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PRESSURE FLOW OF A TURBULENT FLUID BETWEEN
TWO INFINITE PARALLEL PLANES*

BY

P. Y. CHOU

California Institute of Technology

1. Introduction. The solution of the Navier-Stokes differential equations for the

steady laminar flow through a channel or a circular pipe is well known for its mathe-

matical simplicity. The reason for this simplicity is that for such flows Prandtl's

boundary layer equations hold rigorously for the entire region of the fluid. In other

words the boundary layer extends up to the center of the channel, whereas in the

case of the flow around a solid obstacle there is only a thin layer of viscous fluid at-

tached to the surface of the obstacle.

The steady turbulent flow through a channel or a circular pipe is more compli-

cated in the sense that all the equations of mean motion and the equations of double

and triple correlation previously developed1'2 have to be utilized to account for the

mean velocity distribution in the entire region of the channel, and that they can not

be further simplified by physical arguments as proposed, for example, by the bound-

ary layer theory. However, if we examine the algebraic equation that represents the

mean velocity distribution across the channel, we notice that it has functional be-

haviour similar to that of the formula for the mean velocity distribution within a

turbulent boundary layer.3 In other words, the turbulent flow in a channel bears

some resemblance to the corresponding laminar flow on the whole, though its detailed

structure is much more complicated as will be seen soon.

In what follows we shall first determine the mean velocity distribution based upon

the equation of mean motion and the equations of double correlation, by giving the

triple correlations their values in the middle of the channel. This procedure leads to

good results in the theory of the spread of turbulent jets and wakes (references at

the end of II), but in the present case it only agrees with the experiment in the central

portion of the channel, while it fails when the side is approached. We shall also see

that the mean squares of the three components of the velocity fluctuation agree quali-

tatively with observation in the corresponding region.

The second determination given below for the mean velocity distribution utilizes

equations of mean motion and both the equations of double and triple correlation by

neglecting terms involving quadruple correlations. It will be shown that the triple

correlations which represent the transport of turbulent energy play a particularly

important role in the vicinity of the wall of the channel, and therefore can not be

dispensed with for a better representation of the mean velocity distribution.

From this second determination we shall find that neglect of terms involving quad-

ruple correlations is justifiable as a first approximation. In other words the equations

* Received Dec. 19, 1944.

1 P. Y. Chou, Chin. Journ. of Phys. 4, 1-33 (1940). This paper will be referred to hereafter as I.

2 P. Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuation, Quart,

of Appl. Math. 3, 38—54 (1945). This paper will be referred to as II.
3 N. Hu, The turbulent flow along a semi-infinite plate (unpublished).
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of mean motion and of the double and triple correlations are sufficient in treating

turbulent flow problems even though there is a wall present. Hence the mathematical

procedure is comparatively simple in another sense that the building of equations

satisfied by higher order correlations can be dropped up to the present degree of ap-

proximation.

The first determination reveals that the variation of the mean squares of the tur-

bulent fluctuation is slower than the corresponding variation of the mean velocity

distribution across the channel, which agrees qualitatively with experiment. In view

of the fact that measurements of the mean squares of the components of turbulent

fluctuation have not been reported systematically in the literature for the flow under

consideration, we shall omit the quantitative comparison of the theory with the ex-

perimental data now available on these quantities.

In the second determination the mean velocity distribution will be calculated by

assuming constant mean squares of turbulent velocity components across the channel.

This is justifiable due to the slower variation of these functions across the channel,

and furthermore the mean velocity distribution remains practically unchanged in the

major portion of the channel—with the exception of the immediate neighborhood of

the wall—when the constant values assumed for these functions are different from

each other. This procedure of assigning constant values to the mean squares of the

velocity fluctuations and then calculating the mean velocity distribution can be con-

sidered as the initial step in a method of iteration which will be explained in §3 below

in greater detail.

