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DIFFUSION IN TURBULENT FLOW BETWEEN
PARALLEL PLANES*

BY

J. C. JAEGER
University of Tasmania

1. Introduction. The equation of diffusion in a turbulent fluid

d"x ^ 1 - 2p dx _ dx

dz2 z dz dx

(x stands for temperature, vapour concentration, or whatever property is being stud-

ied, x is measured in the direction of mean flow and z in the perpendicular direction,

and p is a constant determined by the degree of turbulence of the fluid) was intro-

duced by O. G. Sutton1 and extensively studied by W. G. L. Sutton,2 who considered

a number of cases of diffusion in the semi-infinite region z> 0. It has been shown by

Pasquill3 that for the semi-infinite region the theory is in good agreement with ex-

periments, both on evaporation and on heat transfer.

In this note a number of results for symmetrical flow in the finite region 0<z<2l

will be given; it is assumed that 21 is small enough for the power law velocity profile

to hold up to the centre of the region. Such cases are of some practical interest, and

may provide an indication of the behaviour to be expected in the much more difficult

problem of heat transfer in a circular pipe. Also they are interesting generalizations

of known solutions of the equation of conduction of heat in the rod 0<z<2l, with

constant temperature, or flow of heat, at its ends.

The method used will be that of the Laplace transformation. W. G. L. Sutton

(loc. cit.) remarks that if p = 1/2, equation (1) reduces to the equation of linear flow

of heat, and he gives a treatment of (1) which is a generalization of Goursat's treat-

ment of the equation of conduction of heat. It is well known that the Laplace trans-

formation method is particularly well suited to the solution of specific problems in

conduction of heat, and that its advantage increases as the complexity of the problem

increases. This suggests that the method may have the same advantages when applied

to (1), and, in fact, this proves to be the case. All the results of W. G. L. Sutton's

paper can be obtained more shortly in this way, and explicit expressions for the solu-

tions for more complicated boundary conditions, composite regions, etc., can also be

derived.

In Section 2 the standard problem of evaporation in the semi-infinite region is

solved as an illustration of the method, and for comparison with later results. In

* Received Dec. 26, 1944.

1 O. G. Sutton, Wind structure and evaporation in a turbulent atmosphere, Proc. Roy. Soc. (A), 146,

701 (1934).
2 W. G. L. Sutton, On the equation of diffusion in a turbulent medium, Proc. Roy. Soc. (A), 182, 48

(1943). The notation used here is that of this paper, except that the symbol E is introduced in (4). The

variables x and z in (1) are dimensionless quantities defined in Sutton's paper.

s F. Pasquill, Evaporation from a plane, free-liquid surface into a turbulent air stream, Proc. Roy. Soc.

(A), 182, 75 (1943).
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Section 3 two other results for the semi-infinite region are given for completeness. In

Sections 4-6 the most interesting cases of symmetrical flow in the region 0<z<2/

are studied. The solutions given here are formal only, but in all cases they may be

made rigorous by the verification process described elsewhere.4

Equation (1) has to be solved in the region x>0, and in a prescribed region of z,

with boundary conditions in x

X -» X(0)(z). as x -> + 0, (2)

X finite, as *—> (3)

In all the problems considered below x(0)(2) wi" be zero, that is the temperature or

vapour concentration in the fluid is zero in the plane ac = 0.

There are also boundary conditions in z, which will be expressed either in terms

of x, or of
dx

E = - Bzl~2" — • (4)
dz

This quantity E is the local rate of diffusion across the plane z = const., and B is a

known constant (defined by Sutton, loc. cit.) involving the fluid and its degree of

turbulence.

The constant p in (1) is restricted in Sutton's theory by the inequality 0 <p <1/3,

and we assume here 0 <p < 1.

With the substitution
X = zpSi, (5)

(1) becomes
d2a 1 30 p2 30
 1 — 0 = 0. (6)
dz2 z dz z2 dx

Introducing the Laplace transform of 12 with respect to x, namely

0* = f e~"Qdx, (7)
J 0

we obtain from (6) the subsidiary equation6 for 12*,

d2a* 1 da*

dz2
-J>v(0) (z). (8)

2. The semi-infinite region z>0. Boundary conditions: x(0)(z)=0. z>0. x = Xo,

constant,6 when z = 0, *>0. x finite, as z—>», *>(). Here (8) becomes

d2a* l da*

dz2

i da* / p2\
 — - (5 + —) a* = o, z > o,
z dz \ z2 /

(9)

4 H. S. Carslaw and J. C. Jaeger, Operational methods in applied mathematics, Oxford, 1941, §58,

and J. C. Jaeger, Radial heat flow in a circular cylinder with a genetal boundary condition, Proc. Roy. Soc.

