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A METHOD OF SOLUTION OF FIELD PROBLEMS BY MEANS
OF OVERLAPPING REGIONS*

BY

H. PORITSKY AND M. H. BLEWETT

General Electric Company

1. Introduction. In problems involving the determination of fields, it often hap-

pens that the region R for which the field is to be determined is difficult to handle

directly, but can be broken up into several overlapping regions R\, i?2, • • • for each

of which the field can be determined by standard methods. We suppose that the break-

ing up is carried out in such a manner that every point of the region R falls into at

least one of the regions R\, Ri, • • • . In the following, Schwartz' "alternating proced-

ure" is applied to the solution of field problems for such regions R.

To illustrate, let us consider the determination of a function u harmonic over the

region R shown in Fig. 1, bounded by two circular arcs ABC and CDA with centers

at 0 and 0'. For simplicity we assume that the radii of the two circles are equal and

the boundary values of u are symmetric about the straight line through A and C.

It will be noticed that by completing the circular arcs by means of the dotted curves

AEC and CFA one obtains the circular regions over which the determination of a

harmonic function in terms of boundary values is well known. Here R is the region

bounded by the solid circular arcs AUC and CDA,

while the regions Ri and are the circular regions

bounded by the complete circles with centers at 0

and 0'. The problem then is to utilize the relatively

easy solution of the Dirichlet problem for the circu-

lar regions Ri and in an efficient manner toward

the solution of the Dirichlet problem over R.

F j This is done by assuming the values of u over

the arc AFC; the solution of the Dirichlet problem

for the circle i?i with center 0, based on these assumed values and on the known

boundary values over ABC, is then utilized to furnish the values of u over AEC.

The procedure is then repeated by solving the Dirichlet problem for the circle i?2

with center at 0', and the values over AFC are recalculated. By alternating between

R and R' in this way, continual improvement of the values of u over both arcs A FC

and AEC results; in the limit this leads to a solution of the Dirichlet problem for the

region of Fig. 1.

In the following we shall illustrate the procedure, not for the Laplace equation

VJw = 0, (1.1)

but for the equation

(V2+£2)« = 0 (1.2)

which is encountered in wave motion under the assumption of sinusoidal oscillations,

for the region shown in Fig. 2. Other cases of interest in connection with (1.2) which

* Received June 8, 1945.
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can also be treated by the present method are given by the "open end correction of an

organ pipe," wave passage through a change of width of a channel, ^-sections, etc.

2. Wave propagation around a corner. We consider a solution of the differential

equation (1.2) for the region shown in Fig. 2; this solution is to satisfy the boundary

conditions

— = 0 on DOG, EBF, (2.1)
dn

u = Aieik* + Bie~ikx for large positive x, (2.2)

u = A3eikv + Bze~ikv for large positive y, (2.3)

where A x, Bi, A 3 and B3 are proper constants. Equations (2.2) and (2.3) can be de-

scribed physically by the statement that u be-

haves as a plane wave at infinity.

The above problem is encountered in the

propagation of a transverse electromagnetic

wave around a corner or through a channel the
~ a

r
the field components are assumed to be inde-

section of which is shown in Fig. 2. Here the

channel has an infinite depth in the z-direction; ;pi p

pendent of 2, and the only non-vanishing mag-

netic field component is H„ At the boundaries, ^ * A * 0

which are assumed to be metallic and perfectly

conducting, the electric field is normal; this Fig. 2.

leads to the vanishing of the normal derivative

of H„ i.e., dHt/dn = 0. Formulation of the field in terms of Hz leads to the above

problem.

On account of the vanishing of the normal derivative over the y-axis, reflection

across it is possible, thus extending the region of

b3a3 Fig. 2 into the region shown in Fig. 3. This re-

flection is carried out in accordance with the

relation

«(- x, y) = u(x, y). (2.4)

B'
.b2* a,

-Ao* B.

I 1

, 'P^A.

' —Bl

Fig. 3.

In view of this reflection the behavior of u at

x = — 00 is given by the expression

u = Btfikx + Ai<rikz. (2.5)

As a result of this reflection the semi-infinite

strip DOCE of Fig. 2 can be replaced by the

2-way infinite strip of Fig. 3

— co < # < =0, 0 < y < b.

x

Similar reflection can be carried out across the lower boundary y = 0 of Fig. 3;

this allows us to replace the semi-infinite vertical channel by a vertical channel ex-

tending to infinity both up and down. A proper behavior for u at y = — 00 can be

obtained from (2.3).
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The general procedure which was outlined in §1 is applied to the present case. First,

we consider the strip 0 <y<b of Fig. 3, and assume values for du/dn over the dotted

part B'CB of its upper boundary. Since du/dn vanishes over the rest of its boundary

and the behavior of u at <x> is described by (2.2) and (2.5), it is possible to determine

u at any point interior to this strip. This determination is carried out by means of a

