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ANALYSIS OF NUMERICAL SOLUTIONS OF TRANSIENT
HEAT-FLOW PROBLEMS*

BY

CLARENCE M. FOWLER

U. S. Naval Academy

1. Introduction. The purpose of this paper is to present formal methods for es-

tablishing the convergence of numerical solutions of transient heat-flow problems,

and to derive expressions for these solutions in terms of the initial temperatures and

boundary values.

In general, heat-flow problems are classified under two groups, steady-state flow

and transient flow. Steady-state problems are solved numerically by the relaxation

method. Many papers dealing with the actual numerical work have been written,

and Temple1 has established the validity of the relaxation method under various

boundary conditions. Moskovitz2 has derived an expression in terms of the boundary

temperatures for the steady-state numerical solution of a rectangular bar.

Although considerable work has been done on the actual application of numerical

methods to transient heat-flow problems, very little has been written about the prob-

lems of convergence and the expression of solutions in terms of initial and boundary

values.8 These last two considerations are the objects of this paper.

Two restrictions which simplify the analysis are placed on the examples consid-

ered here. First, only the one-dimensional slab is considered; secondly, the initial

temperature distribution is assumed to be constant over the slab. However, by ex-

tensions of the methods used, solutions of problems concerning two- and three-dimen-

sional rectangular objects with arbitrary initial temperature distributions are readily

derived.

The various boundary conditions which have been studied include the following :

the temperature at the boundary is given, and is either a constant or a function of

time; the boundary is insulated; there is a constant energy input at the boundary;

there is convection at the boundary. The author has made no attempt to consider all

possible combinations of boundary conditions, but has tried to include enough repre-

sentative cases to illustrate the methods.

The procedure followed throughout the paper has been to consider each example

as a whole, and to derive solutions of the problem and take up a study of the conver-

gence, before proceeding to the next example. In some cases solutions have been ex-

pressed in terms of a set of polynomials which are associated fundamentally with the

difference equation; in other cases they have been expressed in finite Fourier series.

* Received April 11, 1945.
1 G. Temple, The general theory of relaxation methods applied to linear systems, Proc. Roy. Soc. London

(A), 169,476-500 (1939).
s D. Moskovitz, The numerical solutions of Laplace's and Poisson's equations, Quart. Appl. Math. 2,

148-163 (1944).
' R. Courant, K. Friedrichs and H. Lewy, Tiber die partiellen Differenzgleichungen der mathematischen

Physik, Math. Ann. 100, 22-74 (1928).
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Properties of the polynomials needed throughout the paper have been demonstrated

in an appendix.

2. The difference equation and boundary expressions. The basic one-dimensional

difference equation satisfied by the numerical solutions is

rx-i,(-i + aT x,t-i +
*•' 

d 1

where
(Ax)2

At =   — • (2.2)
(a +2 )a

Here, At is the time interval between successive time values, Ax is the distance be-

tween successive points across the slab, t is the time (in units of At), x is a space co-

ordinate running across the slab (in units of Ax), Tx,t is the temperature in the slab

at time t and position x, a is the thermal diffusivity of the material, and a is the

modulus of the equation.

As usually encountered, the difference equation has o = 0 (Schmidt's equation).

Dusinberre4 generalized Schmidt's equation by introducing the modulus. The value

of using an arbitrary modulus lies in being able to select an arbitrary time increment

as well as space increment. This is not possible in Schmidt's equation, since fixing Ax

determines At.

In dealing with convection, insulation, etc., at a boundary, it is always necessary

to make some assumption to determine the numerical

boundary expression. It should be emphasized that, for

this reason there are several different expressions in use

approximately representing the same boundary condi-

tion. However, it is possible to consider only one of them

here, which is deduced as follows. Figure 1 shows the

Fig. 1. boundary (x = 0) and the first two interior points of the

slab. The boundary expression is derived by making a

heat balance over the shaded half-segment. The heat gain by conduction throughout

the time increment At referred to the initial time instant t — \ is

- hAAt(T0,t-i - Ta) + kAAt (*Tl'i~1 ~ ,
Ax

where h is the surface heat transfer coefficient, k is the thermal conductivity, Ta

is the ambient temperature, and A is a unit area perpendicular to the slab cross sec-

tion. This quantity is equated to the heat capacity gain \(Ax)cpA(T0,t — Ta,t-\),

where c and p are the specific heat and density of the material, respectively. For rapid

surface cooling, it is necessary to keep Ax small, since it has been assumed above that

To.t will represent the temperature of the shaded segment.

