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—NOTES—

ON PLANE ELASTIC STRAIN IN DOUBLY-CONNECTED DOMAINS*

By W. PRAGER (Brown University)

1. Introduction. The stresses associated with a state of plane elastic strain can

be expressed in terms of the second derivatives of Airy's stress function. If xi, Xi,

are rectangular Cartesian coordinates, the axis of xs being normal to the plane

of strain, the stress function t/>(xi, x2) satisfies the differential equation A2<£=0

(A=d2/dx2+d2/dy2), and the given stresses on the boundary determine the tangent

planes of the stress surface xt=4>(xi, x2) at all points of the boundary, when one such

tangent plane is known for each bounding curve. In the case of a singly-connected

domain only one such tangent plane must be known, and it can be chosen arbitrarily

because the stresses define the stress function only to within an arbitrary linear func-

tion of *1 and xi. In the case of a doubly-connected domain, however, two such tan-

gent planes must be known, and only one of them can be chosen arbitrarily. This

paper is concerned with the determination of the second tangent plane in the case

where one of the boundary curves is free from loads. Equations from which this

tangent plane can be determined, were derived by J. H. Michell1 from the condition

that the displacements must be single-valued. In the present paper it will be shown

that Michell's equations are the natural boundary conditions of the variational prob-

lem for the stress function. This remark is of importance when the direct methods of

the calculus of variations are used to determine the stress function for a doubly-

connected domain.2

2. Notations. Basic relations. Throughout this paper Latin subscripts will have

the range 1, 2, 3, Greek subscripts the range 1, 2, and the summation convention

for repeated subscripts will be used. The rectangular Cartesian coordinates Xi are

chosen so that the axis of x3 is normal to the plane of strain; the position of the origin

and the directions of xi and x% are arbitrary. Let e<,- be the strain tensor and s,-,- the

reduced stress tensor, i.e. the stress tensor divided by Young's modulus. The stress-

strain relations can then be written in the form

Cij — (1 *"i" (l)Sij <TSkk&iji (1)

where tr denotes Poisson's ratio, and S,-,- is the Kronecker delta. For the state of plane

strain under consideration the condition that e3t = 0 gives

S33 = vSyf. (2)

The equations of equilibrium in the plane of strain are

* Received Aug. 7, 1945.

1 J. H. Michell, Proc. London Math. Soc. (1) 31, 100-146 (1899), Eqs. (13).
i The necessity of investigating the relations between the natural boundary conditions and Michell's

equations arose in connection with work done under a contract in Applied Mechanics for Watertown

Arsenal. The author is indebted to the authorities of Watertown Arsenal for the release of this note for

publication.
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Sya.y ~ 0, (3)

where the comma followed by the subscript y denotes partial differentiation with re-

spect to xy. Equation (3) can be satisfied by setting

$ali ~ (4)

where <f>=4>{xi, x2) is Airy's stress function, and €n = €22=0, ei2= — «2i = l. Since

«ox€<im = the invariant saa equals A<j> =<t>,aa. For a state of plane elastic strain

Asoa = 0, or A2<£ =0, i.e. the stress function is biharmonic.

On the boundary of the domain under consideration the surface stresses fa are

given. If 7ia is the unit vector along the outward normal of the boundary, we have

fa = syany = €y\eail<f>,\hny. Now ey\ny=t\, the unit vector of the tangent of the bound-

ary. Accordingly,
fa = W£,X»A = €a/i d<t>,Jds, (5)

where d/ds denotes differentiation in the direction of the tangent vector t\. Multiply-

ing both sides of (5) by €ag and integrating along the boundary, we obtain

</>,/s(s) = <«/i f fa(s)ds + 4>A0). (6)

The given surface forces/„ are thus seen to determine the gradient of the stress

function along a bounding curve, when the gradient <£,0(0) at one point of this curve

is known. In other terms, the stress function <f> and its normal derivative dtp/dn are

defined at all points of a bounding curve, when 0 and its gradient are known at a

single point of this curve.

If, in particular, one of the bounding curves is free from loads, the stress function <f>

and its normal derivative along this curve equal the values of a linear function a„xa-\-b

and of its normal derivative. Establishing the boundary conditions for the stress

function along a bounding curve which is free from loads is therefore equivalent to

determining the three coefficients au at, b of this linear function.

