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SOLUTION OF LINEAR AND SLIGHTLY NONLINEAR
DIFFERENTIAL EQUATIONS*

BY

S. A. SCHELKUNOFF

Bell Telephone Laboratories

Considering the practical importance of linear differential equations of the second

order, or the equivalent systems of the first order equations, it is surprising that trea-

tises give little attention to effective and sufficiently general methods for their solu-

tion. The treatises seem to be concerned primarily with power series expansions,

Picard's method of successive approximations, numerical methods based on difference

equations—methods which in theory are applicable to almost any differential equa-

tion and which are practically useless in the case of wave equations. On the positive

side, in treatises on mathematical physics one finds a very effective asymptotic ap-

proximation which in this country is known as the Wentzel-Kramers-Brillouin ap-

proximation and in England as Jeffries' approximation and, of course, the Rayleigh-

Schrodinger perturbation method. The former has its obvious limitations and the

latter is suitable only for a special class of boundary value problems.

Our purpose is to call attention to another perturbation method which we de-

veloped several years ago in connection with the antenna problem. As time went on

the virtues of the method became increasingly apparent. Searching for previous

references to this method, we came across one by Bdcher1 to a paper by Liouville.2

In Liouville's paper we have found the Jeffries-Wentzel-Kramers-Brillouin approxi-

mation and a thorough discussion of the usual boundary value problem and associ-

ated orthogonal series but very little that has any direct bearing on the present paper.

The method is based on the idea that solutions of linear differential equations

may be regarded as distorted or "perturbed" sinusoidal or exponential functions—the

same idea which is back of the asymptotic approximation, of the Rayleigh-Schro-

dinger method, and of the Sturmian theory. It is hardly surprising that this method

gives better results than Picard's method which regards the solutions as perturbed

straight lines; but the difference is so remarkable that it deserves a special display in

a separate note. In this paper, we restrict ourselves to an outline of the procedure

and a statement of specific formulas reduced to a point where only simple integra-

tions are needed in any special case. The exposition is based on the second order equa-

tion ; the extension to higher order linear equations is simple enough. When it comes

to nonlinear equations, excepting those which are only slightly nonlinear, f the virtues

of the method are not quite clear at present. There is no question that the results

* Received July 6, 1945.
1 Maxime B6cher, An introduction to the study of integral equations, Cambridge University Press,

Cambridge, 1914.
2 Joseph Liouville, Memoires sur le developpement des fonctions ou parties defonctions en siries dontles

divers termes sont assujettis d satisfaire d une mime Equation diff&rentielle du second ordre, contenant un

parametre variable, J. de Math., 2, 16-35, 418-436 (1837).
t The meaning of "slightly" depends on the goodness of results expected from the process. Beyond

that we shall not attempt to define it.
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should be better when compared to those obtained by Picard's method; but the more

complicated technique for numerical calculations may offset the advantages. This is

something to be explored.

Suppose that our problem is to find the solutions of

dV dl
-~-Z{*)I, — = — Y(x)V, (1)
dx dx

subject to the initial conditions

V = V(a), I = 1(a), if x = a. (2)

Picard simply integrates (1) and obtains a pair of integral equations

V{x) = V{a) - J "z(07(0rffc I(x) = 7(a) - J * 7(QV(QH. (3)

Thus the stage is set for successive approximations and the solution is obtained

in the form of the infinite series

V(x) = F„(z) + Vx(x) + 7,(«) + • • • , /(*) = 7.(«) + h(x) + 7,(«) + ■■■ , (4)

where

Vo(x) = F(a), Vn(x) = - J

I0(x) = 7(a), In(x) = - J'

(5)

This procedure is so simple that it would be easy to overlook the fact that in sub-

stance we are regarding the solutions of (1) as perturbations of the solutions of

dV dl
— = 0, — = 0, (6)
dx dx

and that we are dealing with a special application of a much more general perturba-

tion method. Let*

Z(x) = Z0(x) + Z(x), Y(x) = Y0(x) + Y(x), (7)

and suppose that the solutions of

dV o dlo
  = - Zo(x)lo, — = - Y0(x)Vo. (8)
dx dx

subject to the initial conditions (2), are known. Then the solutions of (1) are identical

with those of the following integral equations

v(x) = Vo(x) - f'zww^x, m - J"f(0f(©f,(*. m,

7(«)=7„(«) - f* Z(()I((j)Ii (x, £)dl- — f'?(()V(Q 7« (».£)«.
J a J a

(9)