After equating the two heat quantities above, and simplifying, we obtain the

boundary condition

2T1,t_1 + (a - 2N)T0,t-i + 2NT0
■i o.t — > (2.3)

a + 2

4 G. M. Dusinberre, Numerical methods for transient heat flow, Trans. A.S.M.E. 67, 703-709 (1945).
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where N, the equivalent numerical transfer coefficient, is given by the relation

N = hAx/k. (2.4)

In the case where a boundary has a constant energy input per unit area, q, an

analysis similar to that given above yields

27\,f—i "I- <iTo,t—i 20
T0,t =   — -> (2.5)

a -f- 2
where

Q = qAx/k. (2.6)

For an insulated boundary, N = 0 and (2.3) becomes

-f- aTo t-\
T0.t =   — • (2.7)

a + 2

For simple boundary conditions such as temperature at * = 0 held at m0, or tem-

perature at x=l fixed as a function of time/(/), the boundary conditions are simply

T0,t = u0 or Ti,t=f(t).

3. Convergence. There are two distinct types of convergence to be considered

here. The first type deals with the convergence of numerical solutions as the time

becomes large. The second type shows that as the time and space increments At and

Ax are allowed to approach zero, the numerical solutions become identical with the

corresponding analytic solutions.

From an inspection of (2.1) and (2.2), it is seen that in applying numerical solu-

tions to any particular example, there are apparently two arbitrary quantities, the

space increment Ax, and the modulus a, which in turn determines the time incre-

ment At. However, it is found from experience that if the value of a is taken too

small, the calculated numerical answers oscillate and ultimately diverge as the time

becomes large. The first type of convergence is concerned with developing criteria

which impose a lower limit on allowable values of a which will then insure numerical

convergence. Each example considered has such a criterion developed, since such

criteria usually depend on the particular boundary conditions. Another related prob-

lem is that of determining the steady-state distribution given numerically. It is shown

that numerical solutions converge to the same steady-state values as those deter-

mined analytically for the boundary conditions under consideration.

Both of the problems discussed above pertain to actual numerical solutions where

the space and time increments are finite, non-zero quantities. The second type of con-

vergence is treated in §11, apart from the main body of the paper, since it does not

deal with numerical solutions as applied, but rather to the limiting case where Ax

and At approach zero. Under these conditions, the numerical solutions become identi-

cal with the analytic solutions for all values of time and position throughout the slab.

4. Particular solutions and contour integration. By substituting Tx, < = F(t) sin zx

into (2.1), F(t) is found to satisfy the subsidiary difference equation F(t)

= [(a+2 cos z)/(a+2)]F(t— 1) and therefore F(t) = [(a+2 cos z)/(a + 2)]', from

which we find as a particular solution to (2.1),

/a+2 cos z\'

T"~\ « + 2 J8'""' (4'1)
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A similar analysis shows that sin zx may be replaced by cos zx or eizx.

Using (4.1) and extending it to the two or three-dimensional form, we can write

down immediately solutions in Fourier series and integrals for rectangular objects,

with arbitrary initial temperature distributions. However, such solutions are of little

use as they converge too slowly. Instead of following the standard Fourier develop-

ment, the author has found it expedient to consider only cases where the initial tem-

perature over the slab is zero (which by a change in temperature origin includes any

constant temperature distribution). This restriction, for the one-dimensional slab,

allows the use of a method of contour integration which may be summarized as fol-

lows.

a) Having found that

(a + 2 cos z\'VA(z) B(z) ~l
Tx,t = ( )  cos zx H sin zx

\ a + z / l_ 3 2 J

is a particular solution as long as A(z) and B(z) are independent of x and t, we

formally integrate this solution with respect to z over the prescribed path (Fig. 2)

in the complex plane. The solution is (4.2) below, where the functions A (z) and B(z)

are determined so that (4.2) satisfies the boundary conditions of the problem.

1 C /a + 2 cos z\'/ N \dz
TXtt = —; I I J I A(z) cos zx + B(z) sin zx )—• (4.2)

iriJp\ a+2 / \ / z

The path P is chosen parallel to the real axis, extending from + ® to - and is

located a finite distance m above the real

axis, m being determined so that all

poles of the integrand lie below P.

b) The integrand of (4.2) is shown to

vanish over the arc, path R of Fig. 2,

except possibly at the slab boundary

points x = 0 or x = l, when t is given the

value zero. Then, as there are no poles

enclosed by paths P and R, it follows

from Cauchy's theorem that at time

zero r,,o = 0, except possibly at the slab

F"5- 2. boundaries. It follows that (4.2) is the

solution to the problem, for it satisfies

the difference equation, the initial condition ri,o = 0, and the boundary conditions.

c) The remaining step is the evaluation of the contour integral. This is accom-

plished in one of two ways. In either case, the integrand of (4.2) is shown to vanish

over the paths M and N (Fig. 2) or over half these paths.

1) For semi-infinite slab problems, the integral over P is evaluated in terms of an

integral along the real axis and the residues of any poles lying between path P and

the real axis.

2) For finite slab problems, the functions A(z) and B (z) are generally such that

the integrand "is even-valued, and therefore the solution (4.2) may equally well be

integrated over the path Q (Fig. 2) which is opposite path P. Thus, integration around

the loop consisting of paths P and Q, and the paths M and N shows that the required
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integral is equal to half the sum of the residues at the poles enclosed by paths P, Q,

M and N, since the paths M and N contribute nothing to the integral over the loop.

