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ON THE VIBRATIONS OF THE ROTATING RING*

BY

G. F. CARRIER

Harvard University

1. Introduction. An interesting addition to the group of problems dealing with

thin elastic rings is the analysis of the vibration of a circular ring which is rotating

with constant speed about its geometric

axis. In this paper, the small bending vi-

brations of the unconstrained ring are

analyzed and the frequencies at which

such vibrations can occur are determined.

For various problems of the partially con-

strained ring, it is shown that the "free

vibrations" differ essentially in character

from those of the free ring, exhibiting a

group of natural modes characterized by

linear combinations of trigonometric func-

tions. The forced vibrations of both the

free and supported rings are'also treated.

2. The dynamic equations. The three

equations needed to specify completely

the plane motion of an element of a ring,

such as the one shown in Fig. 1, are de-

rived from a consideration of the forces O'

and moments acting on the element and Fig. 1. Element of ring in initial and distorted

the components of acceleration of the ele- positions. Center of rotation is o.

ment. The summation of forces along

o'a', the summation of moments about o', and the summation of moments about a',

lead to this required set of equations, which is

— Rd<f> +  A^j cos (a — v) —  A^j sin (a — v) J dd = 0, (1)

dR 1 dM / k \ / k \
 f- ( N Ae ) cos (a — v) + ( P Ar ) sin (a — v) = 0, (2)
dd r i dd \ r / \ r )

dM a d2(a — v)
tt — rk = 0. (3)

dd c dt2

Here, the notations are as follows: 9 is a polar coordinate of a point in the undeformed

ring, referred to axes rotating with the ring; r and r\ are respectively the radii of

curvature of the undistorted and distorted rings; b, h and I are respectively the width,

thickness and cross-sectional moment of inertia of the ring; R, t and M are respec-

* Received March 2, 1945.
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tively the tensile force, shearing force and bending moment, as shown; N/r and P/r

are the components of the external forces in the directions of the tangent and normal

in the undistorted state, as shown; Ar and Ae are the components of acceleration in

the directions of the tangent and normal in the undistorted state, as shown; E is the

elastic modulus; p is the density; k = pbhr2; c = Ebh; a = EI/r2.

In Eqs. (l)-(3) the corrections, arising from the Poisson strains, for the moment

of inertia expressions, etc., have been omitted as usual. The formulas needed to sup-

plement the above equations are

EI / d2w\ 1 1 / d2u\
M = 1 Mo + u H J, (4a) — = —( 1 — Mo — u J,

r \ dey n r\ de2/
(4b)

/ dv\ du , v
R = Ebhee = c f Mo + m + — J, (4c) a = — > (4d)

de

(4e)
rd2M a»"i

Ar = r \ —-— <o2(l + Mo + m) — 2oj — ,
L dt2 dtS

Vd2v du ~\
Ae = r\ f- 2co uh , (4f)

L dt2 dt J

r / dv d2M\
d<j> = — (1 + ee)dd = ( 1 H   ) dd, (4g)

r i \ dd dd2J

where ru0 is the radial displacement from the rest position to the rotating equilibrium

position, ru is the radial displacement from the rotating equilibrium position, rv is

the tangential displacement relative to the rotating axes,1 ee is the tangential strain

{ee — ua+u-\-dv/dO), and co is the constant angular velocity of the ring. Equations (4a)

and (4b) are the well known expressions for the bending moment and curvature, re-

spectively, of a bent ring;2 (4c) is a one-dimensional form of Hooke's law; (4d) is the

rotational displacement of the element, and is found by inspection of Fig. 1; (4e) and

(4f) are the expressions for the radial and tangential components of acceleration, when

u and v are referred to a rotating coordinate system ;3 and g is obtained from Fig. 1

and Eq. (4b).

The value of m0 is obtained by writing u=v = 0 in Eq. (1). After substitutions from

Eqs. (4), it becomes Ebhuo = ku2(l-\-u0), or

Mo = (1 + u0)kcoi/c. (5)

Throughout this analysis, we shall consider only those vibrations for which u and v

are small compared to unity. We are therefore justified in disregarding terms in m2,

uv, etc., as compared to m or v. In the limit, that is, as the amplitude of u and v tend

to zero, the equations obtained in this manner would be exact. However, the equa-

tions so obtained would still be encumbered by terms of the type MqM, u20v, • • • , in

addition to those found below in Eqs. (6) and (7). We also neglect these terms since

1 This rather unconventional notation is used to provide Uo, u and v with dimensionless properties

and thus produce somewhat less cumbersome equations.

1 S. P. Timoshenko, Strength of materials, D. Van Nostrand Co., New York, 1930, p. 459.

5 These are easily deduced from the vector forms given in L. Page, Introduction to theoretical physics,

D. Van Nostrand Co., New York, 1941, p. 103.
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they can produce no qualitative changes in the results and since they will drop out

a yway when the procedure leading to Eq. (9a) is introduced. Finally, since the am-

pli.udes of P and N must obviously vanish when u and v tend to zero, terms in

Pu, Pv, • • • , must also be omitted.

