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THE TREATMENT OF SINGULARITIES OF PARTIAL
DIFFERENTIAL EQUATIONS BY RELAXATION

METHODS*

BY

H. MOTZ

University of Sheffield, England

1. Introduction. In the course of a study of boundary value problems arising in

radiation theory and electrostatics, the treatment of singularities demanded special

attention. In most problems of practical importance boundaries with sharp corners

occur. Such sharp corners give rise to singularities of various types. When the com-

puted function is bounded, but has a branch point at the corner, the difficulty is

not serious. The use of a graded net with a finer mesh size near the corner is possible.

Conformal transformation which automatically provides a finer net near corners is

also successful. The mesh size near the corner should be of the order of magnitude of

the radius of curvature of the corner, and when this is small a mathematical idealiza-

tion involving infinitely sharp corners is preferable. The special treatment outlined

in this note makes use of such an idealization and shortens the labour considerably.

Special treatment is essential when the function approaches infinite values near the

corner.

2. Plane harmonic functions. Solutions of V2<£ = 0 are bounded when the boundary

condition prescribes constant values near the corners. It can be shown that they are

also bounded when d<f>/dv is constant, where v is the direction normal to the boundary.

This type of boundary condition occurs e.g. when two plane harmonic functions $

and \p are computed inside a boundary B for the purpose of a conformal transforma-

tion
x + iy = <t>(x, y) + vp^x, y)

and \p= const, is specified at the boundary forming the corner. When expressed in

polar coordinates r, $ centered at P (Fig. 1), the equation

V2<f> = 0 (1)
becomes

d2<£ d<j> d2<f>
r2 + r—+ = 0. (2)

dr2 dr dt?2

With <f>(r, t?) =R(r) ■ ©($), the following equations for R and © are obtained

 f- »2@ = 0, (3)
dd2

d2R dR
r2 1- r n*R = 0. (4)

dr2 dr

In these equations »2 stands for a positive constant, and

d©
  = 0 when d = 0, 11 = a.
dd

* Received Jan. 2, 1946.
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Hence
QO

0 = ^2 A kr" cos nd (5)
00

where n = -jrk/a (k=0, ±1, ±2, +3, • • • )•

In order to investigate the terms with negative exponent in this series, we exclude

the corner by a small circle of radius p. On this circle (d0/dr)„»o = 0. It is found that

A-, = pinA+, (s = 1, 2, 3, • • • ).

When p—>0, the circle contracts towards the point P and the terms with negative

exponents vanish. Thus 0 will be represented by the series

0 = A0 + AirTla cos —d + A2rST/o cos —t? + Atf**1" cos —«? + ••• (6)
a a a

in the neighbourhood of P.

Fig. 1

3. Method of special treatment. The method of treatment will now be explained

with reference to the example of a corner with a = 2-ir, ir/ct = \. In the treatment of

two-dimensional problems by relaxation methods,the function 0 is computed at

points of a net with small but finite mesh size. Let us denote by <f>o the value of <j>

at such a point, by <t>i, 02, 03, $4 the values of <f> at the nearest neighbouring points.

The mesh length is a. At points where the function is regular, double Taylor expansion

shows that

4 1 • 1 •

a2V2<£ — ̂ 2 <t>m + 40o = — — A0 (*) — — Ao (y) ■ ■ • , (7)
m=1 12 12

where A},v(:*;), AJ,v(y), are the fourth central differences in the x and y direction, re-

spectively, at the point where 0=0o- This expansion can only be used when the right

hand side converges. At a singularity and its nearest neighbouring points this expan-

sion is not valid. Figure 2 shows an example of a boundary where 0 = 0 on AE,

0 = 1000 on EB, and d(t>/dv=0 on all other boundaries. The Taylor expansion fails at

1 H. W. Emmons, Numerical solution of partial differential equations, Quarterly Appl. Math., 2,

173-195 (1944).
! D. N. de G. Allen, D. G. Christopherson, L. Fox, J. R. Green, H. Motz, F. S. Shaw and R. V. South-

well, Relaxation methods applied to engineering problems, Phil. Trans. Royal Soc. London (A), 239, 367-

386, 419-537, 539-578 (1945).
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P', Q', R', and S'. In order to obtain valid equations at these points, we consider series

of the type (6) at the pivotal points P, Q, R, S

d
0 = Ao + Air1/2 cos f- A2r cos 0 + Azr312 cos 3/2t? + • • • . (8)

2

Only the first four terms are retained. The units of r can be so chosen that r = 1 at

P, Q, R, S. In terms of <t>p, 0o, 4>r, 0s one obtains
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100C

100C

100C

Ao — 0.25 (<t>p + <t>Q + <f>R + <f>s),

A\ — 0.191(0.? — <f>R) — O.462(0s — 4>q),

A 2 = 0.354(<j>Q — <t>p — <t>R + 0s),

A 3 = — 0.191(<#>o ~ 0s) "t" O.462(0« — <t>p).