All analysis of a purely rigorous nature has been omitted from the paper, but all

doubtful cases have been tested for proper convergence and the vanishing of the in-

tegrals over the paths outlined above.

5. Semi-infinite slab. Boundary x = 0 held at constant temperature m0, initial

temperature zero. Let us consider the following equation

«o r /fl + 2 cos z\' dz
T*-> = -\ ( ——) e"z — • (5.1)

iriJp\ a + 2 / z

To prove that this expression is the solution of the problem it is necessary to show

that Tx,a = Q and that To,t = u0.

To show that TXt0 = 0, we set f = 0 and make the substitution z = Re'*. We then

integrate (u0/ir) exp [wci? exp {uj>)]d4> over the path R, <f> varying from ir to 0. It fol-

lows that as R—yoo this integral vanishes, except at *=0. Therefore, since there are

no poles enclosed by paths P and R, it follows from Cauchy's theorem that Tz,0 = 0.

To show that the integrand vanishes over the paths M and N, let us substitute

z = ±R+iy where y varies from —m to +m, and let R—► <» ; then it follows that these

integrals vanish. To.t, the temperature at * = 0, can equally well be integrated over

path Q, since the resulting integrand is even-valued. Therefore, by Cauchy's theorem,

since there are no contributions from the paths M and N, To,t = u0. It follows that

(5.1) is the solution to the problem, for it satisfies the initial and boundary conditions.

To evaluate (5.1) it is convenient to integrate around the loop consisting of P,

the half-path M, the real axis indented at the origin by a small semi-circle of radius e,

and the half-path N. In the work that follows, the real axis will be denoted by w to

avoid confusion with the slab position variable.

Since the integrals over M and N vanish, and there are no poles enclosed in the

loop,
«o r+' /<* + 2 cos w\' dw

Tx,t = ~ I ——) e~iz" 
ttiJ+k\ a + 2 / w

#o f° (a + 2 cos tei*\t
H I ( — ) exp [tseexp {i<t>)\d<i>

T J r \ a -j- 2 /

«o r +ee/a + 2 cos w\' dw
H I ( ) e+i™— = 0.

iriJ+, \ o+2 / w

Regrouping terms and letting e—>0, we have as the solution

r 2 r K/a + 2 cos w\' dw 1
Tx,t = «o 1 I ( ) sin wx  . (5.2)

L vJo\a+2/ w J

To express this solution in terms of the polynomials, we expand (a+ 2 cos w)' ac-

cording to (12.7) and substitute into (5.2),

Tx,t = «o["l  ——— f [^<(0 + 2P,_i(0 cos w + • • •
L 7r (a + 2)' J o

i dw~I
+ 2P0(t) cos tw\ sin wx I.

w J



(5.3)
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Combining the sine and cosine terms and making use of the identity (12.6a),

Pt-r(l) =Pt+r(l), we have

r 2 r°° *-+' dw "I
Tx,t = mo 1  ——— I £ Pr+,(t) sin w{x + r) 

L ir(a + 2)' J o   i w J

or
[1 r~+t , 1

where the symbols {*+r} =1, 0, or —1 depending on whether x-\-r is greater

than, equal to or less than zero. This notation arises from the fact that

(2/7t)/0 (sin w{x-\-r)/w)dw = \x-{-r} in accordance with the above convention.

From (5.2) it is easily shown that the solution converges as »oo when

a £ 0. (5.4)

To show that the numerical solution converges to the analytic steady-state solu-

tion for the same boundary conditions when t—+ <», the following device is used:

Tx,t may be equated to the integrand over the real axis, and added to the sum of all

residues of poles enclosed by the real axis and the path P. The real axis is to be in-

dented with small semi-circles at all poles lying on it. In the steady-state value of

the solution, the only contributions which remain as t—*oo, are those which occur

where z = 2nir. All other contributions, including those along the real axis, drop out

due to the rapidity with which the factor [(a + 2 cos z)/(a +2)]'—>0 when z?^2n7r, as

t—* 00

In the problem under consideration, there are no poles, and if we take into account

the indentation at the origin, we find that the steady-state solution approaches u0.

This is also the value given by the analytic solution of the same problem.

Although simpler methods would have given the same result in this case, the

method is very powerful, since it may be used on a solution with no further reduction

from the contour integral form.

6. Semi-infinite slab, T0,t polynomial in time, initial temperature zero. Let us

consider the following equation

C(2ri)\ C (a + 2 cos zV
Tx,t = (- 1)" . | ( ) e"xz~(-2n+1)dz. (6.1)

2iri J p \ a -f- 2 /

An analysis similar to that in §5 shows that 7nx.o = 0 and also that the integrand

vanishes over the paths M and N.