In the final section we shall indicate the uncertainties connected with the correla-

tion integrals pointed out before (II, §8). They are probably not important for the

mean velocity distribution, because they involve possibly the mean squares of the tur-

bulent fluctuation which are taken to be constant for the present calculation These

uncertainties could be removed, if we had better experimental information on the var-

iation of the turbulent level across the channel and on the velocity correlation between

two distinct points in flows such as the one examined here. In other words the present

theory is perhaps sufficient so far as the mean velocity distribution is concerned, and

it points out the possibilities for future investigations in turbulence along both ex-

perimental and theoretical lines.

2. Mean velocity distribution based upon the solution of the equations of mean

motion and of double correlation. As before (I, §4) we take the positive x-axis (x =x1)

as the direction of mean motion of the fluid, the y-axis (y = x2) perpendicular to the

two parallel planes forming the channel, and the z-axis (z = x3) parallel to these planes.

The plane in mid-channel is chosen as the xz-plane. From the equations of mean

motion we have

Ti2 /p = — UT<r — vdU/dy, (2.1)

where

— dp/pdx = UT/d, a = y/d. (2.2)

The quantity 2d represents the width of the channel and Ur is the so-called friction

velocity.

Equation (2.1) defines the shearing stress rn in terms of y and dU/dy. Except in

the immediate neighborhood of the wall the viscous stress is small, so th is a linear
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function of y. On the wall —vdU/dy should be equal to , and ti2 should tend toward

zero as a limit.

The components r23 and r31 vanish due to symmetry, as pointed out before (I, §4).

From now on for simplicity we shall neglect the action of viscosity in the form of

laminar stress in all the equations of motion. A physical condition mentioned previ-

ously is that all average values over time are functions of y only. Furthermore in

the present special case in accordance with the definitions in II, Eqs. (5.3), those

components of the slowly varying tensors sLi and ba which have a single appearance

of the index 3 either in i or k must be both identically zero. The vanishing of these

functions is based upon the same argument as in the case of r23. The non-vanishing

equations of the second order correlation (II, (8.2)) then become

2 dU d   dU 2v 2vk _
 t 12 — + — w2wi - — 02111 — bu H   (k — 5)q2   w2 (2.3)

p dydy dy 3X2 X2

1 dU d    dU 2vk
 t22 —— + — wiw\ - — <12112 — b 12   WiW2, (2.4)

p ay dy dy X2

d _ dU 2v 2vk

dU 2v 2vk
— w2w2 = - a2133 — b33 + — (k - 5)q2 - — w2. (2.6)
dy dy 3X2 X2 *

These are obtained by giving i and k the sets of values (1, 1), (1, 2), (2, 2), (3, 3),

respectively.

In the above four equations q is the root-mean-square of velocity fluctuation de-

fined by

q2 = WjW>, (2.7)

and k is a constant. The slowly varying tensors a„mi* and &,•* should obey the diver-

gence relations [II, (5.4)]

02111 + 02122 + 02133 = 0, 611 + £22 + J33 = 0. (2.8)

The equation of vorticity decay [II, (7.11)] satisfied by Taylor's scale of micro-

turbulence X becomes in the present case

- 1 AGwiWidU/dy - 70Fq3/3V3 = - 2vEq2/3\2, (2.9)

where E, F and G are regarded as constants.

The constant G in (2.9) is probably not important, for in the center of the channel

the term involving G in (2.9) is zero due to the vanishing of dU/dy there, and in the

immediate neighborhood of the wall wiw2 vanishes although —dU/dy is large. Hence

for simplicity we choose G to be zero. In fact the presence of G would only change our

results slightly, as will be seen. The physical meaning of neglecting G in (2.9) is that

the term that represents the creation of vorticity by deformation of the mean mo-

tion is negligible when compared with those due to transport and decay.

If G were set equal to zero, Eq. (2.9) yields

\q/v = y/3E/35F = R0, (2.10)

where Ro is a constant number.
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Now we shall substitute the values of the triple correlations at the center of the

channel into Eqs. (2.3)—(2.6) according to their odd and even properties as functions

of y. We can set

w2w2 = UTa\<j, w* -- UTai<r, W2W2 = Ura3a, WiWJ = UTa4, (2.11)

where «i, a2, a3 and a4 are four dimensionless constants. Although the factor in

(2.11) is introduced for dimensional reasons, it is possible that these four constants

are all independent of the Reynolds number of the mean flow.

