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ON THE STABILITY OF TWO-DIMENSIONAL PARALLEL FLOWS

PART II.—STABILITY IN AN IN VISCID FLUID*

BY

C. C. LIN

Guggenheim Laboratory, California Institute of Technology

7. General considerations. The criteria of Rayleigh and Tollmien. At the end of

Part I, we have shown that the study of the stability problem in an inviscid fluid

gives valuable information provided it is kept in mind that we are actually dealing

with the limiting case where the Reynolds number becomes indefinitely large. The

study of the stability of two-dimensional parallel flows in an inviscid fluid is usually

regarded as being quite complete, through the work of Rayleigh and Tollmien. Their

results show that instability depends very much upon the occurrence of a point of

inflection in the velocity profile. However, it seems that physical interpretations of

such general results are not well known. Such an interpretation will be given in §§9,10

of this part. There are also several points in the mathematical theory which require

further development and clarification. These will be brought out for further considera-

tion in §§7, 8.

We now proceed to make a critical survey of some aspects of the stability problem

in an inviscid fluid. First, let us summarize the conclusions obtained by Rayleigh and

Tollmien. These can be conveniently described as the necessary and the sufficient

conditions for the existence of a disturbance, self-excited, neutral, or damped.

1) Necessary conditions for the existence of a disturbance.

a) If the flow possesses a self-excited or neutral mode of disturbance with finite

wave length, the velocity profile has a flex at some point y = y„ where yi<y,<y2.

Furthermore, in the case of a neutral disturbance, the phase velocity must be c = w(ys).

b) If the flow possesses a damped mode of disturbance, no immediate conclusion

can be drawn.

2) Sufficient conditions for the existence of a disturbance. So far, the sufficient condi-

tions are known only for symmetrical and for boundary-layer velocity distributions.

The results may be stated as follows.

a) There is always the neutral disturbance given by c = 0, a = 0, <f>{y) =w[y).

b) If w"(y,)= 0, for yi.<ys<yi, there is a neutral disturbance with c = w(y,); fur-

thermore, if w'"(y,) 7*0, self-excited disturbances also exist.

Discussion. The condition w'"(ys)y*0 involved in (2) (b) will be shown to be ac-

tually unnecessary, by an improved method of proof to be discussed in the next sec-

tion. The statement in (1)' (b) regarding damped disturbances differs from the origi-

nal conclusion of Rayleigh and Tollmien. Indeed, in the work of Lord Rayleigh, the

solution is taken to be valid all along the real axis. Hence, in accordance with the dis-

cussion of §5, Part I, such considerations do not include damped disturbances. How-

ever, Rayleigh and Tollmien did not distinguish between an amplified disturbance

and a damped disturbance, because they regarded them as complex conjugates. As

pointed out in §5, this is not permissible. In fact, if we accept the original conclusions

* Received May 18, 194S. Part I of this paper appeared in this Quarterly, 3, 117—142 (1945).
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of Rayleigh and Tollmien, a profile without a flex could not execute any kind of dis-

turbance. This can hardly be reconciled with our intuition regarding the state of

affairs in a real fluid at infinitely large Reynolds numbers.1 According to the present

interpretation, only damped solutions can exist. Such a conclusion is also borne

out by the investigations for a viscous fluid.2 It is to be noted that the neutral and the

self-excited disturbances, existing under the condition w"(y,) = 0, are free from the

effect of viscosity inside the fluid, because the neutral solution is also regular at y = ys

where w = c. Hence, we may conclude that disturbances essentially free from the effect

of viscosity inside a fluid can exist only for velocity distributions with a flex.

The results of Rayleigh and of Tollmien discussed above tend to give the impres-

sion that the occurrence of a flex in the profile is the decisive factor in the determina-

tion of instability not only in the case of an inviscid fluid, but also in the case of a

viscous fluid.3 However, the investigation in Part III will show that this is by no

means the case. When instability first occurs, as one increases the Reynolds number,

viscous forces still play a dominant role, and the main characteristics of the behavior

of the fluid with respect to a disturbance do not depend upon the occurrence of a flex

in the velocity curve. Indeed, it is physically improbable that a slight change of the

pressure gradient in the case of a boundary layer-—which may cause a change from a

velocity curve without a flex to one with a flex—should cause a radical change in the

essential characteristics of stability. As we shall see later, the instability of a boundary

layer depends more on the outside free stream than on the occurrence of a point of

inflection. It might be argued that the free stream is analogous to a point of inflection

in that a vanishing curvature is involved; but even if this is admitted, we must still

note that the essential features in this case are not obtained from an investigation

neglecting the effect of viscosity. Indeed, from inviscid investigations, it is concluded

that a boundary layer with zero or favorable pressure gradient is stable, except for

the very trivial type of disturbance with infinite wave-length and zero phase velocity.

The present investigation shows that all boundary-layer profiles can be unstable, and

exhibits results in agreement with the physical suggestion just discussed.

It thus seems that any conclusion obtained from inviscid investigations must not be

taken over directly to the case of the real fluid, where the stability phenomenon is largely

controlled by the effect of viscosity and not decided primarily by the occurrence of a flex

in the velocity curve.