Fallowing this procedure, using Eq. (3) to eliminate r, and substituting from

Eqs. (4) when necessary, we obtain from Eqs. (1) and (2)

/ 3»\ /d*u d2u\ ( d2u dv \
P — c[u-\ ) — a[ 1 J + ka>2 ( (- u )

\ de) \ae4 de2) \de2 de2 J

rd*u dv a d4« a dh ~\
= A 2w + , (6)

La/2 et c de2at2 c a<?a/2J

d / dv\ (dzu du\ du f d2v du~I
iV+c — (« + — )- «  + — ) + ^2— = k\ — +2o>— . (7)

de\ 36/ \9e3 de) de La/2 ad

We may easily arrive at a single equation in u only by performing on Eq. (6) the

operation L where,
a2 a2

L = c  -f- k f (8)
ee2 a/2

solving Eq. (7) for L(v), and substituting the expression found by the latter step into

that found by the former.4 We utilize the abbreviations,

s = /V a/ k, n = k/a, e = a/c = h2/l2 r2,

and the equation resulting from the foregoing procedure takes the form,

rr/ a2 \ a2 a2 a2 / a2 y a2 / a2 \i
1 ( 1)— + ^ + —(— + i J-^2—(— +3)
UAae2 / ds2 deds de2 \dd2 ) ae2\de2 /J

r a4 ( a2 / a2 \ /a2 a2

-'b+{2^U+1)-"'W-3)l^
/a2 \ a2 a2 a41

+ 2n ( —- + 1 — 2/x2) (- (n* - fi2) n2 —
\de2 )deds de2 ae4J

r a6 a4 / a2 a4 a2 \ a2
+ e2   + 2n U2 ) \)u

Lae2as4 deds3 V de2 de* de2} ds2JJ

= + ~ 2m—(—)] + e2-^-(—Y (9)
de2 \ a / dd\a ) Las2 \a / as\a/J d6ds2 \ a /

This equation govern^ the motion of the ring, provided the driving functions N and P

do not imply that the'deformations be large. The validity of this equation may be

partially checked by considering a physically trivial problem. We consider the freely

spinning ring (no supports) and suppose N to P to vanish. Under these conditions,

the motion of the ring which is initially not deformed from its equilibrium shape is

given by u = (a+/3s) cos (0+^is), v= — (a+ps) sin (d+fxs). That is, the ring moves as

4 A similar procedure will provide an analogous equation in v.
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a rigid body with (dimensionless) angular velocity ju and translational velocity j3.

Eq. (9) must and does allow this solution for all a and /3.

In each of those problems to be considered, Eq. (9), in its present form, leads to a

solution which is simple in form but which requires the solution of unnecessarily long

algebraic equations. This computational work may be eliminated at the expense of

small errors in accuracy when we consider only rings for which h/r is small. In this

case, terms in Eq. (9) of order e and e2 may be neglected compared to those of order

one. This leads to the following equation, which is exact for the limiting case where

u, v, e tend to zero:

r d2 / d2 \ d2 ( d2 V d2 / d2 \ d2 1
Zi(m) = I n2 ( +3) ( — + 1) - 4m ( 1) \u

L dd2 \d82 / dd2 \dd2 ) ddds \dd2 Jds2 J

d2 /P\ d /N\

a J dd \ a )dd2\

The analogous equation in v is

(9a)

N d /P\
Li(p) =- + -(-)• (9b)

a dd \ a /

In each of the problems to follow, the expressions obtained from Eqs. (9a) and (9b)

for the natural frequencies and amplitudes are valid to within errors of order h2/r2

for those frequencies of order (a/k)1/2. These vibrations may be termed "bending

vibrations" since they are essentially inextensional forms of motion. When the fre-

quencies are of order (c/k)1/2, accurate results may be obtained by direct use of

Eq. (9). In this paper, we shall use only Eq. (9a) or (9b) since all of the characteristics

of the effects of rotation on the behavior of the ring will appear in the solutions so

obtained. The one exception to this statement is found in connection with the dilatory

vibrations. This type of motion can not be predicted by Eq. (9a) or (9b) because these

equations are those for essentially inextensional motions.6 We shall, then, when in-

vestigating this mode, refer to Eq. (9). For this mode, u and v are independent of 6

as must be those parts of P and N which excite such a motion. Hence Eq. (9) reduces

for this case to

r d* { c \ d2 1 d2 /P\ d /N\ / N
Lo («) = — + (3m2 + — )— « = —( — ) + )• (9c)

l_3.y4 \ a / ds2 J ds2 \ a / ds\ a J

or, in terms of v,
( d2 c \N d P

L0{v) = ( — -| m2 ) 2m   
\ds2 a /a ds a

(9d)

3. The unconstrained ring. Investigation of the solutions of Eqs. (9a) or (9b) of

the form
u„ = U„ cos n(d — &ns) + Wn sin n(d — P„s) (10)

yields, when N and P vanish identically,

5 Equation (9a) may also be derived from Eqs. (6) and (7) by use of the assumption that u+dv/dd<is.u\

this excludes the dilatory motion.
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2ju (»2 - 1)

(12)

+ v M: + »! + 1 = — + pn i (10a)
n' + 1 «2 + 1

where p„ and qn are self-defining.