When x = 0, the integrand is even-valued in z, and therefore has the same value

over path Q as over P. To,t may then be equated to half the sum of the residues at the

poles enclosed by paths P and Q. From (12.8) this becomes

To.t = ?2n(0i (6.2)

where „(/) is a polynomial in t of the nth degree. From proper combinations of these

polynomials, contour integrals are readily derived for problems in which the boundary

temperatures are arbitrary polynomials in time.

For the particular case where the boundary temperature is linear in time and
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therefore given by To.t = Cf»(J) = Ct/(a-\-2\ as follows from (12.10), the contour solu-

tion is given by,

C C /a+2 cos z\' dz
r"<=--| ( TV-)ei'z-7* (6-3)

7rt cl 2 / 2

We indent the origin, integrate as in §5 to obtain

2C C °°/a + 2 cos w\' (fw C /* T/a + 2 cos «e<TV exp [ixte*♦]
  I ( ) sin wx I I )  d<t>

t J t \ o+2 / w3 tt J o \ a + 2 / e2e2t*

The first integral, after the expansion of (a+2 cos w)1 in terms of the polynomials and

regrouping as in (5.2), becomes

2C rz+i r°° dw
h =

if (a + 2)'

.=+i /.»

X I sin tt>(* + r)Pr+t(f) —-
r—i J, w3

By integrating by parts and keeping all terms which do not drop out as e—>0, the con-

tribution of this integral is found to be

2 Cx C rz+' C" dw
h =  ——— £ (* + ryPr+t(t) I sin w(x + r) 

ire ir(a + 2)' r__( ./ , Jt>

The second integral is expanded in terms of e and <f>, and all terms are retained which

do not drop out at the integration limits or as e—>0. We then have for this integral

2 Cx Cx2 Ct
It = +— +

ire 2 a + 2

The sum of h and h with «—>0 then gives for the solution

r-=c[^+fi^ |>+'>■->•-.<<>{«+4 <">
where the symbols {x-\-r} have the same meaning as in (5.3).

An analysis similar to that of §5 shows that if a^O, the numerical solution ap-

proaches Ct/(a+2) asymptotically as t—»°°. This result also follows from the analytic

theory.

7. Finite slab, length /, boundaries x = 0 and x=l held at constant temperatures

Mo and «j respectively, initial temperature zero. Let us consider the equation

1 C /a+2 cos z\1 _ ' ,dz
Tz,t = —-I ( ) [A(z) cos zx + B(z) sin zx] — > (7.1)

7T i •/ p \ tt + 2 / z

where the functions A{z) and B(z) must be determined to make (7.1) satisfy the

boundary conditions To,t = Uo and Ti,t = ut. Referring to (5.1) and placing £ = 0, we

see that
«o C /a+2 cos z\' dz
— ( ——) — = (7.2)
iriJp \ a+2 /z

Therefore if A(z) =u0 and B(z) = (ui — u0 cos zl)/sin zl, (7.1) reduces to u0 at x = 0 and

to Mj at x = l. The solution is therefore
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1 r (a + 2 cos z\' / M; — Mo cos 2/ \ dz
Tx,t = — I I — —— ) ( Mo cos zx -| ; sin zx) — • (7.3)

iri J p \ a + 2 / \ sin zl / z

The integrand of (7.3) is an even-valued function of z and therefore the solution

may be equated to one-half the sum of the residues at poles enclosed by paths P

and Q (there are no contributions from the paths M and N). Poles occur at z = ott//,

n any integer. After evaluating the residues and simplifying the result, we have

x
T z,t = Mo + (Mj — Mo) —

2 " sin (nirx/l) /a + 2 cos (nir/l)\'
+ — 22 (- l)"(«i - «o cos »t)  ( —  . (7.4)

ir 1,2 ti \ a 2 /

To express this solution in terms of the polynomials, it is necessary to expand

(a + 2 cos (nir)/l)' as in (12.7),

x
T x,t = Mo + (mj — Mo) —

I

2 " sin (nitx/l) T Mir
H   — 2 (— l)n(Mi — Mo cos nir)   Pt(t) + 2Pt-i(t) cos —

x(a + 2)' !,2 n L /

nirf
+ • • • + 2P0(t) cos —

I ]■

Combining the trigonometric terms and making use of the identity P(_r(<) =Pt+r(t),

we obtain the solution in the form

x
Tx.t = Mo + (mi — Mo)  

I

2 r^t.' A (— l)n nir(x + r)
+ "~7—T^TT E ^n-r(')Z  (mi - Mo cos »ir) sin   (7.5)

ir(a+2)' ,—t i,s » *

However from the initial condition Tx,o = 0, it follows that at t = 0, the resulting

sine expansion of (7.4) must be equal to —u0—(ui — u0)(x/l). Therefore the infinite

series in the double summation of (7.5) must equal — F(x+r), where F(x) is the peri-

odic sine expansion of m0 + (mi — u0)(x/l). The solution then becomes

Tx.t = Mo + (mj — Mo)—— -— X} Pr+t(t)F(x + r). (7.6)
I {a + 2) r—t

Figure 3 shows the graph of the periodic sine expansion of F(x) =u0 + (ui — u0)(x/l)

which applies to (7.6). In applying (7.6) it is

usually simpler to plot the function and then

pick off the different values of F(x) required

in the summation. It will be noticed that
-21! when x-fr is a multiple of I, the value of

F(x-\-r) is zero.