Green's function G. The derivation of G will be described presently; for the present it

will suffice to say that the value of u at an interior point P of the strip is given by the

relation
1 rb /du\

Up = u(xo, yo) = 2Bi cos kx0 H I I — ) Gdx. (2.6)
2ir J _6 Xdy/^b

G has a pole at P = (x0l yd), and (2.6) requires that G be evaluated on the dotted line

B'CB. After u is determined in this way, differentiation of (2.6) with respect to x

allows one to compute du/dx, and in particular to determine this derivative over A B.

Turning now to the infinite vertical strip 0 <x <b, we repeat the same procedure and

determine the function u at any point interior to this strip; in particular, we evaluate

u and du/dy over CB. The process is then repeated.

The definition of the Green's function for the differential equation (1.2) and the

boundary condition (2.1) for a finite region R is specified by the following:

a) G satisfies (1.2) everywhere in R except at the pole P;

b) dG/dn vanishes along the boundary of R; (2.7)

c) at the pole P, G becomes infinite like —In r', where r' is the distance from P.

We apply Green's theorem in the form

J*. [«(V2 + k2)v - »(V2 + k*)u]dA = f (u^ - v ̂ ds (2.8)

to the region R, exclude the neighborhood of the point by means of a small circle of

radius € and let e approach zero. This yields the equation

1 r du
Up = — I —

2jr J dn
Gds, (2.9)

where the integration is carried out over the boundary of R. In the present case, for

the infinite strip 0 <y <b special additional considerations are required. It will be

assumed that in addition to the requirements (2.7) the Green's function G behaves at

infinity like a divergent plane wave. Solutions of (1.2) which depend on x only are

e±ikx. (2.10)

We consider the wave equation

d2U

dt2
= c2V2£/, (2.11)

and look for solutions of the form ue±iut. If we set k=u/c, we find that u satisfies

Eq. (1.2), and that eikx represents a plane wave traveling in the direction of positive x

while e~ikx represents a similar wave traveling in the direction of negative x. It will
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be assumed that at x = + a> the Green's function G behaves like a divergent plane

wave of the same amplitude at x = + oo as at x = — .

It will be assumed that the dimension b satisfies the inequality

b<ir/k. (2.12)

Physically this assumption means that the width b of the strip is less than half the

wave length X/2 = ir/k of a plane wave at the frequency in question. The effect of this

assumption and the features which arise when it is not satisfied will appear presently.

First, we place the pole P on the y-axis. We shall obtain G as a series in the form

00

(2.13)
n=0

where un are product solutions of the wave equation (1.2), i.e., w„ consist of the prod-

uct of a function of x and a function of y\ more explicitly,

«o = exp [ik• 1*1], |

m„ = cos"y- exp [- /j/(y) - £2 I *lj, (« > 0). | ^2'14^

These product solutions un {n>0) have been chosen so that they don't become infinite

at x= + , while «o represents a divergent plane wave. If the inequality (2.12) were

not satisfied, several radicals in w„ (n > 0) would be imaginary, infinitely large values

of un could not be avoided, and additional stipulations regarding the behavior of G

at infinity would have to be made.

The functions un are symmetric about the vertical line * = 0 through the pole P,

and continuous at * = 0. However, dun/dx is discontinuous at * = 0, the discontinuity

being

2 ik for « = 0,

21/(-^)'- V cos ̂  for „>0.j <215)

Thus each term un may be considered as representing the wave function correspond-

ing to a sinusoidal distribution of sources* over the line # = 0. The density a of the

sources is given by the familiar condition from potential theory

/d«A
discontinuity in normal derivative = ) = — 2ira, (2.16)

and in the present case is given by

1 / niry
Jn = — A/ k2cos—-• (2.17)

7T J b2 b

* By a "source" is meant here a solution of (1.1) which depends only upon the distance r from a

fixed point, is singular at r = 0 like — In r, and behaves at infinity like a divergent cylindrical wave.The dis-

tributions of such sources satisfy continuity-discontinuity relations similar to those in the case of log-

arithmic potentials.
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For (2.13) this yields

1 " / nV niry
* = -ZAnA/—— - A* cos—(2.18)

IT n-0 V 0 b

Let us now consider the concentrated point source at the pole P, and express it as a

Fourier series of cosines over the interval x = 0, 0 <y<b, obtaining

1 2 " niryo mry
a = 1 y\ cos   cos —— (2.19)

b b Zl b b

where x = 0, y = ya are the coordinates of the pole P. Solving for A„, we obtain for

the Green's function G the Fourier series

2t ( 1 ill
G = —< exp I ik- x

b\2ik

20)

Due to the behavior of G at infinity it is found that after applying the Green's

theorem (2.8) over the rectangular region —l'<x<l and letting I and I' recede to

infinity, certain additional terms R' and R" arise from the boundaries x=l and x=l'.