If we substitute from (2.10) and (2.11) into (2.3), (2.5) and (2.6), add the three

together and take into account the conservation relations (2.8), we find that the mean

square of the velocity fluctuation q2 satisfies the relation

= (2.12)
U* 10tfr|_ U, da J

where

a = ax + a2 + a3, R, = UTd/v\ (2.13)

Rr is called the friction Reynolds number.

Relation (2.12) is very significant, for it tells us that for large values of —dU/du,

q2 varies as the square root of — adU/da. Within a large portion of the channel,

dUIda is proportional to <r, so the dependence of q2 upon <r is fairly linear. This linear

dependence has been observed to some extent for w\ by Wattendorf and Kuethe4

and by Wattendorf and Baker,6 and has been anticipated in the light of von Karman's

law of similarity.

If G were different from zero, the above procedure would lead to

q2 f a dUl /  / 2a dUV'2
— = R0 \c- 2(1 + 35G) /VIO Rrlc )
Ul L UT da]/ \ Ur da J

(2.14)

which has a functional behaviour similar to that of (2.12) for large values of —dU/dcr.

It is apparent that Eqs. (2.3), (2.5) and (2.6) will determine wit w2 and W3 sepa-

rately. Here we encounter the uncertainty pointed out in II, §8 that the slowly vary-

ing functions c„m,t and bik may contain powers or even more complicated functions

of q as factors, and the existing experimental data do not provide enough evidence

for a quantitative comparison with these theoretical formulae. If, for the sake of

mathematical convenience, we assume £>u, £>22 and bn to be constant, and a2m, 02122 and

02133, which are odd functions of <j, to be proportional to a, then w\ and w\ will

behave very much like q2, that is, when <r is near zero, w\, and w% are constants,

and when a is large and near unity, they are all proportional to the square root of

—adU/da.

The equation for determining the mean velocity distribution is given by (2.4)

which can now be written, on account of (2.10) and the condition that W1W2 is con-

stant, in the form

4 F. L. Wattendorf and A. M. Kuethe, Physics 5, 153-164 (1934).
6 Th. von Kir man, Proceedings of the Fifth International Congress for Applied Mechanics (Cam-

bridge, Mass. 1938), p. 349.
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1 _ 1 dU 2kRTa2
— (wf -f- rt2n2) =  <r; (2.15)
V2 2 Ur da RlL'l

here we have set the odd function 6i2 equal to zero for simplicity.

As pointed out before the dependence of a2n2 upon q in the above equation is also

not known. If w% and q2 are both regarded as constants, the mean velocity distribu-

tion according to (2.15) is parabolic, which agrees with experimental data fairly well

for the range of <r from 0 to 0.8, and fails near the walls of the channel. This parabolic

law of velocity distribution has been suggested by Stanton6 in his measurements of

flows through a circular pipe of which the channel is a limiting case.

It has been calculated, though details will not be shown here, that this parabolic

distribution of the mean velocity for constant q2 and is not essentially changed if

we solve for w%, w%, w<| and dU/d<r simultaneously under the further assumption

that both a„a and 6,* are equal to zero. This condition is equivalent to the vanishing

of (w,iwt+dj,»w<)/p, which means that the shearing interaction between the pressure

gradient and velocity fluctuations is zero; it has been used in jets and wakes, as men-

tioned before. The reason why the velocity distribution is parabolic even for this

more rigorous treatment is not difficult to see without going into detailed calculations.

For in the neighborhood of cr = 0, both w\ and q2 are constants, so dU/dcr is propor-

tional to a. When the values of <r are near unity, both q2 and are proportional to

the square root of —adU/da, and hence mutually proportional; consequently Eq.

