2 row 3 .5 .45 .4 .35 .3 .25 .2 .15 .1 .05 -05 | D ₁ D ₁ Y = 13445 -13458 -13458 -13458 -14793 -16254 -18690 -23019 -32011 -59550 -02778 -51968 | 1 | 584802
500002
{ D ₂ D ₄
{ 4 y ₀₁₁₃₃
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.11111
-1.9974 | 0000 — .250 | Di 2 yenn; } 1.30612 1.16583 1.07168 1.01520 .99382 1.01136 1.24503 1.62336 2.84066 .12500 -2.21193 | (D ₁ D ₆)
-4 y ₁₁₁₁₄
-06941
-06226
-05752
-05475
-05384
-05504
-05915
-06834
-08948
-15722
-00694
-12335 | 20000 \$42 D1D4 - 4 yourss .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478 .02778 .48882 | 02000 D ₁ D ₄ } -2 y ₁₁₁₄₄ } .00071 .00070 .00070 .00076 .00083 .00083 .00117 .00162 .00300 .00014 | | 9 -1.0 row 1 row 2 row 3 .5 .45 .35 .35 .25 .2 .15 .1 .05 .0*051 | D ₁ D ₁
y ₁₁₁
13445
- 13312
13458
13922
14793
16254
18690
23019
32011
95550
02778
.51968
.24366 | 1 | 584802
500002
{ D ₁ D ₄
{ 4 ymms
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.11111
-1.97974
-88604 | 0000 — .250 *** *** *** *** *** *** *** *** *** | Di5000 Di 2 years } 1 .30612 1 .10583 1 .07168 1 .01520 .99382 1 .01136 1 .08206 1 .24503 1 .62336 2 .84066 .12500 -2 .2119398328 | D ₁ D ₆ | 20000 \$42 D1D, -4 yourss .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478 .027784888221610 | 02000 D ₁ D ₄ \ -2 y ₁₁₁₄₄ \ .00071 .00070 .00070 .00072 .00083 .00095 .00117 .00162 .00300 .000140026000121 | | 9 -1.0 now 1 now 2 row 3 .5 .45 .4 .35 .3 .25 .2 .15 .0*0515 | D ₁ D ₁ , y ₁₁₁ -1.13445 -1.13312 -1.13458 -1.13922 -1.14793 -1.16254 -1.18690 -2.3019 -32011 -3.9550 -0.2778 -3.1968 -2.4366 -1.5267 | 1 2 D ₂ D ₁ } 2 y _{min} } -4.57143 -4.13870 -3.85803 -3.70547 -3.67714 -3.79260 -4.11185 -4.79337 -6.33111 -11.22059 -50000 8.95833 ,4.03144 2.42938 | 58480 - 2
50000 - 2
{ D ₁ D ₄
{ 4 y ₀₁₁₃₁
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
-11111
-1.97974
88604
53101 | 0000 — .250 | D1 2 years } 1.30612 1.16583 1.07168 1.01520 .99382 1.08206 1.24503 1.62336 2.84066 .12500 -2.211939832858539 | (D ₁ D ₆
-4 y ₆₁₁₁₁₄
-06921
.06921
.05752
.05475
.05384
.05504
.05915
.06834
.15722
.00694
-12335
-05503288 | 20000 \$42 D3D4 - 4 Y01111 .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478488822161012796 | 02000 D ₁ D ₄ } -2 y ₁₁₃₄ } .00071 .00070 .00070 .00076 .00083 .00095 .00117 .00162 .00300 .00014 .0026000121 .00075 | | 9 -1.0 row 1 row 2 row 3 .5 .45 .35 .35 .25 .2 .15 .1 .05 .0*051 | D ₁ D ₁
y ₁₁₁
- 13445
- 13312
- 13458
- 13922
- 14793
- 16254
- 18690
- 23019
- 32011
- 59550
- 02778
51968
24366
15267
10783
- 88140 | 1 2 D ₁ D ₁ } 2 y _{min} } -4.57143 -4.13870 -3.85803 -3.70547 -3.67714 -3.79260 -4.11185 -4.79337 -6.33111 -11.22059 -50000 8.95833 4.03144 2.42938 1.65343 1.20470 | 58480 - 2
50000 - 2
{ D ₂ D ₄
4 y ₁₁₁₁
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.1111
-1.97974
88604
53101
35948 | | D1 2 yenrs 1.30612 1.16583 1.07168 1.01520 .99382 1.0136 1.24503 1.62336 2.84066 .12500 -2.21193 98328 58539 39367 .28346 | D ₁ D ₆ | 20000 \$42 D3D4 - 4 Yenses .207271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .634784888221610127960855806129 | 02000 D ₁ D ₄ \ -2 y _{*1186} \ .00071 .00070 .00070 .00076 .00083 .00083 .00117 .00162 .00300 .0001400260001210007500053 | | 9 -1.0 • row 1 row 2 row 3 .5 .45 .4 .35 .3 .25 .2 .15 .0 •051152253 | D.D. (901) - 13445 - 13312 - 13458 - 13922 - 14793 - 16254 - 18690 - 23019 - 32011 - 59550 - 02778 51968 24366 - 15763 - 10783 - 08140 - 064412 | 1 | 584802