Equation (2.9) is now replaced by

1 r ' du(x, y)
u(xo, y0) = — I

Z7T J

Gdx + R' + R", (2.21)

where

dy

1 rb/du dG\ I

R, = v \TG~uir)dy\ ' (2-22)
2t J 0 \OX OX/ lx—/

If6/ du dG\ I

*,-s/.(-sc+"fchL- <2-23)
In view of (2.4), (2.2), (2.20), (2.21) and (2.22), Eq. (2.21) can be given the form (2.6).

As explained above, in the present case not (2.6) but its x-derivative will be found

useful. Differentiation of (2.6) yields

du{xo, y0) 1 Ch /du\ dG
= — 2kBi sin kx0 H I ( — J ■—■ dx. (2.24)

dxo 2ir \dy/v=b dxo

To obtain this equation, the integral in (2.6) has been differentiated under the in-

tegral sign; this is permissable since the limits of integration are independent of x0.

Since (du/dy)v=b is also independent of x0, only G has to be differentiated. The ex-

plicit form of (2.24) is given by the relation

g(yo) = = - 2kBi sin kb - — f f{x) + £ Kn~\ dx: (2.25)
\dXo/ XQ*-b b ** —6 L n=l J
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where

/(*) = (—) , Kg = i exp [- ik(x - 6)],
\oy/

niryo T //M7r V "I
Kn = (- 1)" cos —j- exp yy (^—J - k2 (x - £)J.

A similar expression holds for (du/dy0) along CB;

(2.26)

/(* o) = (—) = - 2kB3sin kb - ( g{y)[K, + ^ Kn]dy (2-27)
\dyo/ i/o=-6 ^ ^ — 6

where isTo, Kn are as in (2.26) but with the coordinates interchanged.

In applying (2.25) one must assume not only/(a;) but also B\. Likewise in applying

(2.27), B3 is required along with g(y). Furthermore, Ai and A3 are essential to the

complete solution. In this connection it is advisable to keep the following relations

between/(x), g(y) and the constants A\, B\, A3 and B3 in mind:

Al = Bl - f "f(*)e~ikxdx, (2.28)
2ikbJ_6

Ai = Bi ~ f s(y)e~ik"dy< (2.29)
ZlKO J —6

Aieikh - B1e~ikh = —— f g(y)dy, (2.30)
2ikb J — b

1 rb
Aseiki - Bie-'"" = — J /(x)^. (2.31)

These relations enable one to express Ai, B\, A3 and B3 in terms of f(x) and g{y).

The relation (2.28) is established by applying (2.6) to u(x0, yo) for so large

that G reduces to its first term in (2 20), and comparing the result with (2.2). A simi-

lar derivation over 0 <x<b yields (2.29). As regards (2.30) it is established by ex-

panding du/dx in the horizontal strip 0 <y <b in a series of cosines of niry/b and

comparing for large positive x this expansion with du/dx as derived from (2.2); a

similar procedure applied over the vertical strip ~Q<x<b to du/dy leads to (2.31).

In the present example, in view of the geometric symmetry of the region of Fig. 2

about the diagonal OB, any function u over the region can be expressed as the sum

of a function which is odd about this diagonal, and one which is even about it. The

calculations outlined are simplified considerably for even and odd functions u, are

quite similar for the two cases and will be illustrated for the odd case.

In the odd case,
A3 = — A i, B3 = — B i, (2.32)

g(x)=-f(x), (2.33)

and the integral relations (2.28)-(2.31) reduce to

g(y) = - 2kBi sin kb - — f f{x) [ir0 + £ (2• 34)
b JL n-l J
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i h1 rh
A,-B,= - f(x)e~»

2ikbJ_6

1 rb
A\exkb — B\e~*kb = —    I f(x)dx.

2 ikb J J

:dx,

(2.35).

After (2.25) has been applied for an initially assumed f(x) curve, the resulting g(y~)

shape, changed in sign and plotted against x, can be considered as the next approxima-

tion tof(x), in view of the relation (2.33) and the symmetry of the region about x =y.