Indeed, even when we are mainly interested in the behavior in the limiting case

of infinite Reynolds numbers, the existence of a flex is not as significant as it may

appear to be at first sight. The existence of neutral or amplified disturbances has so

far been proved only for symmetrical and boundary-layer types of velocity profiles.

This may not be true for other types of velocity profiles, e.g., when the walls are in

relative motion. The following example will bring out this point. Let us consider the

velocity distribution w(y) =A -\-B siny, yi<y<yi, which has a flex at y — 0 if

yi<0<y2. According to the above necessary conditions, the only possible neutral

1 This is the objection of Friedrichs, loc. cit. (Ref. [5 ]) p. 209. (The references are listed at the end of

Part I.) It must also be noted that the non-linear terms are not negligible in the case of an ideal fluid.

We shall consistently restrict the magnitude of our disturbances so that the effect of viscosity is always

more important than the effect of non-linearity.

1 See figures in Ref. [27].

3 See Taylor's discussion on p. 308 of Ref. [70].
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disturbance is the one with c = A. Then the equation of disturbance (6.21) reduces

to <£"+ (1 — a2)<j> =0. It has the solution

</>(y) = C sin {Vl - <*2 b ~ yi)},

which vanishes at y = y\. If 0(3*2) is also required to vanish, we must have

\/l — a2 (y2 — yi) = rax, (n — integer),

and hence
a2 = 1 — [rax/(y2 — yi)]2-

Thus, if y-i—ji<7r, there is no possible neutral disturbance; if y^ — y\ = r, there is the

one with a = 0; if t <yi—yi<2ir, there is one with a^O; in general, if m-w <y?.—y\

<(m + l)7r, there are m neutral disturbances with 0. In the last case, there are

also m points of inflection in the velocity profile.

It can thus be seen that the general shape of the velocity profile plays a very im-

portant role even in the limit of infinite Reynolds numbers. Indeed, it will become

clear from Part III that the eigen solution with eigen values a =c = 0 is not as trivial

as it might appear at first sight, for it actually represents a limiting case with R—><».

This solution exists for symmetrical and boundary-layer profiles, but its existence is

not immediately evident for other types of profiles.

In spite of all these points against the decisive nature of the flex, it must be ad-

mitted that its occurrence certainly makes the motion comparatively unstable. This

can be expected from the original results of Rayleigh and Tollmien, and can be seen

more clearly from the interpretation of the mechanism of inertia forces to be given

in §§9, 10. However, these results must not be taken to indicate any decisive nature

of a flex. The essential features of instability can only be obtained through considera-

tion of the effect of viscosity.

We shall now conclude this section by making some critical discussions of Heisen-

berg's classification of velocity profiles and the use of broken linear profiles for the

study of stability problems.

Heisenberg's classification of velocity distributions. Heisenberg attempted the case

of flow between solid walls in relative motion with the condition that Re(w — c) van-

ishes only once for y\<y <yi (loc. cit., p. 592). Regarding a2 as small, he approximated

the condition (6.18) by K\{c) =0 [cf. (6.26), (6.24)]. He then classified the profile into

four classes: (i) those for which K\{c) = 0 has a complex root; (ii) those for which

Ki(c) =0 has a real root; (fit) those for which the real part of Ki(c) vanishes for a cer-

tain real value of c; (iv) those for which none of the above three cases is true. Heisen-

berg concluded that the first class is unstable, the second generally unstable, the rest

stable.

In discussing the validity of these conclusions, the following point must be borne

in mind. If we can show that a certain type of disturbance exists for a2 = 0 and

aR—*00, it may also be expected to exist for sufficiently large values of aR and suffi-

ciently small values of a2. However, the non-existence of a certain type of disturbance

for a2 = 0 and aR—»<» does not exclude the possibility of its existence for finite values

of a2 and aR. It appears therefore that we can only expect to conclude the instability

of a velocity distribution by discussing the roots of Ki(c) = 0. Thus, apart from some

flaws in Heisenberg's mathematical deductions, only the first two classes can have

any decisive significance.
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If Ki(c) has a root with a positive imaginary part, the motion is unstable. If Ki(c)

has a real root, Heisenberg shows that the motion would be unstable when the effect

of viscosity is considered. This will be studied more fully in a generalized form in §11.

However, if K\{c) has a root with a negative imaginary part, we cannot conclude the

instability of the flow by taking the complex conjugate of Ki(c)=0 (as Heinsenberg

did). For if

,  7*2
I dy(w — c)~2 = 0,

J c

then (cf. Fig. 5)

j dy(w — c)~2 = — 2W.Ro, C
" C' Fig. S. Path around the critical point in the case Ci<0.

where Ro is the residue of (w — c)~2 at yo■ In fact Ro — —wS'/wo3. Now K\(c) is the

complex conjugate of fcdy(w — c)-2. Hence,

Ki(c) = 2iriR0 = — 2«'wo"/W3,

which does not vanish unless w " =0. Hence, the equation Ki(c)=Q tells us nothing

about the existence of the root c or any other root with a positive imaginary part.

Thus, Heisenberg's attempt appears to be not as successful as Tollmien's later

work [75], which at least brings out the characteristic properties of symmetrical and

boundary-layer distributions. A complete classification of velocity distributions, how-

ever, is not yet existent.

Approximation using broken linear profiles. Some investigations of Lord Rayleigh

were carried out by approximating the velocity profile with straight-line segments.