* In substance the theorem implied by equations (7), (8) and (9) is hardly new; but we have been

unable to find its statement in just that form.
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where V\{x, £), I\(x, £); F2(tf, £), h(x, £) satisfy (8) and are subject to the following

conditions

Fi(£, 0 = 1, hfa £) = 0; F2(£, £) = 0, 72(£, £) = 1. (10)

Essentially the procedure is to regard —Z(x)I(x) and — Y(x) V(x) as known functions

and to write the general solution of the corresponding nonhomogeneous linear equa-

tion. The verification of the identity of the solutions of (1) and (9) is perfectly

straightforward. If Ioi(x), I<n(x), are two linearly independent solutions of (8); then,

as the reader can readily verify, /01/02 — I'mlm, differs from F0 only by a constant

factor. Bearing this in mind, we have

Tr ^ 7'01(*)Jm({) - I'oi(x)Ioi(£)
Vi(x, |) =    ——  >

/'oi(*)/o»(*) -

I oi(x) 1— Io2(x)Ioi(£)
(11)

Similarly,

h(x, Q = - F„(*)

Vt(x, Q = - Z0(x)

h(x, Q =

I'oi(x)I0i(x) — I'ot(x)Ioi(x)

Voi(*)Vn(& - rM(*)r,i(e

V'oi(x)Vot(x) - V'u(x)Vti(x)

V'oi(*)Vo*(Q ~ V'o,(x)Voi(&
(12)

V'oi(x)Vn(x) - V'oi(x)Voi(x)

Substituting Fo(*)> Io(x) in the integrands of (9), we obtain Fi(x), Ii(x); continu-

ing the process we obtain solutions in the form (4).

In Picard's method Z0(x) = Y0(x) =0, which is the simplest possible choice. Natu-

rally, the method will work well when Z(x) and Y(x) are small; otherwise it is far

better to regard Zo(x) and Fo(x) merely as constants. If we are concerned with a finite

interval, these constants may be chosen as some mean values* of Z{x) and Y(x)—the

average values, for example; then for a = 0 (9) become

V(x) = F.(*) - cosh r„(s - Z)dt + K0 f'f(QV(Q sinh T0(x - Qdl
J 0 *^0

/(*) = /„(*) + -i- sinh r,(* - Qd( - f'p(QV(& cosh r0(x - Qd{
K 0 J 0 ^ 0

(13)

where

Fo(*) = F0 cosh r0a: — K010 sinh r0a;, T0 = \/ZoYo, K0 = y/Zt/Yt,

V0 (14)
Io(x) = sinh To* + Io cosh r0a:, F0 = F0(0), I0 = 7o(0).

K 0

In practice it is found that these equations represent a great improvement on

Picard's method and yet the integrations which have to be performed are not more

difficult. If Z{x) and F(x) are constants, Picard's method leads to power series—not

* Assuming that Z and Ydo not change signs; if they do, it is best (although by no means necessary)

to subdivide the interval.
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a satisfactory form for wave functions. John R. Carson3 employed Picard's method

for approximate solution when Z(x) and F(x) are slowly varying functions and suc-

ceeded in summing the series and obtaining the first order correction terms in a usable

form; but any attempt to get the higher order terms by this method would seem to

be out of the question. Theoretically, we should select Z0(x) and FoOc) as near as

possible to Z(x) and F(x), subject to our ability to solve (8); but the integrations will

be difficult to perform.* Thus we come back to (13) as the best compromise and it

works very well.

In the more explicit form the first order correction terms are

Fi(tf) = Fo\B(x) cosh Tos — A{x) sinh r0x + C(x) sinh r9a:J

— KoIo\A{x) cosh r0« — B(x) sinh r0* + C(x) cosh To*],

I\(x) =   [jB(s) sinh r0x — A (x) cosh To* + C(x) cosh r0:f]
K o

where

+ 70[A(a;) sinh To* — B(x) cosh r0:r C(x) sinh r0x],

A(x) = — f [±-tf0F~| cosh 2r0£dt,
2 Jo L Ko J

B(x) = — f \— - ^0f1 sinh 2T&dZ, (16)
2 Jo L Ko J

C(*»-T IlT. + K'fh
In some instances it is preferable to express the results in terms of progressive

waves; then V(x) = Fo(*) + Vi(x) and I(x) =I0(x)+h(x) become

where

V+(x) = K0I0+[e~r«x - C(z)e-r»* - E{x)e*"■-],

l+{x) = I^[e~r«x — C{x)e~T"x + E(x)eT°z}-,

F-(ac) = - K0Iir[er<>* + C(x)ec,z + D{x)e~T'x],

I~(x) = 70-[er<>* + C(x)er°* - D(x)e-r°*];