From (2.35) the coefficients A\ and B\ may be determined in terms of

(du/dy)v=b=f(x). This yields

Al = ~ <tt 1 f /(») [e_U(l+6) - l\dx<
4kb sin kbJ _&

1
B, = -

4 kb sin kb
f /(*) [eikb<-b~x) — 1 }dx.

J _h

(2.36)

The procedure used consisted in assuming f(x), calculating Ai and B\ from (2.36),

then applying (2.34) to calculate g(y), and using the shape of the latter with the sign

Table 1

y»

.16 .96
.76
.56
.36
.16
.16
.36
.56
.76
.96

.4347

.3025

.1934

.1151

.0682

.0392

.0222

.0126

.0070

.0040

6G/2*- y'o

.0613+ .0627i .sj

.1625 + .1841t

.2111+,2938t

.2034+ -3852i

.1448+ .4524t"

.0545 + .4912i  
— .0527 +,4991t .76
—.1671+.4775i

-.2756+.4217t
— .3567 +.3410i

.36

.56

.96

.76

.56

.36

.16
-.16
-.36
-.56
-.76
-.96

.96

.76

.56

.36

.16

-.4143
-.2546
-.1458
- .0806
-.0453
-.0252
-.140
-.0078
- .0044
-.0025

-.3348
-.1373
-.0437
-.0133
- .0039

.0817 + .0627t

.2104+. 1841t

.2587+ .2938*

.2379+ .3852t

.1677 + .4524i

.0679+.4912t  
-.0445+ .499H
— . 1625 + .4775*
— .2730 + .4217*
— .3632 + ,3410i

.96

.76

.56

.36

.16
.1612+.0627; -.16
.3277 + .1841; — ,36
.3608+.2938; _.56
.3052 + .3852; -.76
.2091 + .4524; -.96

.16

.36

.56

.76

.96

.96

.76

.56

.36

.16

.16

.36

.56

.76

.96

T.Kn

.0011

.0003
0
0
0

.1433

.1255

.1149

.0725

.0429

.0244

.0138

.0078

.0044

.0025

1.1279
.5691
.2862
.1387
.0744
.0410
.0226
.0126
.0070
.0040

6G/2*

. 0920+ .4912i'
-.0308+.4991i'
-. 1545 + .4775i'
-.2686+.4217;
- .3607+ .3410;

.3527 + .0627;

.5905+ .1841;

.5194+.2938i'

.3910+.3852;

.2559 + .4524;

. 1181+ .4912;
-.0167 + .4991i"
-.1467+ .4775;
-. 2642 + .4127;
-.3582 + .3410;

1.6239 + .0627;
1.0341+ .1841i"

.6727 + .2938;

.4572 + .3852i

.2874+.4524;

.1341+ .4912;
-.0079+.4991i
-.1419+.4775;
-.2616+.4217i'
-.3567 + .3410;
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changed as the starting point of the next step. To prevent the solution from becoming

infinite, at each step f(x) is divided by Ai, thus yielding the case Ai — 1. In the follow-

ing numerical work the assumption b= 0.2X, kb= 72° is made.

Although from physical considerations one would be able to make a reasonably

good guess for the value of f(x), it was felt that in order to test the method thoroughly,

the assumption

/du\
along BC, f(x) = I — J = constant = 1, (2.37)

Kdy/v-b

would be more advisable. Making this assumption, solving for Al and B! from (2.36)

(with b = 0.2X, kb = 72°), and dividing by At, we obtain

bk — eikh sin kb
A! =1, £i = : = .0634 - .999i,

bk — e xkb sin kb

/du\
f(x) =( — ) = £(1.320 - 1.238/).

\dy/v-b

(2.38)

The Green's function was evaluated for five positive and five negative values of 2c,

and for five values of yo, as shown in Table 1. The real part of this family of curves is

shown in Fig. 4, the imaginary part being merely (•w/b) sin k(x — b). These values, with
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(2.38), were inserted in (2.34), the integration being made graphically with areas

found by the trapezoidal rule, except near y = b.

As y approaches b, the value of g(y) increases so rapidly that extrapolation for the

curve and the resulting graphical integration is difficult in this region. From physical

considerations based on the fact that in a region which is small compared to a wave-

length the function u behaves like a harmonic function, it may be shown that a fairly

accurate approximation is obtained by assuming g{y) to vary as (y — b)~113 as y ap-

proaches b. By picking two points yi and y2, two constants A and B can be found

such that g(y) =A +B(b — y)~1'3 is fitted to the curve already drawn in this neighbor-

hood for y<.9b\ then the area is equal to

f.
3B

g(y)dy = A (b - y2) + — (b - y2)2'3.

vi 2

The resulting first approximation for du/dx is shown in Table 2. By means of (2.36)

the values of A3 and B3 (the negatives of Ai

and B\) corresponding to these values were

Table 2. found to be B3 = .1728 — 1.006i, Az = .998 — .102t;

thus B\/Ai = .2735 — ,980i.