For finite slab problems, it is usually

Fig. 3. possible to get a solution in the form of a

finite Fourier series, in addition to the poly-
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nomial expansion. The derivation of such series is not difficult, but is too long to be

given here in full. The finite series for §7 is

x _ niex (a + 2 cos (nir/l)\'x nirx (a + 2 cos (mtt/OV
= Mo + («i — Mo) — 2_, A„ sin ——-I — ),

I i I \ fl + 2 /
(7.7)

where
sin (mt/Z)(mj — Mo cos Mir)

A„ =   (7.8)
/(I — cos (««•//))

The general method used for obtaining finite series, such as (7.7), consists of a

replacement of the infinite Fourier series as in (7.4) by a finite number of terms of

the same type, such that at t = 0 the finite series reduces to the same function as given

by the infinite series at t = 0. Such expansions are possible since in numerical methods

the initial temperature must be specified only at a finite number of points. The coeffi-

cients for the terms of such finite series are given by8

2 rnrx
A = —£F(z)sin ——,

I X—1 I

where F(x) is the function at 1 = 0 over the interval 0 to I. The A„ of (7.8) were cal-

culated as above with F(x) =m0 + (mi — u0)(x/l).

From an inspection of (7.7) we see that as t—»°o the solution converges provided

| {a+ 2 cos (nir/l)} /(a+2) | i=l. A simple analysis yields the following criterion for

convergence

1) a + 2 § 2 cos2 (ir/21) I even,

2) a + 2 ^ 2 cosJ (t//) I odd.

Equation (7.7) also shows that the numerical solution approaches m0 + (m; — «0) (*//)

as t—> oo, which is the analytic steady-state solution for the same boundary conditions.

8. Finite slab, length I, insulated at * = 0, held at constant temperature ui at

x=l, initial temperature zero. The boundary conditions are

Ti,t = mj, (8.1)

and from Eq. (2.7),
2Ti,t~i + o.Tq t-i

To,, = —  (8.2)
d "T" 2

Imposing these conditions on the general contour integral (4.2), we find that

A(z) =M;/cos zl and B(z) =0. The solution is therefore

mi C /a + 2 cos z\' cos zx dz
Tx,t = ; I I ■ ~ ) ~ • (8-3)

■kiJ p \ a + 2 / cos zl z

Poles occur at z = 0 and s = (2n + l)w/2l. Evaluating the integral as in §7 and regroup-

ing terms, we obtain the solution

6 W. E. Byerly, Fourier's series and spherical, cylindrical and ellipsoidal harmonics, Ginn Co.,

Boston, 1895. pp. 30-35.
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(a + 2 cos (nir/21) \ ' cos (nirx/2l)~\T 4 » (a + 2 cos {nir/21) \<= « i + -I(- !)(-+»/»( 1 M
L ir 1,3 \ a + 2 /

"J' (8.4)

An analysis similar to that of §7 yields the polynomial expansion

T*-' = "T1 - 7-T^ + ')!, (8-5)
L (a + 2)' J

where F(x) is the cosine Fourier expansion of unity from 0 to / and minus unity from

I to 21, as is evident from (8.4) and the initial condition T'i,o = 0. It will be noted that

the value of F(x+r) is zero when x-hr is an odd multiple of I.

The finite Fourier series solution is found to be

t f, . V\ ■ »*■(*- 0/«+2 cos (nir/20\n
TXil = «i 1 + 2^ A« sin 1 )

L 1 21 \ o+2 / J
(8.6)

where

sin (nir/21)
An = 0 n even, A„ =  n odd. (8.7)

/(I — cos (nir/21))

From (8.6) it follows that the convergence criterion is:

1) a + 2 ^ 2 cos2 (t/41) I even,

2) a + 2 ^ 2 cos2 (x/20 I odd. (8.8)

Also from (8.6) it follows that as t—> 00, the numerical steady-state solution becomes ui

which is also the analytic steady-state solution for the same problem.

9. Finite slab, length I, constant energy input q at x=l, temperature kept at

zero at * = 0, initial temperature zero. The boundary conditions are (from Eq. (2.5))

2Ti_i t—i ~t~ &Ti,t—1 "t" 2Q
T i,t =   —r1 (9-D To.t = 0, (9.2)

a + 2

where Q = qAx/k. Imposing these conditions on (4.2) we find that A{z)=Q and

B(z) = Q/ (sin z cos zl). The solution is therefore

Or sin zx /a + 2 cos z\' dz
Tx,t = —\  ( J— • (9.3)

iriJp sin z cos zl \ a + 2 / z

Poles occur at z = 0 and z = (2» + l)ir/2/ (the set z = nir, n^O does not constitute

poles, as the terms sin zx in the numerator also vanish at these points since x is re-

stricted to integral values). After evaluating the residues, regrouping terms and sim-

plifying, we see that the solution becomes

f 4 " sin (nirx/21) (a + 2 cos (nir/2V)\l~\
IV. = G * + -£(- 1)<"+1>'2—-——(— •

L ir 1,3 wsin(wir/2Q\ o+2 /J

sin (nirx/21) (a + 2 cos (nir/21)^

(nir/21)