At the special points P', Q', R', and S', we find from (8)

<f>p' — O.4570P -f- O.2350Q -(- 0.209072 + 0.0990s,

00' = O.2350p -f- 0.5930o ~1~ 0.0990/2 -t- 0.0730s,

4>r' — 0.2090p -f- 0.O990q -f- 0.4570b ~l~ 0.2350s,

0s' = O.O990P -f- 0.07300 ~t~ 0.2350b -|- 0.5930s-

(9)

(10)
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These are the equations used at special points. The relaxation procedure is carried out

normally everywhere, observing that equations (10) hold at special points. The resid-

ual at a special point due to an increment at a pivotal point P is therefore the prod-

uct of this increment with the coefficient of 0p in the equation which holds at the

special point. This is in accordance with the usual relaxation procedure. The removal

of a residual at a special point is particularly easy. It is simply subtracted from the

value of 0 at the special point in question. Due to this removal the usual residuals

accrue at ordinary neighbouring points, but of course, no residuals are passed on to

special points.

Fig. 3

Figure 3 refers to an example with a = 3 w/2. Here we retain three terms only

Special points are P', Q', R', pivotal points P, Q, R. The equations at special points are

<t>p> = 0.4860/> -t- 0.2574>q -f- 0.2570s,

<t>Q. = 0.257<I>p + O.6120e + 0.1310s, (11)

<I>r' — 0.257<f>p + 0.1310c -f* 0.6120s.

It should be checked whether the three first terms of the series

0 = Ao + Air2/3 cosfi? + Ar24li cos^d + • • • (12)

which has been used for the derivation of (11) represent the function 0 adequately.

This is done by comparing the result of the relaxation computation at points S, T,

where ordinary difference equations have been used with the values of 0 calculated

by means of the first three terms of (12).

A similar check was carried out at analogous points in the example of Fig. 2. It

was found that the agreement was not satisfactory. The errors have been recorded in

Fig. 2 underneath the respective 0 values. In this case it is possible (with the net

shown in Fig. 4) to retain five terms of the series. Pivotal points are T, U, V, W, X;

special points T', U\ V', W', X', and the equations for 0 at special points are

02" = 0.546 0r -f- 0.313 0c/ + 0.06250k -f- O.O62s0ir -f- O.O160X,

<j>w — 0.156 0r -j- 0.578 <j>u -f- 0.188 0y -f- 0.047 <j>w 0.031 0x,

0y = 0.031 0r + 0.188 <j>v + 0.562 0V + 0.188 <t>w + 0.031 0X, (13)

4>w' ~ 0.031 0r 4" 0.047 <f>v 0.188 0y -f- O.578.0ir ~t~ 0.156 4>x<

0x' = 0.016 0r 0.06260[7 ~t" 0.062 <f>v -f" 0.313 <t>w ~H 0.546 <t>x-
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The result is again checked by comparing the result of the relaxation procedure with

the <j> values near the corner calculated from

<t> = A0 + Atf1'2 cos 5$ + Atr cos t? + A3r3/2 cos + A4r! cos 2d,
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Fig. 4

where the A's are given by

Ao = 0.250(<f>a + <t>v + <t>w) + 0.125(<#>r +

A i = 0.354(<^(/ — 4>w) + 0.250((/>r — <t>x).

A 2 = — 0.500</>r + 0.250(^>r + <t>x), (14)

A3 = 0.354(<frr — <f>u) + 0.250($ir —

At = 0.250($k — 4>u ~ <t>w) + 0.125($r + <t>x)-

The agreement is now much better. In Fig. 4 the errors have been recorded. It will

be noticed that the mesh points of Fig. 2 lie between those of Fig. 4. By interpolating

values at midpoints of the meshes of Fig. 4, we find that the solutions given in the

two figures are in fair agreement.

When the above test fails, a finer net should be used as a rule, because the calcula-

tion becomes rather cumbersome when more than five terms of the series are retained.