(2.15) again shows that dU/da is proportional to <r even in the vicinity of the channel

wall. We should anticipate, by the same argument, that similar simultaneous solu-

tions for w\,w\, w\ and dUJdcr would hold true even under the more general condition

that bn, 622 and 633 be constants and 02111, <12122 and a2i33 be proportional to a as men-

tioned previously.

In §4 below we shall compare the numerical values of R0, Rr and a of (2.12) with

available measurements.

3. Equations of triple correlation and the mean velocity distribution. The non-

vanishing equations of the triple correlation [II, (8.3)] for the present problem can be

written in the form

  dU d   dU 3 dru
3w2wi 1—- w3w2 = — 621m Cm H—- Tn —r— • (3.1)

1 dy dy dy p2 dy

  dU d   dL 1 / dr 12 dr22\
2iViW2 1 w2w2 = — 621112 — — <-"112 + - ( 2rI2 h rii I,

1 dy dy dy p2 \ dy dy /
(3.2)

dy dy dy p2 \ dy dy

  dU d   dU 1 / dr 12 dr22\
w\ (- — W\wjj = — 621122 —: C122 H—~( t22 —  h 2t 12 —-— ), (3.3)

dy dy dy p- \ dy dy /

  dU d   dU 1 dr12
W2W2 1 W1W2W2 — — 621133 C133 H—r r33 > (3.4)

8 dy dy dy p2 dy

d — d U 3 dT 22
w>2 = — 621222 C222 H T22 > (3-5)

dy dy p2 dy

' T. E. Stanton, Proc. Roy. Soc. London. (A) 85, 366-376 (1911).
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d   dU 1 dT22
  W^U'l = — £>21233  C233 H   T33     " (3.6)
dy 2 3 dy p2 dy

These are obtained by giving i, k and I the sets of values (1,1, 1), (1, 1, 2), (1, 2, 2),

(1, 3, 3), (2, 2, 2), (2, 3, 3), respectively. The other component tensor equations in

which the index 3 appears an odd number of times, namely, (1,1, 3), (1, 2, 3), (2, 2, 3)

and (3, 3, 3), are all identically zero, as are the corresponding equations of the second

order correlation.

From the discussions in the previous section it is apparent that Eqs. (2.3), (2.5)

and (2.6) are used to determine the mean squares of the fluctuation components, and

elimination of the triple correlations between these three equations and (3.1), (3.3)

and (3.4) respectively will give a more accurate determination of them. As pointed

out before, existing experimental data are not accurate enough to give a quantitative

comparison with the theory, and we shall not go into these detailed calculations here.

Furthermore Eqs. (3.5) and (3.6) lead to quantities which are still beyond experi-

mental proof; discussions of them will also be omitted for the present.

The elimination of the triple correlation w\w\ between (2.4) and (3.2) leads to the

equation for the mean velocity distribution. Before writing down this equation we

shall introduce a few more simplifications. In the first place the even function 621112,

which may depend upon q as mentioned previously (II, §8), is assumed to be a con-

stant; likewise the odd function cu2 is taken to be proportional to y and is put in the

form,

6112 = 2cUTa/d. (3.7)

It is also possible that the dimensionless number c may be a function of q and there-

fore an implicit function of the coordinate y.

The quadruple correlation w\w\ in (3.2) is of the same order of magnitude as

(wiw2)2 and w\ w\. As a first approximation we shall neglect all of these terms and it

will be shown afterwards in §4 that this approximation is justifiable. In short, (3.2)

defines the triple correlation W\W2 approximately by

  4 /dU
Wiivl = — ^>21112 — cUTa / • (3.8)

/ da

Utilizing the above relation and (2.10) which is derived from the equation of

vorticity decay, we find, after setting bn in (2.4) equal to zero for mathematical con-

venience, that
a dU d U,a

  -+- c ■—   = ba, (3.9)
UT da da dU

where
da

a = — (w; + a2m)/Ur, b = 2kRTq2/RoU(3.10)