D(x) = A(») + B(x) = — f T— - Kofi e™d£,
2 J o L K o J

E{x) = A(x) - B(x) = — f - ^of]
2 J a \_Kq J

(17)

(18)

Equations (14) and (15) express the solutions in terms of V and I at the beginning

of a finite interval (0,1); one also often wants the corresponding expressions in terms

of the final values. These are

3 John R. Carson, Propagation of periodic currents over nonuniform lines, Electrician, 86, 272-273

(1921).
* This objection would not apply in strictly numerical handling of equations.
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V0(x) = V(l) cosh r0(/ - x) + K0I(t) sinh r0(i - x),

V(l)
Io(x) = sinh r0(/ — x) + 7(0 cosh T0(i — *),

K o

Vi(x) = 7(0 { [B{x) - B{1)] cosh T0(l + x) - [A(x) - A(t)] sinh r„(/ + *)

- [C(«) - C(0] sinh T0(/ - *)}

+ KoI(l){[B(x) - 5(0] sinh T0(l + x) - [A(x) - A(l)} cosh r0(/ + x)

- [C(x) - c(0] cosh r„(Z - x)\. (19)

V(D
Ii{x) = {[^4(») — ̂ 4(0] cosh Y0(l + x) — [5(s) — -6(0] sinh T0(l + x)

— [C(*) — C(0] cosh r0(i — *)}

+ 7(0 {[A(x) - A{1)] sinh r0(/ + x) - [B(x) - 5(0] cosh r„(/ + x)

— [C(a) — C(0] sinh T0(l — x)}.

Suppose now that the interval is infinite and that Z(x) and F(x) are slowly vary-

ing functions. In this case, there exists the Liouville-Jeffries-Wentzel-Kramers-

Brillouin approximation

where

V(x) = ± AVK(x)K(x0) exp £+ j%({)</{],

I(x) = AVK(x„)/K(x) exp [t/'iw].

(20)

K(x) = y/Z(x)/Y(x), r(«) = VZ(x)Y(x). (21)

To the communication engineer these approximations seem natural even without

formal analysis. He would reason as follows. If the "characteristic impedance" K(x)

is independent of x, a progressive wave moving either to the left or to the right would

suffer no reflection; it is only the sudden changes in the impedance that causes reflec-

tions. Hence the voltage V(x) and current I(x) associated with the progressive waves

will be proportional to exp+ [/^r(x)d*]. If K(x) is a slowly varying function, we

can ignore the reflections and in the first approximation consider the line as con-

tinuously "matched" and thus acting as a transformer. This means that the voltage

will vary directly and the current inversely as the square root of the characteristic

impedance: hence, equations (20).

There are several formal derivations;4 but the one which appeals to us most be-

cause it corresponds closely to the physical argument is also the one which permits

further improvements in the approximation. Let us consider the "transfer parame-

ter" 0

/• <20
r(«)i{, — = r(«), (22)

ax

as the new independent variable. Substituting in (1), we obtain

4 John C. Slater and Nathaniel H. Frank, Introduction to theoretical physics, McGraw-Hill Book Co.,

Inc., New York, p. 148 (1933); John C. Slater, Microwave transmission, McGraw-Hill Book Co., Inc.,

New York, p. 73 (1942).
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dV dl V
 = - K(@)I,      (23)
d@ d& K(6)

Eliminating first I and then V we have

K'(6) K'(&)
V"(Q) - —-— F'(0) - V = 0, /"(©) + —— /'(©) -7 = 0. (24)

K(@) K(0)

If K(@) is constant, we have simple progressive waves as anticipated; otherwise, we

introduce new dependent variables in conformity with our idea of voltage and current

transformation

V = [/£(©) ]1/2F, I = [£(©)]-''27. (25)

Incidentally, this is the transformation which should remove the first derivatives from

(24). Substituting, we obtain

T 3(K')2 K"~|_ _ r (K')2 K"-1_
F"(©) = 1 + -L-  V, /"(©) = 1 - ±—!— +  J. (26)

L 4K* 2KA L 4 K2 2KA

We now have not only equations (20) but also the quantitative criterion of their

goodness: (K'/K)2 andK"/2K should be small compared with unity.

To improve on (20), we could repeat the process beginning with (22); but the

analytical work is simpler if we turn to equations (13) and apply them to an infinite

interval, assuming of course that in the entire interval the bracketed quantities in

equations (26) differ but little from unity. Thus, the solutions of

d2y r ..

