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(T*i—(A<£) + *2—(A</>)~Us = 0 (15)
J L dn ds J

and

fL — ~ *i — ds = 0. (16)
J L dn 3s J

Equations (14), (15) and (16) are Michell's conditions which are thus seen to be the

natural boundary conditions of the variational problem for the stress function. The

manner in which these equations are used in determining <f> is obvious. Let 0o, 0i. 02, 03

be the biharmonic functions defined by the following boundary conditions:

1) 0o and d<j>o/dn have the prescribed boundary values on the loaded boundary

curve Ci and vanish on the other boundary curve C2;

2) cf>i=d<j>i/dn = 0 on Ci,

4>i=xi and d<t>\/dn = n\ on C2;

3) 02=d02/dw=O on Ci,

(£2 ="£2 and dfa/dn =tii on C2;

4) 03=d03/d» = O on Ci,

4>s = 1 and d<j>,/dn = 0 on C2.

Substituting
4> = <j> 0 + 0101 + 0202 + b<t>3

into Eqs. (14), (15) and (16), we obtain three linear equations from which a\, a2 and

b can be determined.

THE CAPACITY OF TWIN CABLE—II*

By J. W. CRAGGS and C. J. TRANTER (Military College of Science, Stoke-on-Trent, England)

1. Introduction. In a recent paper1 (subsequently referred to as "I") we have

given a method for determining the capacity of two circular wires surrounded by con-

centric touching dielectric sheaths. The present note gives the extension of the method

to the case in which the dielectric sheaths are not in contact. The problem considered

is the symmetrical one of two infinite parallel circular wires each of radius sur-

rounded by concentric sheaths of radius i?2 and dielectric constant Kx, the distance

between the centers of the wires being 2L(L>R?>). The dielectric constant of the sur-

rounding medium is taken as K2.

2. The equations for solution. In line with the treatment in "I" we replace i?2

by unity, R1/R2 by a and L/R2 by s; we also write Ki/K2 = K. The potentials Vi, Vi

must therefore satisfy (i) the differential equations

VWi = 0, a ^ r S 1, (1)

V2F2 = 0, r 1, x ^ 0, (2)

and (ii) the boundary conditions

V\ = 1, (3)

* Received June 19, 194S.

1 J. W. Craggs and C. J. Tranter, The capacity of twin cable, Quart. Appl. Math. 3, 268-272 (1945).
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when r = a,

V, = V i, (4) KdVjdr = &V2/dr, (5)

when r = 1,
Vs = 0, (6)

when x = 0. Here V2 is Laplace's operator in two dimensions and the coordinate sys-

tems are as shown in Fig. 1.

Fig. 1.

3. The analytical solution. As in "I" we write

F, = 1 + B log + i: {(-!)' - bn cos nd. (7)

The conformal transformation for the region r> 1, a: >0 can be written

reie + e"
£ — ir7 = log —— ; (8)

re+ e-»
where

M = log (s + Vs2 — 1). (9)

The boundaries r = 1, * = 0 then become £=m> ? = 0 respectively.

Since F2 is odd in £ and even and periodic in rj, we write

oo

Fj = £>£ + dm sin^ cos mrl• (10)
m=l

The constants B, bn of (7) and D, dn of (10) are now to be determined from the

boundary conditions (4) and (5).

On the boundary r = l(£=ju), we find from (8) and (9)

1 + cosh n cos 6
cos?7 = 1 (11)

cos 9 + cosh n
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so that 0 ^6 ^ 7r corresponds to 0 ^ i) ̂  tt, and

dV 0£ dV d-q dV — sinh n dV

dr dr d£ dd d£ cos 8 + cosh yn 6£

Thus (4) and (5) give

(12)

» J _ a2n oo

1 — B log a + 2  cos nd = Dn + dm sinh mn cos mi), (13)
n=l m—1

A 1 + a2"
KB + A' 22 ——— nb„ cos nd

n_i a"
— sinh ju

cos 0 + cosh
-{s + x:
M V. m_l

cosh mfi cos mt]>. (14)

Multiplying (13) by cos mr)(m=0, 1, 2, • • • ) and integrating with respect to rj

from 0 to 7r, we have

Dn = 1 — B log a + (— 1)ne~n" bn, (15)
»-i «"

since

and

J"J o

cos nOdi) = (— 1 )nire~n»,

where

A 1 ~ a2n
dm sinh mn = 2^, e~n" bnlm(n), (16)

n—1 an

2 rT
Im(n) — — er'» I cos nd cos mr\dr\. (17)

it Jo

Similar treatment of (14) gives for B, bn

KB = - D (18)

and
1 + a2n "

K nbn = 2(— 1 )n+1e~ntlD — mdm cosh tnnlm(n). (19)
a" m_i

Expansion of cos mi) in (17) in terms of u = (1 +e~2"+2e~'* cos d)_1 leads to

m

Un) = (- 1)-+-S (- 1)" "Cm_p n+"-1CJ)e(n-2^. (20)
p=0

Eliminating D, bn from equations (15), (16), (18) and (19) we have

1 °°
B log a — 1 — KB/x — 2BS -1 mdmam cosh mn, (21)

2K m_j

1 w

— dP sinh pn — Bav H 22 tndmAmp cosh mp, (22)
K m=i
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where
'1 — a2"\ e~2""

(23)

" /l - a2"\ e~2'

S ~ S\1 + a2") ~n

" /I — a2"\ <r2'

= 2E(- D^lT-r^W") —
n-1 \1 + a / n

"/l — a2n\ e~2n"

Amp = Z(t— -) /m(»)/p(w) 
n_i\l + a2"/ »

Following the procedure of UI" we retain only a finite number p of the coefficients

dm. Writing
K

7m = — tanh mn, (24)
m

and eliminating mdm cosh mn between equations (21), (22) we find

>4 ii + 71 Au • • ■ Aip <*i

A 21 -<422 + 72 Alp «2

A pi A p2 ' ' ' App + 7 J>

ai a2 2 (iT - '°g ^ -f K,?j + 45

= 0. (25)

The capacity is then given by —\KiB.

4. Alternative method of solution. The above treatment provides a satisfactory

basis of computation when K^l. For completeness it is interesting to notice that,

when K < 1, more rapid convergence to the true solution is obtained by eliminating

D and dm from equations (13), (14) by treating (13) as a Fourier series in d and (14)

as one in ij.

ON A. A. POPOFF'S METHOD OF INTEGRATION BY
MEANS OF ORTHOGONALITY FOCI*

By HOWARD A. ROBINSON (Research Laboratories, Armstrong Cork Company)

In a recently published paper1 a method is given which allows a marked reduction

of the work necessary in computing the tristimulus values necessary in color specifi-

cation work. The three tristimulus values are defined by the following relations:

X = j£L(X)i(X)-R(X)dX, v=f EL(\)y(\)R(\)d\, Z=f EL(\)z(\)R(\)d\,

where El(\) are tabulated relative energy functions of a known light source L, x(K),

y(\), z(X) are tabulated luminosity functions and i?(X) are the experimentally meas-

* Received August 9, 1945

1 Quart. Appl. Math., 3, 166-174 (1945).