.16

.36

.56

.76

.96

.96

g(y) = du/dy = (du/dx for In order to keep A\ fixed at the value unity

corresponding values of x) which we have assumed, we retain this value of

004- 9445^ t^le ratio and rename it Bi as before. We

—£[l!o54 — 992i] must then divide the values of du/dy in Table 2

-£[1.173-1.103*] by A\. Reinsertion now into (2.27) gives us the

—£[1.382—1.299*] second approximation to du/dy shown in Table

—£[1.382 — 1.299*] 3 corresponding A\ and Bi yield the ratio

—*[1.876 —1.761f] 5i/^4i = .2658 — .960i. The third approximation

is then carried out in similar fashion, with the

the results shown in Table 4. In this case, we

have Bi/A\ = .266 — .964t. The approximations to du/dy are shown in Fig. 5. Figure 6

shows the ratio B\/Ai and thus we see that this ratio is converging toward the value

.266 — .962i, with the absolute value .997.

Table 3. Table 4.

The second approximation. The third approximation.

.16

.36

.56

.76

.96

/(*) = du/dy

£[1.119- ,804t] .16
£[1.176- .844»] .36
£[1.309- .960t] .56
£[1.562-1. lilt] .76
£[2.100 — 1.619*] .96

f{x)= du/dy

£[1.081- . 785i]
£[1.132- ,821i]
£[1.249- .911i]
£[1.515-1.095i]
£[2.12 — 1.557*]

A similar calculation could be carried out for a function which is even about the

diagonal OB. The results of this, together with those already found for the odd func-

tion, would enable us to cover all cases involving a corner with these dimensions.
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3. An alternative method of procedure. The procedure described and illustrated

in the preceding sections can also be applied in a different way. Basically, the calcula-

tion was carried out by first assuming the field over the line CB in Fig. 2, then cal-

culating it over the line BA. It is possible to carry out the same calculation by assum-

ing the field over CB not as a function of x or as a curve, but as a Fourier cosine series

in x,
du _ nirx

f(x) = — = £ C„ cos —— • (3.1)
ay b

Similarly, g(y) =du/dx over AB can be converted into a similar Fourier cosine series

in y,
du

g(y) = —
OX

— niry
= £A. cos—-■ (3.2)

x~b 0

Applying (2.34), (2.35) and (2.26) to the calculation of g(y) from f(x), we obtain

micy o
gb'o) = l^Dm cos —y

1 rb nirx
— — 2kBi sin kb C„ I exp [— ik(x — b) J cos dx

2b „ J_i, b

1 A A mryo C nTX //mte \
-yZZ(- O'C cos -yj cos_7~eXP T \~6 k^k-^jdx. (3.3)

This leads to integrals involving a cosine and an exponential in z. After these integra-

tions are carried out, each one of the coefficients D„ of the expansion (3.2) turns out

to be linearly dependent upon the coefficients C„. Thus, instead of being given a curve

f(x) and computing from it the curve g(y), one starts with B\ and a series of coeffi-

cients Cn represented by the Fourier expansion (3.1) and ends up with the coefficients

Dn by applying (3.4). The explicit relation between these two sets of coefficients is

oo

Do = — 2kBi sin kb + P0„C„, Dm = ^ PmnCn for m > 0, (3.4)
n—0

where

(- 1)"*U(1 - e2*")

P°n = 2(nV - kW)

f_ _ ^2fe2)i/2| j _ exp r_ 2(»V - kWy2]}

Pmn~ (w2 + w2)*-2 - m2 ' m>0-

The matrix Pmn thus takes the place of the series of curves dG/dx which were given in

Table 1 and shown in Fig. 4. A similar set of equations expresses C„ in terms of Dn

and J5S.

By proceeding as in §2 with the field which is odd about the 45° diagonal OB, it is

clear that for the final field the coefficients Dn should be the negatives of the coeffi-

cients Cn- For the individual successive approximations, this of course is not neces-

sarily the case. The calculation of the next improvement can be carried out by start-

ing with Dn, changing their signs and putting them in place of Cn in (3.4).
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It is possible to replace Dm by Cm in (3.4). A solution of the resulting equations

would lead to a complete determination of the field problem. However, the solution

of the resulting equations itself involves some method of successive approximation;

hence, this procedure is not advisable, and the successive calculation of C's and D's

appears to be preferable, since it agrees in spirit with the method outlined above and

constitutes just a variation of it.