N.S.W., 75, 130-139 (1942).
6 For the procedure see, e.g., Carslaw and Jaeger, loc. cit.

• For shortness, boundary conditions will usually be written in this way; it is implied, of course, that

X—>xo as z—>+0 for fixed x>0.
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to be solved with

X* = zp ft* —>xoA, as z —* + 0, (10)

and
X* finite as z —><x>. (11)

The solution of (9) which satisfies (11) is Kp(zs*), and since

z"Kp(zsi) —■» 2p~lT(p)s~lp as z—> + 0, (12)

it follows that the solution of (9), (10), and (11) is

z" 21-"
X* = X»-—-s^1Kp(zsi). (13)

r KP)

Now it is known that7

sip~1Kp(zsi) is the Laplace transform of z~p2p_1 I e~"up~1du.
J zV tx

Thus the required solution is

(14)

l r00
X = Xo —- I e "up~1du. (15)

r(/0 J •»/«*

This is the result given by Pasquill (loc. cit., (9)).

It follows from (15), or directly from the transform E* of E, that

Bxo2l~Ipxr"
E —> > as z—> + 0, (16)

r (p)
and

/J 0

Bxo21-ipx1~p
Edx—» > as z —» + 0. (17)

(1 - p)T(p)

3. Two other results for the semi-infinite region z>0. The results to be derived

here are both for the case x(0)(2) =0> and x(2) finite as z—»<».

If the boundary condition at z = 0 is: E—*Eo, constant, as z—>+0, the solution is

E0z'» r'
X =   | e "u p~1du. (18)

2sr(i -
Also

F.„22P~1r"

X —* > as z —> + 0. (19)
BpT(l — p)

This is proved exactly as in Section 2, using (14).

7 S. Goldstein, Operational representations of WTiittaker's confluent hyper geometric function and Weber's

parabolic cylinder function, Proc. London Math. Soc. (2) 34, 104 (1932), (IS) and (24). Alternatively the

result can be obtained by the use of the inversion theorem for the Laplace transformation, subsequently

deforming the line integral into the contour (— , 0 +); cf. Carslaw and Jaeger, loc. cit., §39. The same

remark applies to the derivation of (18) and (21) below.
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If the boundary condition at 2 = 0 is

hx — z1-2" — = h% o, (20)
dz

where h and %o are constants, the solution is

Xo zp r" , J p{uz) + au2pJ -p{uz)
X — Xo I e~xu mp~  du, (21)

2p-1r(/>) Jo 1 + 2aw2p cos ptv + a2«4p

w/zere a = T(1 — p)21~2p/hT(p).

To prove (21) the inversion theorem for the Laplace transformation, (24) below,

has to be used, and the line integral must be deformed into (— ■», 0 + ).

The result (15) was derived for a constant value of x on the boundary 2 = 0. The

solution for the case in which x is a prescribed function of x on z = 0 can be obtained

from (15) by Duhamel's theorem. The same remark applies to the cases of Sections 4

and 6. Correspondingly, the solutions of the problems of Sections 3, 5 with E a pre-

scribed function of * on 2 = 0 can be obtained in the same way.

4. The region 0<z<l. x(0)(z)=0- X = X0, constant, when 2 = 0, *>0. £ = 0, when

z = l, x>0. This corresponds to the region 0 <z<2l with flow symmetrical about

2 = /, and with x = Xo on 2 = 0 and 2 = 2/, for :c>0. Thus, for example, it gives the solu-

tion of the problem of heat transfer from the parallel planes 2 = 0 and 2 = 2/, both

maintained at constant temperature xo, and with symmetrical flow between them.

Here we have to solve (9) with boundary conditions (10) and

E* = 0, when z = I. (22)

By (12) the solution of (9) which satisfies (10) is

Xo3p21-p
X* = —- s^K^zsi) + Az"IP(zsi).

r (p)

The unknown A is found by substituting in (22), and we have finally

* = xoZ^-rs^lKJzsl)!,-^) + Z^*)^^)]

x r ' 3)

X is found from (23) by using the inversion theorem for the Laplace transforma-

tion [cf. Carslaw and Jaeger, loc. cit. ]

X = — I e'Tx*(s)ds (24)
2tTl J y—too

Xozp2l->> ry+*» e°*si?-1[Kp(zs,>)Ip-1(ls>>) + J,(«*)£,_i(k*)]dj
— I   ) (25)

2iriT(p) J y—loo IP- i(fo*)

where 7 >0.