The physical meaning of the three terms in the above equation is as follows: the term

in a represents the creation of turbulent energy partly due to deformation of the mean

flow (I, §3(a)) and on account of 02112 partly contributed by the shear due to the pres-

sure fluctuation («,tw4+a>,*w,)/p; the term in b denotes the decay of turbulence; the

term in c denotes the transport of turbulent energy.
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The definitions of a and b in (3.10) show that they depend upon g2 and w%, and are

therefore functions of a. Since q2 as well as w% as shown in the previous section varies

much more slowly than dU/da itself across the channel, we shall regard them as

constants as the initial step to solve for dU/da. This initial process can also be re-

garded as the first step in the method of iteration in solving the present problem of

turbulent flow. The second step will be to substitute this expression obtained for the

mean velocity into (2.3), (2.5) and (2.6) after eliminating the triple correlations by

means of (3.1), (3.3) and (3.4), and to solve for w\, w\ and w%. As the third step in this

procedure, we utilize these values of the mean squares of the fluctuation components

and solve (3.9) again for dU/da, and see whether the new result agrees with the solu-

tion obtained in the first step. Obviously this procedure of obtaining alternately the

mean velocity and mean squares of the turbulent fluctuation can be extended in-

definitely.
In the present paper we shall not follow this refined method of approach; instead

we shall solve (3.9) by assigning constant values to a, b and c, or to q2 and w\, and com-

pare the different solutions by varying these constants. The result will be that except

in the immediate neighborhood of the wall of the channel, the different mean velocity

distributions according to (3.9) for the different sets of a, b and c respectively agree

well with each other and with experiment, showing that the variation of the mean

squares of the turbulent fluctuation across the channel does not influence the mean

velocity distribution very much.

The solution of (3.9) with constant a, b and c is

2 a2 = aU/bUr -f iA\eiUleUT + At, (3.11)

where A i and At are two constants of integration.

If Ai in (3.11) is zero, then (3.10) gives a parabolic law of velocity distribution

and a must be negative, since b according to its definition in (3.10) is positive. The

presence of the term in Ai gives the so-called "logarithmic law" of velocity distribu-

tion which holds true especially in the neighborhood of the wall of the channel. Hence

the product cAi can not be zero. It is apparent that this exponential term in U/UT is

due to the presence of the triple correlation in Eq. (3.9).

The boundary conditions used to determine the constants cA\, At and the ratio

a/b are:

when <r = 0, U = Uc\ when <r = 1, U = 0, — dU/Urd<r = °°. (3.12)

The value Uc denotes the maximum velocity of the flow in mid-channel. We have

chosen the derivative —dU/UTd<x on the wall of the channel to be infinite. In fact,

it should be Rr which is a fairly large number. Since we are interested in the mean

velocity distribution within the channel proper, substituting infinity for the friction

Reynolds number RT gives a good approximation.

The boundary conditions (3.12) render (3.11) into the following final form,

(e*u.ivT - kUc/Ut - i)ff2 = _ K(Uc _ vyUT + e*ujvr[i - g-.Wc-miur], (3.13)

where n=»b/c and 6/a = 2[exp (kUcJ Ut) — kUc/ Ut — 1 ]/
Equation (3.13) expresses the mean velocity defect (Uc— U)/UT as a function of a

with two parameters k and UC/UT. The presence of these two constants may appear

at the first sight to contradict the experimental velocity defect law formulated by
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von Karm an,7 according to which (t/c— U)/UT should be independent of the Reynolds

number of the mean flow which, in turn, is a function of the ratio UC/UT. A close ex-

amination of the experimental data shows, however, that this discrepancy is not

serious. In the first place von Karman's velocity defect law can only hold true in the

central portion of the channel and there is a dependence of the velocity defect upon

the Reynolds number in the vicinity of the channel wall. It has been shown that for

flows in circular pipes Uc/ Ur increases from about 19 to 33 when the friction Reynolds

number 2aUT/v changes from \/l05 to 10s, 2a being the diameter of the pipe.8 In the

second place even formula (3.13), which does indicate the dependence of (Uc— U)/UT

upon UcJUT, can only account for the mean velocity distribution in the interior of

the channel for a given set of constants a, b and c in (3.11), and these constants have

to take another set of values in the turbulent boundary layer on the wall, although

the same functional behaviour of (3.11) still prevails within the layer.3 This point will

be discussed in greater detail in the following section.