With this approximation, the solutions of (6.21) can be expressed in terms of elemen-

tary functions. Lord Rayleigh also tried to verify his conclusions by considering the

roots of iTi(c)=0, using the same approximation for the velocity. However, the re-

sults of his investigations are doubtful, because the number of roots obtained for

Ki(c) is equal to the number of corners chosen in the approximation. This was demon-

strated by Heisenberg to be inherent in the method of approximation. The general

idea is as follows. As discussed above, the stability condition (6.18) may be approxi-

mated by Ki(c) =0 in certain cases. Although Rayleigh's approximation may be made

very close so far as the velocity distribution is concerned, the approximation to

(w — c)~2 is always bad in the neighborhood of the corners. Consequently, the integral

tfi(c) is not properly approximated. In fact, a continuous broken profile w(y) does not

allow itself to be continued analytically to the complex y-plane without introducing

discontinuities (cuts). It thus appears that all results deduced from the consideration

of broken profiles must be regarded with reserve. The same criticism applies to

Tietjen's work with the viscous fluid. His analysis failed to give a minimum Rey-

nolds number below which all small disturbances are damped out.

8. Rigorous proof and extension of Tollmien's result for the existence of unstable

modes of oscillation. In this section, we want to give a rigorous proof of the existence

of amplified solutions of (6.21) satisfying the second and the third boundary condi-

tions of (6.22) when the velocity profile w(y) has a flex at y=y„ i.e.,

w"(y.)=0. (8.1)
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The idea of the proof is essentially the same as that used by Tollmien, but the method

is improved. It has the further advantage of enabling us to extend the results to cover

cases where w"'(y,) =0,—a condition which had to be excluded by Tollmien.

According to previous results, the neutral disturbance must have a phase velocity

c equal to
c, = w. = w(y.). (8.2)

Let the corresponding value of a be denoted by aThe essential idea of the proof is

(1) to show that there exist eigen-values of c and a>0 in the neighborhood of the

values of c, and a, such that the imaginary part of c does not vanish, and then (2) to

show that the imaginary part is actually positive. The first statement can be expected

and can be readily established, if we can show that the left-hand sides of (6.18)-(6.20)

are analytic functions/(a, c) of the two variables a and c in the neighborhoods of a,

and £,. For if this is true, we can always solve/(a, c) =0 for c as an analytic function

of a, (there may be more than one branch),, by the implicit function theorem. Hence,

there is at least one value of c corresponding to every real value of a in the neighbor-

hood of a = a,. Furthermore, by (8.2), this value of c, being unequal to c„ cannot be

real, and the first part of our result is established.

To prove the analyticity of/(a, c) seems to be a trivial problem. Nevertheless, we

shall find below that it is impossible to establish it in the neighborhood of (a, c) = (0, 0).

The chief problem in the proof is to overcome the difficulty caused by the singular

point of the differential equation (6.21).

If w — cjL0, we can write (6.21) in the form

w"
<l>" - a2<t> = 0. (8.3)

w — c

Let us now consider a simply-connected region R of the y-plane which encloses the

y-PLANE

c-PLANE
c=w(y)

Fig. 6. The region of analyticity of the inviscid solutions.

points y =yi and y — yt, but excludes the point y„ the passage from yi to y2 being taken

in the lower half of the y-plane. We consider also a neighborhood S of yt, mutually

exclusive with the region R. Let us regard the relation

c = w(y) (8.4)

as mapping the regions R and S into two regions R' and S' of the c-plane (Fig. 6).

If the mapping is one-to-one, (as can be expected if w'(y)y£0 for yi<y<yi), these
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regions will also be mutually exclusive. Then, if we restrict y to R and c to S', the

coefficients of (8.3) are analytic functions of the independent variable y and the pa-

rameters a and c. Hence, a fundamental system of solutions of (8.3), which we denote

by ct, c) and faiy, a, c), are analytic functions of the three variables y, a, and c.

We understand that y is restricted to the region R, c is restricted to the region S',

while a may be in any finite region enclosing aa. Thus, (for example),

Ma, c)
$i(yi; a, c) faiyi; a, c)

<t>i (?»; a. c) 4>i {yi\«. c)
(8.5)

is an analytic function of the variables a and c, as we want to prove.

We note that in the neighborhood of (a, c) = (0, 0), the above reasoning fails. The

region R (which has to enclose the point y =yi) and the region 5 (which has to enclose

the point where w = c = 0) cannot be taken to be mutually exclusive. In fact,/(a, c)

presumably has a singular point at the point a = 0 (a logarithmic branch point). We

shall discuss this case a little more closely at the end of this section.

Let us proceed to show that there actually exist values of c = c(a2) with a positive

imaginary part corresponding to positive real values of a. This is necessary because

the usual argument of taking complex conjugates has been shown to be invalid. For

this purpose, we consider the power series

c = c, +
/ dc\ 1 /d2c \
U).<x-w+^b).(x-xj,+"-' (8'6)

where X=a2.4 Since X is restricted to real values, the important point to be shown is

that the first of the derivatives in (8.6) for which the imaginary part does not vanish is of

odd order. Then, by taking values of X slightly greater or smaller than X„ we can al-

ways make c,->0. For these values of c and a2, we can continue our solution 4>{y)

analytically so that it is given along the real axis between y\ and yi, thus obtaining an

inviscid solution.