The polynomial expansion is found to be,

(9.4)

T*-< = cT1 " T-f^ PrUm* + r) I, (9.5)
L (a + 2)' J
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where F(x) is the sine expansion of x from 0 to / and of 21 — x from I to 21, as follows

from (9.4) and the initial condition Tx,0 = 0.

The finite Fourier series is

t „r a ■ nTx (a + 2cos(wir/2/)\n— { — jj. (9.6)

where
(_ l)(n-l)/2

An = 0 w even, An =  n odd. (9.7)
/(I — cos (nir/21))

From (9.6) the convergence criterion is found to be

1) a + 2 ^ 2 cos2 — I even,
4/

2) o + 2 > 2 cos2 — I odd. (9.8)
21

From (9.6) it also follows that as t—+ the numerical solution approaches Qx, which

is equivalent to the analytic steady-state solution for the same boundary conditions.

10. Convection at a boundary. When the condition (2.3) is imposed on the gen-

eral contour integral (4.2), A(z) and B(z) are generally such that the evaluation of

the resulting integrals is difficult, due either to the uncertain nature of the poles, or

to the evaluation of a complicated infinite integral.

For the semi-infinite slab with convection into temperature Ta, transfer coeffi-

cient h, the boundary condition is given by (2.3)

2r1.,_I + (a - 2N)Te,t-i + 2NT0
To,t = 1   ^, N = h&x/k. (10.1)

a + 2

We assume a contour integral solution of the form,

1 C /a + 2 cos zY dz
Tx,t = - A(z)( __)e«x_. (10.2)

irtJp \ a + 2 / z

Imposing the condition (10.1) on (10.2) we see that A(z)=NTa/(N—i sin z), and the

solution may therefore be written,

NTa C (a + 2 cos z\' e"x dz
Tx.t = — ( )  (10.3)

ti J P \ o + 2 / N — t sin z z

The integral (10.3) is to be evaluated in terms of an integral along the real axis

indented at the origin, plus the sum of the residues at the poles enclosed by the path

P and the real axis. Aside from the root z = 0, the denominator includes roots from

the term N—i sin z, which are found to be z= — i log (%/N2-\- l+N) and the infinite

set z= — t log (\/iV2+1 — A0 + (2M + l)7r, n any integer. However, in the loop of inte-

gration considered, only the residues at the poles z = — i log (ViV2+l — A0 + (2n + l)7r

are evaluated, since the other poles lie outside the loop. (N is taken greater than zero,

otherwise the boundary would be insulated and no heat would flow, giving the trivial

solution Tx,t = 0.)
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Following the analysis of (5.1), integrating along the indented real axis, and then

letting €—>0, we obtain the solution in the form

t2N r "/a + 2 cos w\' /N sin wx + sin w cos wx\ dw

tJo \ a + 2 / \ N2 + sin2 w ) w

+ 2xresidues^. (10.4)

By a somewhat tedious but straightforward analysis, the residue term may be evalu-

ated and simplified to yield,

^ 4iVT<, log (■y/N2 + 1 - N) (a- 2y/N* + 1 V . 
2t Res. =   _\ +l_ N)x

Vn* +i ^ 0 + 2 '

^ COS HTX

(10.5)
i.« »V + log2 (ViV! + 1 - N)

By choosing a combination of known Fourier expansions for the hyperbolic sine and

cosine, with further reduction, and recalling that in numerical analysis x is always an

integer, we can write (10.5) in the form

_ (a - 2VN* + 1 y ,  / VN2 + 1 - 1\
2tj^ Res. = - ro( — )(tf- VN*+ 1)4  )■

\ a + 2 / \ ViV2 + 1 /

The final solution therefore becomes

x/a + 2 cos w\'/N sin wx + sin w cos wx\ dw

w

T 2N f °°/a + 2 cos w\' /N sin wx + sin w cos wx\ <

•L t Jo \ o + 2 ■ / \ iV2 + sin2 w )

/y/N* + 1 - 1 \ /a - 2VN* + 1 V    1
-( — )(  ) (N - VN1 + 1)« . (10.6)

\ y/tft 4. i / \ a + 2 } J

Without evaluating the infinite integral (which is convergent when t—► » provided

a^0) we see by inspection of the factor [(a —2\/iV2+l)/(a+2)]' that the criterion

for convergence as t—*» is,

a ^ y/N2 +1-1. (10.7)

It will be noted that Schmidt's equation, where a = 0, will not yield convergent

answers if the boundary expression (2.3) is used, since by (10.7) a cannot be zero.