The quantity UC/UT in (3.13) is given by experiment; then the constant k is fixed,

for instance, by passing the theoretical curve through the experimental point at

<x —0.7. In view of the variation of the ratio UC/UT with the Reynolds number of the

mean flow, we shall choose a few different values of k and calculate the mean velocity

Table 1. (UC-U)/UT

(1) (2) (3) (4) (5)

Obs. -0.1 0.0 +0.1 0.2151

0.00
0.10
0.20
0.30
0.40
0.50

0.60
0.70
0.80
0.90
0.93
0.96
0.98
0.99
1.00

0.00
0.16
0.38
0.66
1.10
1.64
2.33
3.13
4. Z8
6.30

8.81

0.00
0.06
0.23
0.52
0.95
1.50
2.22
3.13
4.31
5.92
6.58
7.39
8.12
8.64

9.86

0.00
0.05
0.22
0.50
0.91
1.47
2.19
3.13
4.38
6.17
6.91
7.88
8.76
9.40

10.94

0.00
0.05
0.21
0.48
0.88
1.42

2.15
3.13
4.50
6.60
7.51
8.74
9.93

10.82
13.07

0.00
0.05
0.19
0.44
0.81
1.34
2.08

3.13
4.75
7.72
9.30

11.84
15.01
18.21

distribution. This will lead to different values of Z7c/Z7r. But we shall see that for all

these cases the mean velocity distributions agree with each other and with experiment

within the channel proper.

Let us calculate the mean velocity distribution for the values of k equal to —0.1, 0,

0.1 and 0.2151, and determine the corresponding values of Uc/ Ur by passing the theo-

retical curves through the experimental point at <r = 0.7. The equations that deter-

mine (Uc— U)/UT for k= —O.l and 0.1 are given respectively by

' Th. von K&rm&n, Proceedings of the Fourth International Congress for Applied Mechanics,

Cambridge 1934, p. 70.
8 S. Goldstein, Modern developments in fluid dynamics, vol. 2, The Clarendon Press, Oxford, 1938,

p. 338.
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= 0.2785(U, - U)/UT - 1.039[«#-,w*-p>"7' - l], (3.14)

a2 = - 1.5870(£/c - U)/UT + 2.662[l - e+MUr-vuvr], (3.15)

For the case <c = 0, we can get a limiting equation by letting k approach zero in

(3.13), or we can solve (3.9) directly by setting b equal to zero. The latter procedure

leads to
(U. - U)/UT = 10.94[l - (1 - a2)1'*], (3.16)

where 10.94 is the value of (c/a)1/2.

The case when k = 0.2151 is represented by

a2 = 1 - e~°-2m<-uc~u),ur. (3.17)

This is the solution of (3.11) with a set equal to zero; the numerical value 0.2151

stands for the ratio b/c.

O.I O-Z 0.3 O.S 06 0-7 08 O-f to

Fig. 1. Velocity distributions in a channel.
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The experimental values of (Uc— U)/UT which are taken from a paper by Gold-

stein9 are given in column (1) of Table 1; the corresponding theoretical values ac-

cording to (3.14), (3.16), (3.15) and (3.17) are tabulated in columns (2), (3), (4) and

(5), respectively.

From this table we see that as the value of k increases from —0.1 to +0.2151,

Uc/Ur changes from 9.86 to oo. Hence 0.2151 is the maximum limiting value of k

for constant a, b, c in (3.9). Equation (3.17) shows in this limiting case that themean

velocity distribution in the whole channel is "logarithmic."

In order to avoid confusion, only the solution (3.14) for k = — 0.1 is plotted in

Fig. 1. The circles represent Donch's measurements10 found for Umd/v equal to

8.7 X104, Um being the average value of U over a cross section of the channel. The

crosses reproduce Nikuradse's results11 for Umd/v equal to 3.3 X104. It is seen that

apart from the immediate neighborhood of the channel wall, agreement between

theory and experiment is satisfactory.