Let us now consider (8.3), writing X for a2. We have

w"
L(<t>) = <f>" ~M 0 = 0. (8.7)

w — c

Let <j) be an eigen function with X, c as the corresponding eigen-values. Then

r, s „ , W" ( W" dc1
£(0x) =  = V+- : \<t>, (8.8)

w — c (. (w — c)2 d\)
where

d<t> d<j> dc
<t>\ = 1  

d\ dc d\

We distinguish two cases: (1) the point y=ys is a simple root of w"{y)= 0; (2) the

point y — ys is a multiple root of w"(y) =0.

In the first case, w"'(y.) t±0. In the limit X—>X„, c—>c», Eqs. (8.7) and (8.8) become5

4 Since dX/da^0 at a —a,, the correspondence between a and X is one-to-one in the neighborhood of

X =a .
a s

5 A subscript s denotes that the parameters X and c are put equal to Xs and c. respectively. A sub-

script X denotes differentiation with respect to X.
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w"
L,(<t>,) = </>" — \,<t>, —  <t>, - 0, (8.9)

w — c,

w" [ w" / dc\)
,) = <t>\. —  <t>\, = s 1 +   — (— ) ><f>.. (8.10)

w — c, (. (w — c,y V/X/J

From these, we deduce that

<t>$L,(<t>u) — +   7; (W) }</>!•
dy v \w — c.)2 \<TK/,)

Now, satisfies the same boundary conditions as cj> does, because those conditions

are satisfied by <f> for each pair of values of X and c, and </> is an analytic function of

them. Hence, integrating <£,Z,,(<£x,) —<Ax»Z-,($.) between the limits {yu y2), we have

/dc\ r ■* u>" 2 f 5,
[~z) I } ~4>'dy+ I <t>.dy = 0,
\d\/, J (w — c,y J w

or

(S) = ~ 5 " ̂ ^ ~ c'^dy' (8-n)

The denominator of the above expression is equal to

V2-V,

W'y + iwivy2 + • • • )(wly + \w't" y2 + • • • + 2<t>**<b'**y + • • -)dy
r vr-v,

J VI—V

w'." . r *"-«• (1 )
= —— <j>s, I < \- A0 Aiy -\- • • • > dy,

v. J vi-v. V y )

where <t>,, is the value of <f>, at y=y„ and A0, Ai, ■ ■ ■ are real. Hence, the imaginary

part of the above expression is ir4>,,w!"'/wj2. Since 4>,{y) is real and <j>„ does not van-

ish,6 we have arrived at the required result. The above argument is a rigorous formu-

lation of Tollmien's work.

In case w"(y) has a multiple root at y = y„ the proof of Tollmien does not hold,

but the above method can still be carried through. The restriction must be made,

however, that the point y, is a point of inflection where w"(y) actually changes its

sign. Then, y, is a root of w"(y) of odd multiplicity, and the first of the derivatives

wiv{yt), wv(y,), • ■ ■ which does not vanish is of odd order. Such a point always exists

when the curvature of the velocity curve has different signs at yi and y2. If we differ-

entiate (8.7) n times with respect to X, we have the following equation for each value

of n:
" „ d' / w" \

»>) = n<j>\("-n + 2-i Cr<t>\'"-') 1 ). (8.12)
r_i d\r \ w — c /

Let w"(y) have the root y, up to the multiplicity 2m + l, m>0. Then, (8.10) is

regular in a neighborhood of y — y», and the value of (dc/dX)e as given by (8.11) is

real. Let us consider the boundary value problem of the differential equation (8.10),

requiring </>x, to satisfy the same boundary conditions as The solution can be ob-

• Tollmien [74], p. 92.
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tained from by making A—>X,, and is moreover real along the real axis, by a

direct consideration of (8.10).

Continuing the same argument with equations of the type (8.12) with n = 2, 3,

• • • , 2m and c-+c,, X—>X,, we find that

/d2c\ (d3c\ /d2mc\

<*»).. <*«). • • •. <*«).; . (—)_

are all real. Finally, for « = 2wz + l, we obtain a relation of the type

/dc\2m+1 /* V2 /d2m+lc \ r V2

<2* + 1)!W. J„

Just as in the case of the equation preceding (8.11), it can be easily seen that the above

integral f"'w"cl>l(w — c)~(2m+i)dy has the imaginary part 4>2a /(2ot + 1)! [w!,)<2m+2>

while the other term on the left-hand side of (8.13) is real. Thus, (d2m+1c/d\2m+i), has

a non-vanishing imaginary part. This is the result desired.

This completes the proof of the existence of amplified solutions near the neutral

solution c = ca, a=a, when the velocity curve has a point of inflection.