It also follows from (10.6) that the numerical steady-state solution becomes Ta, which

is also the solution predicted analytically for the same problem.

A polynomial expansion may be obtained from (10.6) by using (12.7) to expand

the term (o+2 cos w)'. However, the analysis required to evaluate the resulting defi-

nite integrals is so involved that it is not worthwhile to include the expansion here.

Contour integral solutions are readily set up for finite slab problems involving

convection at either or both boundaries, but it is generally difficult to evaluate these

integrals. However, without evaluating the integrals, but using the method outlined
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in (5.3), we can show that if the numerical work converges at all, it converges to the

correct steady-state distribution as t—* oo.

11. Convergence to analytic solution. The theory developed so far has been con-

cerned only with numerical solutions as actually applied. The convergence problems

already discussed have shown what values of a are necessary to insure non-divergent

numerical answers, and also that as the time increases, numerical solutions approach

the same steady-state distribution as that given analytically for the same problem.

These results hold when the space and time increments Ax and At are finite, non-zero

quantities.

It is also possible to show that as the arbitrary increments Ax and At become very

small, the numerical solutions approach the true analytic solution for all values of x

and t, and attain this solution in the limit. The formal procedure used to demonstrate

this limiting convergence consists of a demonstration that the contour integrals de-

rived for the numerical solutions transform into already known contour integral solu-

tions for the corresponding analytic treatment, as A* and At approach zero. Formal

proofs of this convergence will be given for three of the numerical examples already

discussed. The proofs for other examples are very similar to the ones given here.

The three examples considered with their analytic contour integral solutions are:'

1) Semi-infinite slab, end a:' = 0 kept at temperature u0, initial temperature zero,

wo C dz
T{x\ t') = — e{"'<r<"»' — • (11.1)

iriJp z

2) Semi-infinite slab, convection at a;' = 0 into a medium of constant temperature

Ta, initial temperature zero,
hTa r ei,x'e~"at' dz'

<n'2>

3) Finite slab, length end x' =0 held at zero temperature, constant energy

input q at x'=l', initial temperature zero,

q r sin zx' dz
T(x>, ■ (11-3)

kiri J p cos zl z2

Equation (11.3) is not given in Ref. 6, but we can easily derive it by imposing the

boundary condition dT/dx — q/k= 0 on the general contour integral considered there.

The notation used in the above equations differs from that used in the present

paper. In order to express these equations in our notation, it is necessary that the

complex variable a be replaced by z, thermal diffusivity K by a, and convection co-

efficient h, by h/k.
T(x', t') has been used to denote the analytic solution at the point x' and the

time f', as distinguished from Tx,t, the numerical solution at point x (in units of Ax)

and time t (in units of At). The path P is the same for both numerical and analytic

solutions, and is the limiting path allowable for the analytic integrals.

In the application of numerical solutions, position and time variables as well as

slab lengths are expressed in terms of the arbitrary time and space increments At

and Ax. In order to discuss the convergence to analytic solutions, it is necessary to

express these quantities in terms of the absolute units used analytically. If M arbi-

6 H. S. Carslaw, The conduction of heat, Macmillan Co., New York, ed. 2, 1921, pp. 97-99.
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trary space increments equal one absolute unit, then the absolute space position x'

is given by,
x' = k/M or x = Mx'. (11.4)

From the relationship At = (AxY/(a-\-2)a of (2.2), it follows that the time value in

absolute units is
i = t/M\a + 2 )cc or t = M\a + 2)«/'. (11.5)

To show that the numerical solution approaches the analytic solution for Case (1),

when Ax and At approach zero, we substitute (11.4) and (11.5) into the numerical

solution (5.1), obtaining
Mo C (a + 2 cos z\i"la+2',at' dz

T.,t . (11.6)
7tt J p\ a -f- 2 / z

By replacing the variable z by z'/M, we can write (11.6) in the form

a +2 cos ^ _

<z -|- 2 / z'

The factor [(a+2 cos z'/Jlf)/(a + 2)]J,f!(o+2)'"'' may be approximated by [l —(z')2

/(a + 2)M2]JI/2(a+2)'"'' when M is large, and in the limit becomes exp[ — {z'Yat'\. The

limit of the numerical expression (11.7) as Ax and At approach zero (or as M—»»)

therefore becomes,
«o T dz' ,

Tx,t =—. T, (11.8)
limAz-H) TlJ p Z

which is identical with the analytic solution (11.1).