4. Relation between the present theory and some known experimental data. From

the foregoing calculations we see that we can subject to experimental test not only

the mean velocity defect distribution (Uc— U)/ Ur and the mean squares of the

fluctuation components, but also the relation (2.10) between X and q and the relation

(3.8) which approximates the triple correlation WiW%. Let us examine relations (2.10)

and (2.12) first.

The experimental data used by Taylor in his statistical theory12 are, in c.g.s.

units; Uc= 114 cm/sec, {/, = 5.39 cm/sec, p = 0.00123, i< = 0.14, d= 12.3 cm. Since

according to (2.10) i?o=Xg/p is a constant, we can compute Ro from the values of

X and q in the center of the channel. In Taylor's table X2 in mid-channel is equal to

2.9 cm2, so X is 1.7 cm. The mean magnitude of the velocity fluctuation q at this

point is roughly 1.2£/, [cf. (4.2) below]. These values then give

i?o = 78.5, RT = 474. (4.1)

We have shown above in §2 that wf behaves very much like q2. The experimental

values of w\/lfl across the channel, determined by Wattendorf and Baker5 for the

flow with Reynolds number 109,000, can be represented by

  2 2 1/2

w\/Ur = 0.412(1 + 27.2a) . (4.2)

As far as the order of magnitude is concerned, w\ can be put equal to q2/3. Bycom-

paring (4.2) with (2.12), we find that

RoVa/VlORr ~ 3 X 0.4 = 1.2. (4.3)

If we use a parabolic representation of the mean velocity distribution that goes

through the experimental point at a = 0.7, we have

- 2adU/Urda = 25.6<r2. (4.4)

Then a in (2.10) becomes 25.6/27.2 = 0.94. Putting this value of a in (4.3), we obtain

i?o/-^r~10X1.4/0.94 = 15, while from (4.1) we find that i?o/^r~13.

9 S. Goldstein, Proc. Roy. Soc. London (A) 159, 473-496 (1937).

10 F. Donch, Forschungsarbeiten des Ver. Deutsch. Ing. no. 282 (192,6).

11 J. Nikuradse, Forschungsarbeiten des Ver. Deutsch. Ing. no. 289 (1929).

12 G. I. Taylor, Proc. Roy. Soc. London (A) 151, 456 (1935).
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This shows the order of agreement between the two sets of values obtained from

two entirely different experimental sources. It must be pointed out, however, that

the number Rr = 474 for the experimental value of X used in the above calculation

may be too low for the flow to be in a fully developed turbulent state.

Equation (2.10) also shows the dependence of 2?o upon the quantities E and F

which occur in the definitions of the double and triple correlation functions between

two distinct points [II, (6.8), (6.11)]. The measurement of these functions separately

will give another check on the value of the number R0 discussed above.

We next study the values of the three constants a, b and c in Eqs. (3.9) and their

physical significance.

(1) k= —0.1. According to (3.10) b must be positive, so c in this case must be

negative. The definition of c/a from (3.13) and (3.14) gives

c/a = 20/0.2785 = 72. (4.5)

Hence a must be also negative. If <12112 in (3.10) were zero, a becomes of the order

of 0.4 and c is equal to 29. From the definition of c in (3.7), we find that

C112 = 58 U*/d, (4.6)

which is 29 times larger than 2ti^th/p2dy, a term of the same order of magnitude as

the one in the quadruple correlation dw\w\/dy. Hence all these terms are negligible as

a first approximation.

After the value of c is known, the triple correlation function Wiw\ is determined

uniquely according to (3.8); the constant term 5621112 is fixed by the value of wxw% at

<7 = 0.

By means of 6= —0.1c, the definition of b in (3.10) and the values of Rr/Rl and

<f/lft given before, we find the numerical value of k to be of the order of 16.

(2) k = 0, (c/a)1/2 = 10.94, c/a = 120. This gives results similar to those in case (1)

and consequently the terms in the quadruple correlations in (3.2) are still negligible.