The proof of the existence of amplified solutions near the neutral solution c = 0,

a = 0 cannot be so easily formulated into a rigorous form. From the solutions (4.14),

it is very easy to obtain the solution <f>i which approaches the eigen solution 4> =w(y)

as c—>0, a2—>0, with a2 = 0(c). The solution is

</>i=— cw{ (w — c) I (w — c)~2dy
J VI

X 11 + a2 J" dy(w — c)2 dy(w-c)-*-\ j. (8.14)

As can be easily verified from (6.21) the condition that <t>i be an eigen function is

/> «t{w — c)<j>idy = 0. (8.15)
Ui

From this, it follows that

«,_L f",
\d\/0 w{ J Vl

w2dy, (8.16)

and that the imaginary part of (rf2c/dX2)0 is 2ir(dc/(Th)tfw[/w'^, which is positive if

there is one flex in the velocity profile iwi' >0). However, the real part of (d*c/d\2)o

becomes logarithmically infinite, and hence the argument is not rigorous. Also, it does

not seem easy to make suitable modifications and extensions in case w"(yi) = 0. It

should be remarked that Tollmien's proof is not essentially different from the argu-

ment just given.

Similar considerations can be applied to boundary-layer profiles, and similar re-

sults can be obtained confirming and extending Tollmien's original results.

9. Physical interpretation of instability in an inviscid fluid. The fact that the in-

stability of a two-dimensional parallel laminar flow is so closely connected with the

occurrence of a point of inflection in the velocity profile demands a physical inter-
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pretation. Since Eq. (6.21) is essentially the vorticity equation, we would expect

w" = 0 to indicate a maximum or minimum of the vorticity —w' of the main flow.

This is actually where the explanation is to be found.

Since we have neglected the effect of viscosity, a fluid element maintains its vor-

ticity throughout the motion. From this point of view, a two-dimensional parallel

flow may be regarded as the motion of a large number of vortex filaments under the

action of each other. Filaments of equal vorticity are arranged in the same layer, and

the whole flow is built up of a collection of such layers.

The following physical interpretation is based upon the fact that a fluid element is

accelerated in such a field if it is associated with an excess or a defect of vorticity.

These considerations were originally developed by von Karman7 for the interpreta-

tion of the failure of the simple vorticity-transfer theory of fully developed turbulence

as applied to the case of parallel Couette flow. The idea is developed in greater mathe-

matical detail here in this section and the next. It will be noticed that the considera-

tion is essentially two-dimensional, and hence is even more suitable here than for

fully developed turbulence, where the fluctuations are essentially three-dimensional.

An alternative interpretation of the results of Rayleigh and Tollmien, but still based

upon vorticity considerations, will also be given to demonstrate the role of the viscous

forces.

Let us imagine a disturbance of the flow such that an element E\ of fluid of the

layer L\ is interchanged with an element Ei of a neighboring layer hi. For definiteness,

let us suppose that the layer Z,2 has a higher vorticity than the layer L\ in the undis-

turbed state. Since E\ preserves its vorticity, it will appear to have a defect of vor-

ticity when it is in Z,2. Similarly, £2 appears to have an excess of vorticity.

Let us fix our attention on one element, say E2. It will be shown in §10 that a fluid

element with an excess of vorticity is accelerated in the direction of the positive

y-axis with an acceleration r-I//{z>'(*, y)\^i'dxdy, where fo (y) is the gradient of

vorticity of the main flow, v'(x, y) is the component of the disturbing velocity per-

pendicular to the direction of flow, and F is the total strength of the vortex filaments

corresponding to the disturbance. Examining the signs of the various quantities in

the acceleration formula, we can easily see that E2 is accelerated toward a region of

higher vorticity if the gradient of vorticity does not change sign anywhere in the fluid.

Thus, E2 is accelerated toward h2. A similar consideration holds for the element E\.

Hence, in either case, the fluid element is returned to the layer where it belonged (by the

acceleration due to its interaction with other vortex filaments). The motion is there-

fore stable when the gradient of the vorticity does not vanish.

When there is an extremum of vorticity, an interchange of fluid elements on op-

posite sides of the extremum does not give rise to an excess or a defect of vorticity.

Furthermore, the gradient of vorticity vanishes there, and has opposite signs on

opposite sides of that layer. It can easily be seen from the above acceleration formula

that the restoring tendency mentioned above is largely impaired in such a case. Thus,

exchanged fluid elements are not as strongly forced back by the action discussed

above. Such an exchange constitutes a disturbance because there is an exchange of

momentum. Thus, a disturbance may tend to persist and perhaps to augment. The

motion is not necessarily stable.

' Cf. discussions of the vorticity transfer theory of turbulence in his general lecture at the Fourth

International Congress for Applied Mechanics [19], Some developments in that direction were continued

by C. B. Millikan (unpublished).
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The above discussion is based on very general considerations and does not depend

on the consideration of a periodic wavy disturbance as used in the mathematical

analysis. We shall now support the above argument by considering a neutral wavy

disturbance, with the understanding that if such a disturbance can persist (except

for the exceptional case of infinite wave-length and zero phase velocity), the motion

is presumably unstable. From these considerations, the importance of viscosity in the

inner friction layer will also be brought out.

Let us consider an observer moving with the phase velocity of a neutral wavy

disturbance. He will observe a stationary pattern of the flow (see Fig. 7).8 Closed

stream lines are inevitable unless the disturbance has no ^-component of velocity in

the critical layer w = c, for the

flows on opposite sides of the criti-

cal layer are in opposite directions

relative to the observer. It appears

unlikely that the ^-component of

the disturbance should be zero

throughout that layer. Indeed, it

has been shown to be impossible

mathematically.9 Thus, whenever

a neutral disturbance persists, it

involves a steady exchange of fluid y j ////////////// //////
elements on opposite sides of the

critical layer. Fig. 7. Stream lines of a neutral disturbance as observed by

If the effect of viscosity is to be an observer moving with the wave velocity,

negligible, fluid elements on the

same stream line must have the same vorticity. If the gradient of vorticity of the main

flow is zero or small near the critical point, it is easy to compensate this small differ-

ence of vorticity by the vorticity of the superposed flow, while the "scale" of disturb-

ance [as measured in order of magnitude by u'/(du'/dy)] remain the same as that

of the main flow. It is thus not impossible to find a neutral disturbance for which the

effect of viscosity is negligible. The motion may be unstable.