3. The variational problem for the stress function. To the strain e<, and the re-

duced stress Si,- corresponds the reduced elastic energy U = In the case of plane

strain this energy equals

U = |[(1 + tr)SijSij — cSuSjj] = f(l + o-)[^sa0 — ovwjfts], (7)

in view of Eqs. (1) and (2). In terms of the stress function introduced in (4) the en-

ergy is

U = + ff) [<t> ,a&t> ,a0 ~ 0<t> ,aa<t> ,m]. (8)

According to the variational principle for the stresses the stress function correspond-

ing to certain boundary conditions is then singled out from amongst all functions

which fulfill these boundary conditions and admit continuous derivatives up to the

fourth order, by the fact that it minimizes the integral

— j" [<t>.apt>,ap — <r<t>,aa4>,w]dUj (9)

where du denotes the element of area, and the integration is extended over the entire

domain. The condition S V — 0 leads to
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j' [<t> .aP?>4> ,a$ — <?4> ,aa&4> = 0 (10)

or

(1 — cr) J <t> ,aappt>4>dw — (1 — <r) ̂  <t> ,ap$<t>nads

+ J" <t> ,affb<t> .atlpds — a J* <t> .aftads = 0. (11)

In the case of a doubly-connected domain with loads on one bounding curve only,

the stress function <t> and its gradient can be considered as given on the loaded bound-

ing curve. This curve does therefore not furnish any contribution to the line integrals

in (11). On the other bounding curve, we have <j>=aaxa+b and <t>,a = aa. In addition

to the differential equation for the stress function, 4>,<,*&» = 0 or A2$=0, Eq. (11) thus

gives the following equation which must be fulfilled on the load-free boundary:

hdy [ (1 - cr) f ^xynads - j 4>.^ds + a f * w]

+ #[(1 - a) J t.awnjs^ = 0. (12)

Since 5ay and 5b are independent, the expressions in brackets must vanish separately.

The second integral in the first bracket can be transformed as follows

J" <j>_yptipds — ̂  <t>fipydw = ^ <t>fppn7ds.

The first bracket can therefore be written as

(1 - a) [/ ^ (f) t(i(} ft yds •

With the use of ny = eyJaj the second integral can be further transformed as follows

£ .(ipMydS = €ya J <t>,0(itads — €ya jj <f>,f}(}dxa

= — e7a j" <t>,MS%adxi = ~ fyaj' <t>.W%Jsds.

Equation (12) is thus equivalent to

f \Xy — (A<t>) + tyaxa — (Atf>)~| ds = 0 (13)
J L dn ds J

and
C d
I — (A <t>)ds = 0. (14)

J dn

The scalar equivalents of (13) are
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(T*i—(A<£) + *2—(A</>)~Us = 0 (15)
J L dn ds J

and

fL — ~ *i — ds = 0. (16)
J L dn 3s J

Equations (14), (15) and (16) are Michell's conditions which are thus seen to be the

natural boundary conditions of the variational problem for the stress function. The

manner in which these equations are used in determining <f> is obvious. Let 0o, 0i. 02, 03

be the biharmonic functions defined by the following boundary conditions:

1) 0o and d<j>o/dn have the prescribed boundary values on the loaded boundary

curve Ci and vanish on the other boundary curve C2;

2) cf>i=d<j>i/dn = 0 on Ci,

4>i=xi and d<t>\/dn = n\ on C2;

3) 02=d02/dw=O on Ci,

(£2 ="£2 and dfa/dn =tii on C2;

4) 03=d03/d» = O on Ci,

4>s = 1 and d<j>,/dn = 0 on C2.

Substituting
4> = <j> 0 + 0101 + 0202 + b<t>3

into Eqs. (14), (15) and (16), we obtain three linear equations from which a\, a2 and

b can be determined.

THE CAPACITY OF TWIN CABLE—II*

By J. W. CRAGGS and C. J. TRANTER (Military College of Science, Stoke-on-Trent, England)

1. Introduction. In a recent paper1 (subsequently referred to as "I") we have

given a method for determining the capacity of two circular wires surrounded by con-

centric touching dielectric sheaths. The present note gives the extension of the method

to the case in which the dielectric sheaths are not in contact. The problem considered

is the symmetrical one of two infinite parallel circular wires each of radius sur-

rounded by concentric sheaths of radius i?2 and dielectric constant Kx, the distance

between the centers of the wires being 2L(L>R?>). The dielectric constant of the sur-

rounding medium is taken as K2.

2. The equations for solution. In line with the treatment in "I" we replace i?2

by unity, R1/R2 by a and L/R2 by s; we also write Ki/K2 = K. The potentials Vi, Vi

must therefore satisfy (i) the differential equations

VWi = 0, a ^ r S 1, (1)

V2F2 = 0, r 1, x ^ 0, (2)

and (ii) the boundary conditions

V\ = 1, (3)

* Received June 19, 194S.

1 J. W. Craggs and C. J. Tranter, The capacity of twin cable, Quart. Appl. Math. 3, 268-272 (1945).