In this case c and a must be negative as in the foregoing example. The meaning of

6 = 0 is that the term due to the decay of turbulence in (3.9) is negligible when com-

pared with the other two.

(3) k = 0.1. In this case c should be positive. Then the definition of c/a from (3.13)

and (3.15) gives c/a = 20/1.5870~13, and a must be also positive. The condition

that a be greater than zero changes the picture a great deal, for then <12112 in (3.10) is

negative and its magnitude is greater than w\. Nevertheless the terms in the quadruple

correlations are still negligible, if the absolute value of <12112 is, say, a few multiples

of w\-

(4) k = 0.2151, a = 0. Here we have b/c = 0.2151. Putting this value into the defini-

tion of b from (3.10), we have c~10X&X1.2/15, which is about 12, if k is of the

order of 15. This gives cu2 of (3.7) equal to 24Ut<r/d, a quantity still about 10 times

greater than the terms involving the quadruple correlations in (3.2). The physical

significance of a = 0 means that in (3.9) the term due to deformation is small when

compared with the terms due to transport of and the decay of the turbulent energies.

Obviously from the equations of double correlation (2.3)-(2.6) the magnitude of k
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can be determined by measurement of the mean squares of the velocity fluctuation

components.

From the four alternative cases discussed above we see that although the measure-

ment of the mean velocity distribution alone will not single out which one is the

correct theoretical mean velocity distribution, measurements of the variations of the

higher order correlation functions across the channel will decide this question. For

example, experiment on the triple correlation wxw\ in (3.8) will decide whether c is

negative or positive, and the theoretical pattern for the mean velocity distribution

can thus be determined.

From another angle the above four special cases can also be considered to repre-

sent the mean velocity distribution in four parts of the channel. In the central

portion, we have negative a and negative c [cf. (3.10), (3.8)]. Since both c and a2n2

can be functions of the coordinate <r, their values may change at the various points

of the channel. It is possible that a may eventually become positive as <r increases

near the wall, while c which was negative in mid-channel, increases to zero and finally

becomes positive on the wall of the channel.

According to its definition in (3.10), b is positive and is a monotonically increasing

function of the distance from the center; likewise k increases monotonically with er,

if c has already become positive. This increasing property of k as the wall is ap-

proached is substantiated experimentally. In Hu's theory of the turbulent flow along

a semi-infinite plate,3 the mean velocity distribution in the turbulent boundary layer

can be represented by an equation analogous to (3.11), and the value of b/c is equal

to 0.4 instead of 0.1 as in case (3). Hence our present solution for mean motion only

covers the channel proper; if the boundary layer on the channel wall is approached,

the solution should be replaced by Hu's result. In fact it is well-known experimentally

that the turbulent boundary layer on the wall covers the region 30 </?r(l — <r) <250.

In Donch's measurement10 cited above, Rr is equal to 3630, so the range 0.931 <<r

<0.992 represents approximately the turbulent boundary layer on the wall and we

should expect formula (3.13) to fail in this region. A rigorous theory to explain the

mean velocity distribution for the entire channel including the boundary layer

might not be impossible according to present indications, but the actual mathematical

manipulation involved would be much more complicated than that in the present

treatment.

5. Conclusion. Based upon the foregoing analysis in the cases of the four values

of k for the motion of a turbulent fluid through a channel, we may conclude that the

velocity defect distribution (Uc— U)/UT, which is practically independent of the

Reynolds number of the mean flow within the channel proper according to von

Karman, is also independent of the magnitudes of the turbulent fluctuation when the

flow has reached the steady turbulent state. The question as to whether the above

conclusion can be generalized to state that the double and triple correlation distri-

butions across the channel when expressed in terms of the frictional velocity UT,

namely, the ratios wjVj/Ul and WiWjWk/Ul< are also independent of the Reynolds

number of the mean flow and of the correlations of still higher orders remains to be

seen theoretically as well as experimentally. In any event, the friction velocity UT

probably plays an important role for turbulent flow problems involving the presence

of a wall, as in the present problem.