On the other hand, if the gradient of vorticity of the main flow is finite, the super-

posed small disturbance must also give a finite gradient of vorticity. This means that

the "scale" of the disturbance must be very small in the critical layer. The diffusion

of vorticity by the effect of viscosity is then inevitable. It is thus impossible to find a

neutral disturbance for which the effect of viscosity is negligible. The motion is inertially

stable.

10. Acceleration of vortices in a non-uniform field of vorticity. In the foregoing

physical interpretation of inertial instability, we have considered the acceleration of

an element of fluid in a two-dimensional parallel flow when this element of fluid does

not have the same vorticity as the surrounding layer. We are now going to derive the

explicit formula for the acceleration. The derivation shall be made in two different

ways: (1) by kinematical considerations (using vorticity theorems); (2) by considera-

8 This figure is due to Lord Kelvin (loc. cit.). He pointed out that the facts discussed here are "sur-

prising," but did not attempt to explain their connection with the mechanism of hydrodynamic stability.

3 This follows at once from Rayleigh's original results, if we apply it to the region between this layer

and the solid wall (cf. Tollmien, loc. cit., 1935).
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tions of the pressure gradient. In either method, we shall consider a perfect fluid in

accordance with the stability problem under consideration.

1) First derivation, by kinematical considerations. For definiteness, let us consider a

two-dimensional flow between two solid walls, which we shall take to be y = +b. Let

the velocity components of the main flow be

U = w{y), V = 0, (10.1)

and those of the secondary flow be

u' = u'{x, y), v' = v'(x, y). (10.2)

The distribution of vorticity of the main flow is

fo = fo(y) = - w'(y), (10.3)

and that of the secondary flow is

dv' du'
r = — - — • (io.4)

ox ay

The latter distribution shall approximate a vortex "at" the point (£o, Vo)- Thus, if

the signs of f and fo are the same (or opposite), we have essentially a small element

of fluid having an excess (or a defect) of vorticity near the point (£o> Vo)-

The stream function for the secondary flow is

with

y) = ~ ?'(£• v)G(x, y; £, v)dZdv, (10.5)

df l r r d
u'(x, y) = — —— = — I I f'(?,J?)— G(x, y\ £, >7)^17,

ay 2ttJ J ay

di' 1 r f d
»'(*. y) = — = - — I I f'(^. v)—G(x, y, f, v)dZdi].

OX 27T J J OX

(10.6)

In these expressions, the integrals are extended over the whole region between the

planes. The function G(x, y; Z, v) is the Green's function of the first kind for the region

under consideration. It is defined by the following conditions:

d*G d2G
— + — = 0 except at ((, v),
ax2 ay2

(10.7)
G(x, y; 17) ~ - log {(x - Q2 + (y — T7)2}1/2 near (£, 77),

G(x, y, £, r?) = 0 over the solid boundaries.

As is well-known, it has the reciprocity property

G{x, y; £, 17) = G(f, 17; *, y). (10.8)

For the case of a channel, it is given by the real part of

( T T )
f{z) = - <log sh — (2 - z0) - log ch — (z - z0) > ,

(4 b 4 b )

(z = x + iy, z0 = ? + iy, z0 = £ — it]). (10.9)
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Let us now consider the behavior of a particular element of fluid at (£, 17) having

an excess (or a defect) of vorticity corresponding to the secondary flow (10.5) and

(10.6). It causes a distortion of the main vorticity distribution as indicated in Fig. 8.

After a very small interval of time St the vorticity at the point (x, y) is changed by

the amount
Sf(*. y) = ~ v'(x, y)8%0 (y), (10.10)

because it is replaced by a fluid element from below, which retains its original vortic-

ity. This change produces an effect at the "vortex," i.e., at the element of fluid under

O x

Fig. 8. Acceleration of vorticies in a non-uniform field of vorticity (fo (y) >0, r>0).

consideration at (£, 77). It can be easily seen that the effect is a small velocity with

components

5«(£, v) = — f f —G(x, y; £, i?)5f(x, y)dxdy,
2ir J J otj

Tl) = - — f f ~G(X< y< £> y)dxdy,
2t J J of

(10.11)

the integrals being extended over the whole region between the planes. Dividing these

quantities by bt and passing to the limit St—>0, we have the following components of

acceleration at the point (£, ??):

».(£. v) = - — f f 7~G(x, y; £, vW(x, y)fo' (y)dxdy,
2tt J J otj

a»(£. v) = 7- f f —G(x, y; £, r,)v'(x, y)?0' (y)dxdy.
2tt J J at

(10.12)

Let us first consider the y-component of this acceleration. From the special form

in which x and £ enter into the Green's function [cf. (10.9)], we can also write
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Ov(£. v) = - — f f v'(x, y)U b) —G(x, y; £, v)dxdy. (10.13)
2ir J J dx