To obtain, without the special treatment, a result which differs from the one of

Fig. 2 by less than 1% at any point of the net, the net near the corner would have to

be 7 times as fine.
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4. Other examples. As an example of a corner where the value of the function is

specified, let us consider an electrostatic potential \fs. In this case the series is

^ = Aa + Air1/2 sin + A& sin d + Ar3/2 sin -fi? + • • • . (15)

The components of the electric field in Cartesian cordinates, Ex, Ey, are not bounded

on a sharp corner when a>ir. Let us consider the term r" cos nd of the series (5).

Ex and Ev will contain terms rn_1 sin (« — 1)$, r"_1 cos (« — l)i?, respectively, and nega-

tive exponents of r will therefore occur when a>ir. The method outlined above can

still be used to compute a function with such a singularity. In the case a = 2ir the

negative exponent — J occurs. Terms with exponents — \ and +§ depend on x) in the

same manner. It is therefore necessary to choose pivotal points which have not all

the same distance from the corner.

The method is equally applicable to solutions of the wave equation

Vfy + k20 = 0. (16)

In Cartesian coordinates and with £ =x/a, 77 =y/a (where a is the mesh length of the

net), Eq. (16) becomes

d2<t> d2<l>
 + F k*ahf> = 0. (17)
de V

Referring again to the case a = 2ir, d(f>/dv = 0 and retaining five terms, we see that the

expression (5) holds at pivotal points. At the special points we have

Ji/t(ka) J i(ka) J3/t(,ka)
<t> = A 0 + A1 cos 5# + A 2 cos t? + A 3 cos •§#

J 1/2(2 ka) Ji(2ko) 73/2(2 ka)

J2(ka)
+ A 4  —■ cos 2d,

J2(2ka)

where J„ are the Bessel functions of order n. When &a<0-1, the ratios Jn(ka)/Jn(2ka)

differ from (f)" only in the third decimal. When the mesh length a is small compared

with the wave length l = 2ir/k, the special equations are therefore the same for solu-

tions of the wave equation and those of Laplace's equation.

5. Conformal transformation. When a solution of more complicated differential

equations, e.g. the equations of viscous flow, or ViF = 0, is computed it is often an ad-

vantage to remove singularities at the boundary by a conformal transformation

4>=<t>(x, y), Tp =ip{x, y)- Let us suppose that it is desired to transform the interior of

the boundary shTwn in Fig. 2 into the interior of a rectangle in the <j>, \f/ plane.

The lines 0= const, at suitable intervals can be found from the ^-values recorded

in Fig. 2. The lines xp' = const, are orthogonal to the lines 4> = const, and are best com-

puted separately.

The condition for orthogonality

d(f> dif/' d<j> d\l/'

dx dx dy dy

is satisfied when
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d<b d\l/' d<f> d\l/'
— = X—, — = - X — (18)
dx dy dy dx

where X is a constant. From these equations it follows that

d2<t> d2<t> dy ey
 +—1=0, ——+ — = 0. (19)
dx2 dy2 dx2 dy2

The boundary conditions for are dyf/'/dv = 0 on EA, EB, if/' =0 on EF, \f/' = const,

on AD, DC, and CB. The last constant is arbitrary and may be given a convenient

value, e.g. 1000 for three figure accuracy.

It is easily seen that it is necessary to determine the constant X in (18), in order

to carry on with the computation of the original equation (e.g. V4F = 0). In the co-

ordinates <f> and ^ =X^', this equation becomes

/ d2 d2 \ / d2 d2\
I + )( + )F = 0.
\d<f>2 dip2/ \d<t>2 d\p2/

The constant X is determined by (18). These equations can be regarded as an esti-

mate of X at every point. Denoting the finite differences in the x and y directions at

the mesh point i by

DMi), Drfii), DJ'(i), DvV(i),

the quantities 5i(i) and 52(i) defined by

Si(i) = DMi) ~ W(»). Wi) = DMi) + \Dti'{i) (20)

are not all zero, but constitute a measure of the computational error. It is desired to

find a mean value for X for which the variance of the computational error is a mini-

mum. The sum

t

is thus minimized with respect to X and the following expression for X is obtained:

23 {DMi)Dyf'(t) - DMi)Dxf(i)}

X ~ E({Z)^'(i)}2+ [Dvi\i)}2) ' (21)
i

It has been found that, with the help of this technique of separate computation of

the two transformation functions and using the special treatment of corners at the

boundary conformal transformations can be computed with great accuracy.
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