The integrand of (25) is a single valued function8 of s. It has a simple pole at J = 0

of residue
  2p-1z-T(/>), (26)

8 G. N. Watson, Theory of Bessel functions, Cambridge University Press, Cambridge 1922, §3.71,

(17) and (18)
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and simple poles at s = —a,/l?, where + ar, r— 1, 2, - - - , are the zeros (all real and

simple9) of
J^{a) = 0. (27)

It is easy to show [cf. Jaeger, loc. cit.\ that the line integral in (25) is equal to fori

times the sum of the residues at the poles of its integrand. Evaluating these we get

finally
Xo3p " fff-!r<"I"!;p(zar/l)

* - X° " 2P-W(^) £ Jlictr) (28)

The most interesting quantity is the value of E as 2—»0. Either from (28), or di-

rectly by calculation of its transform, this is found to be

. *XoT(l -P)^
 > as 2 —> + 0. (29)

T(p)22*-2l2p tZ al~^Jp(ar)

Also, as 2—>+0,

where

f, Bxol2 2p (i) 2
Edx-*— -4>p (x/l), (30)

o 2(1 — p)

(1), , , r(2 - p)2s-2" " e-«^"!/i_P(ar)
4>7 (x/l') = 1 - v ^ £   • (31)

T(p) ^ a3~2pJ j>(ar)

For small values of x/l2 the value of /* Edx given by (30) reduces to the value (17)

for the semi-infinite region, and

(i, 22~2p(x/l2)l~v

<t>p (x/l2) ~  (32)
p r(/>)

In Fig. 1 graphs of these quantities are shown for p = 1/9, the value commonly

found in wind tunnel experiments. Curve I shows the result (32) for the semi-infinite

region, and Curve II the value of <£j'(x/l2) given by (31) for values of x/l2 for which

the difference between (31) and (32) is important. For larger values of x/l2 than those

shown the exponentials in (31) are negligible.

In the case of heat transfer the quantity (30) gives the amount of heat taken up

from the region 0 to re of one of the planes.

5. The region 0 <z<l. x(0)(2) = 0. E—>E0, constant, as 2—>0, x>0. £ = 0, z=l,

x>0. This corresponds to the region 0<z<2l with flow symmetrical about 2 = /, and

with constant diffusion across the planes 2 = 0 and 2 = 2/.

Here, proceeding as in Section 4, we find

„ = E0zp2p\l^{lsl)Kp(zs*) +

X BT(1 - p)si»+1I1-.p(lsl)

The most interesting quantity to evaluate in this case is the value of x as 2—>+0.

This is found to be
2£0(1 — p)l2p\~ xl

B VA"m + "fI ('
8 G. N. Watson, loc. cit., §§15.25, 15.21. For the method of calculating their values in practice see

John R. Airey, Bessel functions of small fractional order and their application to problems of elastic stability,

Phil. Mag. (6), 41, 200 (1921).
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where

tMn _ (35)
2f(2 - f) r(2 - Pi ,tr «;•+'/_»(«.)

and the ar are the roots of

= 0. (36)

For small values of a://2, (34) tends to the result (19).

If p = 1/9 jt is found that the difference between (34) and (19) is less than 1%

for values of x/l2 up to 0.3, while for greater values of x/l2 the exponentials in (35) are

0.5 , , _ 1.0 1.3
LOG10(x/l2)

Fig. 1.

almost negligible. In the case of heat transfer, (34) gives the surface temperature of

one of a pair of planes to which heat is supplied at a constant rate per unit time per

unit area, and which are cooled by turbulent fluid flowing between them.

6. Two cases of symmetrical flow in the region 0<z<2Z. First let us consider

boundary conditions x<0>(2) =0, and

X = Xo, constant, when z = 0, x > 0 (37)

E = 0, when z = 21, x > 0. (38)

Here the regions 0<z<l and l<z<2l must be treated separately. We write xi(-i)

and Ei(zi) for the values of x and E in l<z <21 as functions of Zi = 2l — Z in this region.