If we multiply this equation by f'(£, 77) and integrate over the whole region, we have

the final formula

J J Ov(t, v)d£dv = JJ {v'(x, y)]^i{y)dxdy, (10.14)

upon using (10.6). Before discussing its signifiance, let us first notice that

f f a*^' v^'^' v^dv = 0 (10.15)

if f'(£. v) is an even function of £ — £0. i.e., if the vorticity distribution f'(£, 57) has a

symmetry about the line £ = £0. For then v'(x, y) is an odd function of jc — £0 and

o»(£, v) is an odd function of £ — £0, both being the consequence of the fact that

G(x, y; £, y) is an even function of x — £. Hence, we have the conclusion.

If we recall that the vorticity $"'(£, r\) is spread over a small region, we may take

r= //$"'(£, y)dl;dT) as the strength of the "superposed vortex." If we divide the left-

hand side of (9.14) and (9.15) by I\ we may consider the results as givipg the compo-

nents of the "average acceleration." The ^-component of acceleration vanishes; the

sign of the y-component depends upon the sign of the superposed vortex and the sign

of fo (y)- This component of acceleration is the one used in the above physical con-

siderations.

It should be mentioned that in considering the stability of a motion we deal with

a vortex pair. Although this makes it difficult to obtain a compact formula for the

average accelerations of the individual vortices, a kinematical consideration such as

that given above (cf. Fig. 8) shows that the general tendency is not changed. Further-

more, the two vortices are soon separated, because they are situated in layers of dif-

ferent mean velocity.

Another point should be mentioned. If we notice the tendency for the main vor-

ticity to be swung around the secondary vortex, there is an acceleration of every ele-

ment of fluid toward the vortex. Whatever this acceleration may be, it is expected

to be of minor importance, because the effect is spread out over the whole field. This

point will be brought out clearly in the following derivation of (10.14), where we shall

study the whole phenomenon from the point of view of pressure forces. The accelera-

tion will be identified with the negative of the pressure gradient divided by the density

of the fluid, because the effect of viscosity has been neglected. Thus, if we can calcu-

late the pressure disturbance corresponding to a given velocity disturbance, the left-

hand side of (10.14) can be calculated.

2) Second derivation, by consideration of pressure forces correlated with vorticity fluc-

tuations. To calculate the pressure distribution from a given velocity distribution, we

use for the pressure a differential equation of Poisson's type obtained by taking the

divergence of the equations of motion. Thus, if the equations of motion are10

10 The usual notation is used: X{ (i = l, 2, 3) are the coordinates, m are the components of velocity,

p is the pressure, and p is the density of the fluid. Summation over a repeated index is understood. For a

discussion of this type, see Lichtenstein's book [26],
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dm dili 1 dp
 1- Uj  = (- vAUi, (i = 1, 2, 3), (10.16)
dt dxj p dxi

and the equation of continuity is

dui/dxi = 0, (10.17)

we have

A(p/p) = — o", (10.18)

where

dui duj I d(ui, u?) d(u2, Uz) 5(m3, Mi)

dxj dxi
(10.19)

and

i _ j d(ui, «a) d(«8, Ms) 3(«3, «i) I

i 3 3 3 3 x*) d(x2, x3) d(x3} xi) j '

1 / dm du,\ 1 / dui du\
a=—(— + ). «<,= —( ) (10.20)

2 \dxj dxj 2 \3xj dxi/

are the components of deformation and of rotation. If we integrate (10.18) under

proper boundary conditions, a being known at the initial instant, we obtain the initial

distribution of pressure. The initial acceleration field is then obtained from (10.16)

as the negative gradient of the pressure, if we neglect the effect of viscosity.

For a perfect fluid, the only boundary condition at a solid wall is

M,«i = 0, (10.21)

where is the outward normal of the boundary surface. If we multiply (10.16) by

«,•; neglecting the effect of viscosity, we have

1 dp dm
   = V0 ni, (10.22)

p dn ds

where Fo is the velocity along a stream line on the boundary, and ds is an element

of its arc. If we write

dui dli dVo
m< = Voli,  = Fo (- li 1

ds ds ds

where U are the direction cosines of the velocity over the boundary surface, we have

1 dp Fo
 -=—, (10.23)

p dn R

where R is the radius of curvature of the stream line, R_1 — nidli/ds. This relation ex-

presses the balance of pressure and centrifugal force. With a given distribution of

velocity, the right-hand side is known. We have thus a potential problem of the second

kind for the pressure.

Two-dimensional flow between parallel solid walls. Returning to the problem at

hand, we have the very simple boundary condition

dp/dy = 0 at y = ± b. (10.24)
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Since the main motion is a two-dimensional parallel motion, we have

Mi = w(y) + u'(x, y), w2 = v'(x, y), u3 = 0, (10.25)

where w(y) represents the main flow, and u' and v' give a secondary flow approximat-

ing a vortex. Equation (10.18) becomes

1 /d2p d2p\ ( dv' d(u't »')!

