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—NOTES—

A FORMULA FOR THE SOLUTION OF AN
ARBITRARY ANALYTIC EQUATION*

By D. R. BLASKETT anp H. SCHWERDTFEGER (University of Adelaide)

In this note a proof will be given of a formula which has been stated without
proof by E. Schréder.! The fact that he has expressed some doubts as to its general
validity may have caused it to fall into oblivion although it seems to be of some theo-
retical and practical interest, like several other results of Schrioder’s to be mentioned
below. Since moreover the true nature and simplicity of the formula is rather con-
cealed in Schréder’s discussion, it may be worth while to enter into the matter again.

The formula in question is a consequence of the following theorem which at once
describes its exact realm of validity:

THEOREM l. Let w=f(z) be an analytic function, regular in a domain A of the com-
plex z-plane. Let o be an interior point of A and a simple root of f(2);

fl@) =0,  f(a) #0.

Further let 2y be a point in A “not too far from” a (in practice 2o is a first rough approxi-
mation to the root ). Then, denoting by z=f~'(w) the inverse function of f(z) one has

Z( f(Zo) (d'f“(w))w.mo)= ( 1z0) df~}(w) )w-mo) )

v! dw dw
where the exponential function operates symbolically on the differential symbol.

In this form the theorem is a corollary to the main theorem on the analyticity
of the inverse of an analytic function. To prove (1) we make use of the fact that be-
cause f’'(a)#0 the function f(z) is simple (schlicht) in a certain neighborhood of
the point z=a.? Hence the inverse f~!(w) exists in a circle K of radius p >0 round the
point w=0. Moreover it is analytic in K. Thus we may choose 2, in a neighborhood
of o such that a circle k round wo=f(2,) (in the w-plane) contains 0 and is wholly
contained in K. In k the function f~!(w) is given by its power series

ad v f~1
(w) = 33 i(if£)> (w — f(20))”
v=0 ¥! duw” w={(2q)
whence for w=0 follows the formula (1). Evidently, for 2, any point z near « can
be chosen for which w=f(2) lies in a circle of radius p/2 round 0.
To obtain Schréder’s formula we introduce the operators é* (u=0,1, 2, - - -)
defined as follows:

* Received Oct. 30, 1944.

L E. Schroder, Uber unendlich viele Algorithmen zur Auflisung der Gleichungen, Mathematische An-
nalen 2, 317-365 (1870); in particular cf. §§4 and 5 of this paper.

2 Cf. G. Julia, Principes géométriques d'analyse, Premiére Partie, Paris 1930, p. 16-17.
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8(z) = B(e) = —— i( ! ) ) = —— 2 (11(3)).
f’() 7@ \r@ 7@ &
Then () a1 ()
2 f—1 w v+1f—1 w
51(2) = (———dwz ).,.m)’ #(z) = (——dwm )w_/m

which is easily shown by induction. Therefore the expansion (1) is identical with

A Z (- 1y ﬁi () omre

2 g1 3 4 101 _ 11 2
o S o — J60 1760 L6 S — 36
f'(z0) 2 fi(z)® 3! f'(20)°

This was not the way in which the formula (2) was actually discovered. It ap-
peared rather as a plausible consequence when dealing with another method of ap-
proximate solution of an analytic equation. Although no proof could be given on
the basis of this method, it turns out to be of some interest here as it shows that the
partial sums of the infinite series (1) or (2), i.e., the expressions

T O e NI MCR UL L RO
=0 v! AW  Ju=fizy v=0
can be used for an iterative approximation of the root «;
THEOREM II. For each n=1, 2, - - - the recurring sequence
a0 =2, am= Bulam1), (Mm=1,2---) 4
has the root a as its limit and then also
Bu(e) =, &L (@) =0, -+, &, (a) = @)

This is one of the results of Schréder who has discussed in detail (l.c.) several
such iterative algorithms (“Algorithmen erster Art”) and has thus obtained formulae
of considerable practical interest.®* We propose here another treatment of the problem
of iterative approximation which leads immediately to a proof of Theorem II.

"We make use of the fact that if a is a simple root of the equation f(2) =0, a func-
tion ¢(2) can be found for which « is an attractive fixed point, i.e.,*

) =a |¢@] <1 (5)

Then the recurring sequence o, a1 = ¢(ao), @e =¢(a1), * - -, if ap is not too far from a,
is convergent and has « as its limit. To strengthen the convergence we may replace
the inequality in (5) by the condition ¢’(a) =0. Such a function ¢(z), involving an ar-
bitrary function k(z), is for instance

3 In particular the reader’s attention may be called to the formulae (A’,‘)'and (Bz‘) in §12 (p. 352) of
Schroder’s paper. These formulae are very expedient for the computation of nth roots if a high degree of
accuracy (e.g. more than 20 correct figures) is required. A similar algorithm has recently been given by
V. A. Bailey in a brief expository article Prodigious calculation, Australian Journal of Science, 3, 78-80
(1941), by which our attention has been drawn to the present subject.

4 Cf. G. Julia, loc. cit., p. 23.
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f@)h(z) — 1
o) = 2+ fl) T
[(2)
Thus we may impose more rigid conditions further strengthening the convergence,
viz.,
¢'(a) =0, ¢"(a) =0,---,¢™(a) =0, (6)

where 7 is any positive integer.®
A function ¢(2) satisfying the conditions (5) and (6) can be obtained in the follow-
ing way. The conditions (6) will be satisfied if the derivative of ¢(z) appears in the

form
¢'(2) = (f(2))"g(2)f (2),

the undetermined function g(2) being regular at z=«. It remains to adapt g(2) to the
condition ¢(a)=ca. Onc has

80 = [ U@ = [ wsir@)ie

whence, by repcated integration by parts, it follows that
#(z) = n!y, ——— (f(z))" *g+1(2)
=0 (n - V)'

where g,(2) is the u-fold iterated indefinite integral of g(f~(w)) for w=f(z). Thus, for

z=qa one has
¢(a) = (— 1)"n!gati(a).

Therefore
(= Dn
n!

gni1(2z) = 2z

will give a function ¢(z) which has all the desired properties. In this way one obtains
the function ®,(z) of (3), and it is evident that this function has the properties stated
in Theorem II.

5 From a letter of Professor V. A. Bailey we have learnt (in May 1941) that this problem has been
dealt with in some special cases by E. Netto in his Vorlesungen diber Algebra vol. I, Teubner, Leipzig, 1896,
p. 300. In the same letter Bailey has given an elegant solution of the problem which, however, does not
suit our present purpose. Further he has drawn our attention to the paper by L. Sancery, De la méthode

des substitutions successives pour le calcul des racines des équations, Nouvelles Annales d. Math.. (2) 1,
305-315 (1862), which, however, was not accessible to us.

THE CAPACITY OF TWIN CABLE*
By J. W. CRAGGS anp C. J. TRANTER (Military College of Science, Stoke-on-Trent, England)

1. Introduction. The problem of determining the capacity of two long parallel
cylindrical conductors can be easily solved by the use of a conformal transformation.!
A simple extension of the method gives the result for the case in which each conductor

* Received April 16, 1945.
LF. B. Pidduck, 4 treatise on electricity, Cambridge University Press, 1916, p. 77.