The boundary conditions at the surface of separation z = zi=l are

X = xi, (39) E = — Ei. (40)
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A solution of (9) which satisfies (37) is

Xo2,_ps,p_1
X* = —— zpKp(zsi) + Az'Ip(zs*),

r (p)

and a solution of (9) with z replaced by Z\ which satisfies (38) is

Xi = Czfl-P(zis*).

The unknowns A and C are found by substituting in the transforms of (39) and

(40), which gives

♦ = Xq2 1-"z1"**'-*jr-p(si*»)  , .

Xl ~ /r(0[/_,(fe*)/,-i(fa*) + Ip(lsi)h-p(lsi)]

with a rather longer formula for x*- As in Section 4, x and xi are evaluated by the use

of the inversion theorem and the results are

Xo21_pZir(l — p) » e~xa'l'2a^~1Jp-i(ar)Jp(aT)J-p{zaT/l)

Xi = Xo — L,  jn / \ i t2 / \ ' (42>
lv r-1 J%-l(ar) + Jp(ar)

Xo21-pz" " e-xa'llta^-2Jp(zar/l)

X~X0 l»T(p) £ JU(«r) + j%(«r)

where the ar, (r = 1, 2, • • • ). are the positive roots10 of

J-p(a)Jp-i(a) — /p(a)/i_p(a) = 0. (44)

As in Section 4 the most interesting quantity is the value of /* Edx as z—>0. This is

found to be
Bxol2~ip (S). .2,

where

rJ 0
Edx->— -<j>p (x/l ), (45)

2(1 - p)

[r(/>)]2 S <-2p{^(«r) + Pp_1(«')} '

For small values of (x/l2), (46) behaves like (32). Its value for p = 1/9 and for val-

ues of {x/l2) for which the difference from (32) is important is shown in Curve III

of Fig. 1; for larger values of x/l2 the exponentials in (46) are negligible.

The result (45) gives the evaporation from the region 0 to * of the plane z = 0 if

there is no flow over the plane z = 21.

Finally we consider the case in which the boundary conditions are xt0)(z) =0> and

X = xo, constant, z = 0, x > 0, (47)

and
X = 0, when z — 21, x > 0. (48)

Here, proceeding as before and writing xi for the value of x in l<z<2l, E\ for the

value of E in this region, and z\ = 2l — z, we find

10 In the case £ = 1/2 when (1) becomes the equation of linear flow of heat, (44) becomes cos 2a = 0and

similarly (51) and (52) become sin 2a = 0.
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/ 32p\ Xo21~pzp - (e~a'xll'jp(zar/l) , («fir/0\

X X°\ 2/2*/ / T (/>) Si cS-'J^Otr) Pl-'JliPr) /'

i (Zl Y" , Xo21-pzf " (e~a'x"1Jp(ziar/l) e-rtxl,'jp(ziPr/l)\

x'-Ht) + s t ^HW I' ' '
where the ar are the positive roots of

J vice) = 0, (51)

and the j3r are the positive roots of

7^03) = 0. (52)

This problem is that of heat transfer between the plane z = 0 at constant tempera-

ture xo, and the plane 2 = 2/ at zero temperature, by turbulent fluid flowing between.

The quantity of heat taken up from the region 0 to a: of the plane z = 0 is determined

by

lim f Edx = —-<t>p\x/f), (53)
^+o Jo 2(1 — p)

where

(3) . 2 2p{\ — p)x 1 + p + 2/>2
(bp (xI )    

l! 2(1 + p)

23~2p(l ~ P) " f j

[r(^)]2 h pr,pJWr)f

and the ar and /3r are defined by (51) and (52). For small values of (x/l2), ^(x/P)

behaves like (32). For larger values its behaviour for the case p = 1/9 is shown in

Fig. 1, Curve IV, and for still larger values the exponentials in (54) are negligible.

The quantity of heat taken up by the region 0 to a; of the plane 2 = 2/ is deter-

mined by
r Bxoli~2,P (4) 2
Eidx = —   <t>„ (x/l), (55)

2(1 - p)
where

- lim f
'i-*+o J o

(4) /A 2p(l - P)x (1 + 2p)(\ - P)
<t>P (x/l) = ■

P 2(1 + p)

23-2P(i _ py ■ » / g-xcin* e-x&nl

tr'(/>) ]2

oo / p xar/1 p-xpr/l \

—   \. (56)

A portion of the curve of </>£4)(x/72) for £ = 1/9 is shown in Fig. 1, Curve V; for

larger values of x/l2 the exponentials in (56) are negligible, and for smaller values than

those shown in the figure 4>£4) continues to decrease rapidly.