500002
{ D ₁ D ₁
{ 4 y ₀₁₁₃₃
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.11111
-1.97974
88604
53101
35943
19728 | 0000 — .250 | 1,30612
1,16583
1,07168
1,01520
99382
1,01136
1,0236
1,0236
1,24503
1,62336
2,84066
1,2500
-2,21193
-,98328
-,58539
-,28346
-,21335 | D ₁ D ₆ 20000 | 20000 \$42 D1D4 - 4 y01111 .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478 .02778 .02778 .12796127960855806129 .064588 | 02000 D ₁ D ₄ } -2 y ₁₁₃₄ } 00071 .00070 .00070 .00076 .00083 .00083 .00117 .00162 .00300 .00014 .0026000121000530005300040 | | 9 -1.0 now 1 now 2 row 2 row 3 .5 .45 .45 .35 .35 .25 .2 .15 .0*05115225353535353535353 | D ₁ D ₁
y ₁₁₁ 13445 - 1331213458139221479316254186902301932011595500277851968243661526710783081400641205203 | 1 | 584802
500002
{ | 0000 — .250 *** *** *** *** *** *** *** *** *** | Di5000 Di 2 years } 1 .30612 1 .16583 1 .07168 1 .01520 .99382 1 .01136 1 .08206 1 .24503 1 .62336 2 .84066 .12500 -2 .21193983285853939367283462133516570 | D ₁ D _b | 20000 \$42 D2D4 -4 y011111 .30732 .27271 .24922 .23498 .22846
.23117 .24592 .28136 .36480 .63478 .0277848882216101279608558061290458804588 | 02000 D ₁ D ₆ \ -2 y ₁₁₁₆₆ \ .00071 .00070 .00070 .00072 .00072 .00083 .00095 .00117 .00162 .00300 .0001400260001210007500053000400003100025 | | 9 -1.0 now 1 now 1 now 2 row 3 .5 .45 .4 .35 .3 .25 .2 .15 .0*05152253353353353354 | D ₁ D ₁
-13445
-13312
-13458
-13922
-14793
-16254
-18690
-23019
-32011
-59550
-02778
-24366
-10783
-08140
-06412
-05203
-04318 | 1 | 584802
500002
{ D ₁ D ₁
{ 4 y ₁₁₁₁₁
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.1111
-1.97974
88604
35943
26048
15418
12336 | 0000 — .250 | 005000 2 years | D ₁ D ₆ 20000 D ₂ D ₆ 4 y ₆₁₁₁₃₄ 06941 .06226 .05752 .05475 .05384 .05504 .05915 .06834 .08948 .15722 .00694 .12335 05503 .03288 02218 01603 .01210 .00943 00752 | 20000 \$42 D3D4 - 4 yourss .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478 .02778 .1279608558061290612906129061280 | 02000 D ₁ D ₄ \ -2 y ₁₁₃₄ \ .00071 .00070 .00070 .00076 .00083 .00095 .00117 .00162 .00300 .00014 -00260001210007500053000310002500021 | | 9 -1.0 now 1 row 2 row 3 .5 .45 .45 .45 .35 .3 .25 .1 .05051515253353544455 | D ₁ D ₁
-13445
-13312
-13458
-13922
-14793
-16254
-18690
-23019
-32011
-59550
-02778
-51968
-24366
-10783
-08140
-06412
-0530
-04318
-03644
-03119 | 1 | 58480 — .2
50000 — .2
{ D ₂ D ₄
{ 4 ymms
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.1111
-1.97974
88604
53101
35943
26048
19728
15418
12336
10054
08317 | 0000 — .250 | D1 2 yenrs 1.30612 1.16583 1.07168 1.01136 1.08206 1.24503 1.62336 2.84066 1.2500 -2.21193 58539 39367 28346 21335 16570 13177 10675 08779 | D ₁ D ₆ | 20000 \$4 ² D ₃ D ₄ - 4 y ₀₁₁₁₁ .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .634784888221610127960855803544025940225904588402259 | 02000 D ₁ D ₄ \ -2 y ₀₁₃₄₄ \ .00071 .00070 .00070 .00076 .00083 .00095 .00117 .00162 .00300 .00014 .0026000121 .0007500053 .000400003100021000210001700017 | | | D.D. (901) - 13445 - 13312 - 13458 - 13922 - 14793 - 16254 - 18690 - 23019 - 32011 - 39050 - 02778 - 10783 - 08140 - 06412 - 05203 - 04318 - 03644 - 03119 - 027700 | 1 | 584802