7W+v)-' --2rw^-W- (10-26)
We note that we can write <r=<7i+<72, where

d(u\ v') dv'
<ri = — 2 —  <72 = - 2f0  (10.27)

d(x, y) dx

<ti depends upon the structure of the secondary vortex itself, and <r2 depends upon its

interactibn with the main flow. We shall also separate the pressure into two parts and

require them to satisfy (10.24) separately. Thus,

P = pi + p2, C — Cl + <72,

1 /d2p! d2pA dpx
— I 1 ) = — a\,  = 0 at y = ± b, .
p \dx2 dy2 ) dy ^ (10.28)

1 /d2p2 d2p2\ dp2
— I 1 ) = — <r2,   = 0 at y = ± b.
p \ dx2 dy2 / dy

We can reduce our problem to that of the first kind by looking for the acceleration

y) in the ^-direction, a„= — (1/p) dp/dy. If we differentiate (10.28) with respect

to y, we have

av = <*i + <*2,

d2ax d2ai d<7\ d2a2 d2a2 da2 > (10.29)

dx2 dy2 dy dx2 dy2 dy /

with «i = 0, a2 = 0 at y= ±b. The ^-component of acceleration is zero, from symmetry

considerations. The solutions of (10.29) are

<*i(*. y) = - — J*J* G(x, y:£,v) d^dr><

«2(*. y) = G(x' y;Z'v) (jty) d^dv'

(10.30)

where the integrals are extended over the whole region between the planes. These

formulae give the distribution of acceleration. Actually, it is more convenient to deal

with the integrated quantities

/i = f J «!(», y)£o(x, y)dxdy, (10.31)

12 = J J <x2(x, y)h(x, y)dxdy, (10.32)
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7i = J*J* oci(x, y)$'{x, y)dxdy, (10.33)

Ji = J J an(x, y)t'(x, y)dxdy. (10.34)

The first two integrals correspond to the accelerations of the main flow by the second-

ary flow itself and by the interaction; the latter two quantities correspond to the ac-

celerations of the secondary flow by itself and by the interaction. It can be verified

(as will be done presently) that

I1== - J J v'2 ty-dxdy, (10.35) /2 = 0, (10.36)

Jx = 0, (10.37) /, = jJ v'2 dxdy. (10.38)

We note that (10.38) is essentially a reproduction of the formula (10.14), the signifi-

cance of which has been discussed above. The integral I\ is equal to the negative

of Ji. This is the above-mentioned acceleration distributed among the fluid elements

throughout the field. It is therefore relatively unimportant. Thus, all the statements

made in the last section have been verified, if we can verify (10.35)-(10.38).

Verification of (10.35)-(10.38). To verify these equations, let us first examine the

behavior of the quantities u', v', dp/dx, dp/dy for large values of x. From the expres-

sion (10.9) for the Green's function, we see that if f' vanishes sufficiently rapidly as x

becomes infinite, we have

w'=0(|s|-s), v' = 0(| x\~2), (10.39)

for large values of x. From the equations of motion, we then find that

= O(m') = 0(| x\~3), — = 0(v') = 0(| x\~2). (10.40)
dx dy

This will assure the convergence of the integrals involved and the validity of the steps

taken in the following transformations.

In the first method of derivation, we have been mainly concerned with /2. We

shall therefore consider it first. Referring to (10.30) and (10.5), we see that

'>(•£?) ***>•dy/

If we now introduce the value of 02 as given by (10.27) and replace (£, t]) by (x, y),

we have
d2

J2 = - 2 f f i'(x, y) —— (i/fo)dxdy.
J J dxdy

On integrating by parts with respect to x, we obtain

J2 = 2 J*J* v' — (n'fo)dxdy = J" j* (i>'2f0) + dxdy.

The result (10.38) or (10.14) is thereby verified.
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Similar calculations can be carried out for the integrals h, h, and Ji. Thus,

7i ~ J"J" aifodxdy = JJ* w(y) dxdy

-//-(
l a2pA

+ --—)dxdy,
p ox* /

by (10.28). If we note that

3(m', v') d / dw'\ 3 / 9m'\ dV
wci = — 2w    =2 — I wv'  J — 2 — I wv'  ) 1

d(x, y) dx\ by) dy\ dx) dy dy2

the above integral is easily transformed into the form (10.35). Following an exactly

analogous process, we have

7, + ± !£),(*(,_ 0,

when we make use of (10.27). The integral J\ has also the significance that it is the

effect of the solid boundaries upon a general flow ^'(x, y) consistent with (10.40),

because it is independent of w(y). Using (10.30), (10.5), and (10.27), we have

7i = J J atf'dxdy = JJ i'(£, ri) d£dV

.-2 Jxiy.
J J d{x, y)

If we note that

d(tt', v') d ( du'\ d ( du'\
u

e ( du'\ d ( du'\
= — ( w V  ) ( u'v'  J,

d(x, y) dy\ dx) dx\ dy J

we see that /i = 0. The results (10.35)-(10.38) are thereby verified. We have thus

completed the investigations indicated at the beginning of this section.

Note added in proof. In a very early work, [Phil. Trans. Roy. Soc. London (A)

215, 23-26 (1915)] G. I. Taylor gave a physical interpretation of Rayleigh's results

on the stability of the laminar motion of an inviscid fluid, based on momentum con-

siderations. He also indicated clearly that a motion, stable according to Rayleigh's

criterion, may be unstable through the effect of viscosity.

(To be continued)