With convection at a boundary or constant energy input, the values N = hAx/k

of (2.4) and Q = qAx/k of (2.6) become,

n = (11.9) <2 = tV (11-10)
kM kM

In Case (2) after substituting (11.4), (11.5) and (11.9) into the numerical solution

(10.3), and then replacing the variable z by z'/M, we obtain

hTa r/a+ 2cos (Z'/M) e"'*' dz' r
Tx, =  I I )  (11.11)

kiriMJp\ a+2 / (h/kM) — i sin (z'/M) z'

As before, the term [(a + 2 cos z'/M)/(a-\-2)]-^I<a+2)«'' becomes exp[ — (z')2ai'] in the

limit. The term i sin (z'/M) may be approximated by iz'/M when M is large, We

make these changes, cancel the M outside the integral with those in the term

(h/kM) — (Lz'/M), and let M approach infinity; then (11.11) becomes

Tx t = til. f e~{' )>a| (11.12)
limAi-.0 kiri J p (h/k) — iz' z'

which is the analytic expression (11.2).

In Case (3), after substituting in (9.3) from (11.4), (11.5), (11.10), introducing

the absolute length V given by / = Ml', and changing the variable z to z'/M, we obtain

q r sin z'x' /a + 2 cos (z'/M)\MJ(a+2)a'' dz'

kiriM J p sin (z'/M) cos z'l' \ a + 2 / z'
(11.13)
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In the limit, the term sin(z'/Af) may be replaced by z'/M and as in (11.11), the solu-

tion may be written in the form

q C sin z'x' dz'
T x,t =— I  *-(.')■««' , (11.14)

limAz->0 kwiJp cos zT (2')2

which is identical with the analytic solution (11.3).

It will be noted that the restrictions on a as given by (9.8) become a^O when I

(the number of units of Ax in the slab) becomes large. Hence the proof for this con-

vergence to the analytic solution holds only when a ^ 0. An analysis of the other ex-

amples treated in this paper shows that for this limiting convergence, all criteria re-

duce to o^O.

12. Appendix. Properties of the polynomials PT(t). The polynomials PT(t) are

defined as the coefficients of zr in the expansion of the trinomial (1+az+z2)', and are

therefore functions of r, t and the modulus a. Two identities follow readily, the first

by definition, the second by setting z = l in (12.1),

r-*+t

23 Pr+tifyz^ = (1 + az + z2)', (12.1)

I—+<

Z Pr+t(t) =(a+2)«. (12.2)

By expanding the trinomial in the form [(l+az)+z2]' and collecting coefficients,

we obtain an explicit formula for Pr(f).

""OQ-C'iDO— C:DG)--- »•»
The polynomials may be expressed as definite integrals in the following way. By

definition and Cauchy's theorem

Pr{t) = f (1 + az + z')'
2tti J c 7.r+1

where C is a simple closed contour about the origin. By the choice of C as a circle of

unit radius, center at the origin, it follows that z = e'* and

°r(i) " 2 Jo
It

(o+2 cos <£)' cos (t — r)<f>d<f). (12.4)

Writing the equality (l+az+z2)' = (1+az+z2)1-1 (1+az+z2) and collecting coeffi-

cients of zr on both sides of the equation, we have the following recursion formula,

which may be used for rapid calculation of the polynomials,

Pr{t) = Pr(t - 1) + aPr-l(t - 1) + Pr_S(< - 1). (12.5)

From (12.3), (12.4) and (12.5), it follows that

P,-r(t) = Pt+r(t), (12.6a)

Po(0) = 1, Po(t) = 1, Pr(0) = 0, r * 0. (12.6b)

As an example, the polynomials up to t = 3 have been worked out for modulus

a = 3 using (12.5) and (12.6), and are shown in Table 1. Thus, P4(3) =30 and P2(2)
= 11.
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Table 1.

1
11

30
6

45
1

30

To construct a polynomial array, we start with Po(0) = 1. The polynomials follow-

ing are calculated successively by use of the recursion formula (12.5). As a specific

example, from the formula P3(3) =P3(2)+aP2(2)+Pi(2), we have on substituting the

values presumably already calculated for t — 2, Pj(3) =6+3 X11 +6 =45.

An important identity may be established as follows: we let (a+2cos0)'

=2Zn-o-^n cos nd. From (12.4),

/> 2x I An cos n<j> cos (t — r)4>d<t>,
0 n-0

from which it follows that A (_r = 2ry^t, and A0 = Pt(t). Therefore

(a + 2 cos 6)' = P<(/) + 2Pt-\{t) cos 0 + • • • + 2Pt-T{t) cos rd + • • •

+ 2P0{t) cos td. (12.7)

The polynomials &»(<) are defined by,

(— l)n (2«)! r (a + 2 cos z\' dz
£,„(/) =     —( )  , (12.8)

2 2irt J c\ o+2 / z">+1

where C is a simple closed contour about the origin. By Cauchy's theorem, and evalu-

ation of the residue at the pole z = 0, (12.8) becomes,

(— l)Br dn /a + 2 cos 0\H

^-VfcK-rpr-OL <12-9)
The first three polynomials, evaluated from (12.9) are,

Ut) = ( [ ) (« + 2)-\

Ut) = (y) (a + 2)-1 + 12 ( ^ )(« + 2)-',

£e(0 = ( J) (a + 2)"1 + 60^ + 2)-2 + 360 ( J ) (a + 2)~\

(12.10)
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