500002
{ D.D. | 0000 — .250 | 00 — .5000 2 years 2 years 1.30612 1.16583 1.07168 1.01520 1.08206 1.24503 1.62336 2.84066 .12500 -2.21193 98328 58539 39367 28346 21335 16570 13177 10675 08779 07311 | D ₁ D ₆ 20000 | 20000 \$42 D1D4 - 4 y011111 .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478 .02778 .02778 .1279612161012796085580612904588045880458803544022590184801848018480184801848 | 02000 D ₁ D ₄ \ -2 y ₁₁₁₄ \ .00071 .00070 .00070 .00072 .00076 .00083 .00083 .00014 .000260012100075 .00030 .00014 .00025000310002500031000250002100017000150001700015 | | 9 -1.0 now 1 row 2 row 3 .5 .45 .45 .45 .35 .3 .25 .1 .050511525335354455556 | D.D. \$\forall y\text{9'11}\$1344513312134581392214793162541869023019320115955002778 .51968 .24366 .15267 .10783 .08140 .06412 .05203 .04318 .03644 .03119 .02700 .02359 | 1 | 58480 — .2
50000 — .2
{ D ₁ D ₄
{ 4 ymms
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.11111
—1.97974
—.88604
—.53101
—.35943
—.26048
—.15418
—.15418
—.12336
—.10544
—.08317
—.06967
—.05897 | 0000 — .250 *** *** *** *** *** *** *** *** *** | Di | D ₁ D ₆ 20000 | 20000 | 02000 D ₁ D ₆ \ -2 y ₁₁₁₆₆ \ .00071 .00070 .00070 .00072 .00072 .00083 .00095 .00117 .00162 .00300 .0001400260001210007500040000310002500021000150001500015000150001500015 | | 9 -1.0 now 1 now 2 row 3 .5 .45 .4 .35 .3 .25 .2 .15 .0*051522533544555567 | D.D., ymm 13445133121345813922147931625418690230193201159550027781078381400064120520304318036440311027000235901843 | 1 | 58480 — .2
50000 — .2
{ D ₁ D ₄
{ 4 y ₁₁₁₁₁
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.11111
-1.97974
88604
15418
15418
15418
19728
15418
1054
08317
06967
05897
04337 | 0000 — .250 | 1.30612
1.16583
1.07168
1.01520
.99382
1.01136
1.02336
2.84066
1.24503
1.62336
2.84066
.12500
-2.21193
98328
58539
39367
28346
13177
16575
06154
06154 | D ₁ D ₆ 20000 D ₁ D ₆ -4 y ₁₁₁₁₄ -4 y ₁₁₁₁₄ -66226 .05752 .05384 .05504 .05915 .06834 .08948 .15722 .00694 .12335 05503 01210 .00943 01210 00943 00752 00611 00752 00611 00355 00260 00260 | 20000 \$42 D3D4 - 4 yourss .30732 .27271 .24922 .23498 .22846 .23117 .24592 .28136 .36480 .63478 .00778 .02778 .02778 .02778 .02778 .03544 .048821216100855806129045880354402259 .0184802259 .01848012310128200923 | 02000 D ₁ D ₄ } -2 y ₁₁₃₄ } .00071 .00070 .00070 .00076 .00083 .00117 .00114 .0002600121000250003100021000150001300011000110001100011 | | 9 -1.0 # row 1 row 2 row 3 .5 .45 .45 .45 .35 .3 .25 .1 .0505115253353544455556 | D.D. \$\forall y\text{9'11}\$1344513312134581392214793162541869023019320115955002778 .51968 .24366 .15267 .10783 .08140 .06412 .05203 .04318 .03644 .03119 .02700 .02359 | 1 | 58480 — .2
50000 — .2
{ D ₁ D ₄
{ 4 ymms
1.07563
96812
.89721
.85676
.84532
.86688
.93450
1.08323
1.42273
2.50737
.11111
—1.97974
—.88604
—.53101
—.35943
—.26048
—.15418
—.15418
—.12336
—.10544
—.08317
—.06967
—.05897 | 0000 — .250 *** *** *** *** *** *** *** *** *** | Di | D ₁ D ₆ 20000 | 20000 | 02000 D ₁ D ₄ \ -2 y ₁₁₁₄₄ \ .00071 .00070 .00070 .00072 .00073 .00083 .00095 .00117 .00162 .00300 .00014002600012100075000400001100015000150001500015 | ^{*} Note 1. For $\theta_0=0$ ($y_0=\infty$) the coefficients of \mathcal{D}/y_0 are given.