^-[i+A*)]y (27)

are also the solutions of

y{x) = y0(x) + f f(£)y(£) sinh (* - £)<*£, (28)
^ oo

provided the integral is convergent. The solutions asymptotic to e*x are

y(x) ~ eTx + ^ f(£)e*z sinh (x — £)d(, (29)
J 00

or

y+(x) e~x - \e~x f f(Qd£ + \ex f <r2{/(£)d$,
" 00 J oo

y~(x) ~ ex + \ex f f(£)d( - \e~x f e'tf(()d(. (30)
J too * too

From these equations we can obtain the well-known asymptotic expansions of Bessel

functions as well as expansions of other types.

The case in which &=i^x, where /3 is a constant, occurs so frequently that a

repetition is justified. Equations (26) become

_ _ r3(^')s K"~I- - - VK" (^')2~l-
V"(x) = - /S2F +  V, !"{*) = - /32/ + —/ (31)

L 4K2 2KA 12K 4K2 J



354 S. A. SCHELKUNOFF [Vol. Ill, No. 4

and the corresponding integral equations are

T3[tf'(£)]s *"(£)-!_ _ i r*r3 tfW #"(£)!-
F(s) = V0(x) + — lr , — F(£) sin P(x - $)<*£

P J. L4[^)]2 2K(0J

1 r1 YK"ti) [-KT'(i)]21-
I{x) = /„(*) + —  — - —7———^- /(£) sin 0(x - Qdt.

pJA2m 4[tf(£)]2J

Suppose, for example, that K(x) =K0+kx-, then, asymptotically,

, r 3ik 1
V{x) = ± AVKo + kx 1 +   e™x,

L mKo+kx)]

A T ik 1
I(x) = 1 1 + \eTif>x.

VK0+ kxl 8/3(iCo+£*)J

(32)

(33)

In this case, however, the integrals in (32) can be evaluated in terms of sine and

cosine integrals. Moreover, the complete result corresponds closely to the physical

picture of reflection which invariably takes place when waves are traveling in trans-

mission lines or media with variable characteristic impedance K(x). Thus

V(x) = A [\/Kq + kx e~^x + RvVKo -f- kx e^x],

f e~^x e*x "1 (33')
'(*) = A + R: ,

\-y/Ko + kx VKo + kx-i

where Rv and Ri are the first order reflection coefficients given by

Rv = - 3Rr = - (3/4) exp {2ipk~lKa) j^Ci (2/5* + 2pk~lKa)

- i Si (2,3* + 2pk~1K0) +
iir ~1

tJ'
The succeeding correction terms represent successive reflections. The entire series re-

sembles an asymptotic solution of the differential equation in question but it appears

to be rapidly convergent.

An another example, take the case of principal waves on a thin cylindrical antenna

when
120 120

K(x) = 120 log (2x/a), K'(x) =  > K"(x)    (34)
x x2

In this case we obtain

V(x) = AVKW [ 1 - — f   T- +   11
L 2&x 14[log (2x/a)]2 2 log 2 (x/a) ) J

(3a)

I(x) =   [~1 + — {—    —4 1 11 e~*x.
VK(x) L 2fix 14[log (2x/a)}2 2 log (2x/a) ) J
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As the third example we shall take Rayleigh's equation for a nonlinear oscillator6

q + (Riq + Raq3) + a>2q = 0. (36)

By (13) we have

1 r'
q(t) = q0{t) I [i?i?(r) + Rsqz] sin u{t — t)cIt,

CO J 0
(37)

where q0(t) is a sinusoidal function. If q — 0 up to / = 0, then q0(t) =A sin ut. Substitut-

ing in (37) and integrating, we obtain

q(t) = A sin ut — %{Ri + fco2i?^4J)/ sin ut uR>A'(cos cot — cos 3ut). (38)
32

For a periodic solution we must have

+ = 0; (39)

then 1
q(t) = A sin ut uRiA3(cos ut — cos 3ut). (40)

32

Equation (39) is precisely Rayleigh's equation for the amplitude of oscillations; equa-

tion (40) differs from his equation in that ours contains a term proportional to cos ut.

Our approximation satisfies the initial condition g(0) =0 while Rayleigh's does not.

Originally this work was undertaken to obtain convenient analytic approxima-

tions to a number of problems in wave theory. It has since become apparent, however,

that at least for a certain class of differential equations, the method would be suitable

for numerical solution. The practicability of Picard's method for this purpose has

already been explored by Thornton C. Fry;6 the present method should be quicker.

The rapidity of convergence will be discussed in a separate paper.

• Ph. LeCorbeiller, The nonlinear theory of the maintenance of oscillations, I.E.E. Journal, 79, 361-

378 (1936).
6 Thornton C. Fry, The use of the integraph in the practical solution of differential equations by Picard's

method of successive approximations, Proc. 2d Internat. Cong. Math. Toronto, 2, 405-428 (1924).