If we further apply a set of initial conditions, such as

dun
un = cos nd + W„ sin nd and   = 0, at s — 0,

ds

to the two solutions defined for a given n by Eqs. (10) and (10a), namely

«» = cos n{6 + qns - pns) + bn cos n(d + qns -)- p„s) ]

+ Wn[cn sin n(6 + qns — pns) + d„ sin n{0 + q„s + />„*)], (11)

we obtain

«n = Un j^cos n{6 + qns) cos np„s + — sin n(6 + qns) sin npns j

+ iy„£sin n(6 + qns) cos npns — — cos n(6 + qns) sin

Each term in the foregoing bracket defines a possible free vibration of the ring which

is unconstrained at all points against either radial or tangential displacement. Each

of these terms may be interpreted as defining a "normal mode" of vibration, wherein

a sinusoidal deformation of angular frequency np„ travels with respect to the rotating

axes at an angular velocity® — qn. The "nodal points" thus move with respect to co-

ordinates fixed in the ring. The terms "normal mode" and "nodal point" have been

used somewhat loosely here, but they adhere to the usual definitions of the terms if

the motion is described relative to axes rotating with velocity fl„=co(n2 —l)/(w!+l).

For the stationary ring, the value of the angular frequency reduces to

(a/ky^npn = «(«2 — 1 )\a/k(n? + l)]"2,

which is in agreement with previously derived results.7

A solution to Eq. (9a) may be obtained for arbitrary initial distributions of radial

deflection Uo and radial velocity Uo , provided these initial conditions do not imply

an extensional motion. The restriction

f u0(e)de = f ui(e)do = o (13)
" 0 J 0

is certainly sufficient to insure this provision since it, together with the continuity

requirements,
1 2t dv C 2' d2vdv C d2i>

dd = I  = o
o dd J o ddds

allows u+dv/dO to vanish for all 6, at and shortly after time / = 0.

The restriction defined by Eq. (13) together with the requirement that u be con-

tinuous, implies that U0 and U£ may be expanded in Fourier series in which the

* pn and qn are, of course, dimensionless quantities which define the angular velocities.

7 J. P. Den Hartog, Mechanical vibrations, McGraw-Hill, New York, 1940, p. 123.
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constant term vanishes and in which no terms corresponding to «=1 will appear,

since these terms define no distortion.8 These series may be used in conjunction with

series of solutions of the type given by Eq. (11). Thus the coefficients, and hence the

motion, are determined. The motion due to rigid body displacements may, of course,

be superimposed on such solutions.

4. Forced vibrations. As will be seen in the following section, the investigation of

the possible motions of the constrained ring requires, as a preliminary step, the

determination of the behavior of a ring acted upon by a force distribution

N/a = 2A cos cos Xs. The problem involving a driving function P of similar

form is obviously covered by this problem. If we split N into two parts,

N/a — A [cos (nd — \s) + cos (nd -f- \s) ],

a particular solution of the form,

v = bn cos (nd — \s) + cn cos (nd + Xs) (14)

is easily shown to exist by substituting this expression into Eq. (9b). The coefficients

bn and c„ are readily found when this is done, and are given by

Xn(\) = bJA = [n(n + 1 )(pl — ql) — (n + 1)\ — 4»/iX] \ (14a)

T„(X) = cn/A = [n(n + l)(/>! - ql) — (n + 1)X2 + 4»;uX] \ (14b)

unless X is one of the values given by X2 = w2/3jj. /3„ is either of the values given by

Eq. (10a).

When N/a = 2B cos nd sin Xs, we have

v = dn sin (nd — \s) — en sin (nd + Xs),

and
dn/B = Xn, ejB = F„.

The quantities Xn and Yn are useful later in the paper; hence the special notation.

We see now that the motion of the unconstrained ring resulting from the type of

loading described is composed of two waves of different amplitudes traveling around

the ring with equal but opposite velocities. We note that there is, for each n, one value

of X for which there are fixed nodal points in so far as tangential motion is concerned.

This value of X is defined by Xn+ Y„ = 0.

It follows from the linearity of our equations that the driving function N of the

more general form,

N/a = ^4„„ cos nd sinXmj (15)
m,n

will correspond to a solution

v = bmn cos (nd — \ms) + cos (nd + Xms). (15a)

Terms Xmn and Ymn are defined as were X„(Xm) and F„(Xm) in Eqs. (14a) and (14b).

The particular problem in which the exciting force is given by

N/a = Aq cos Xs (16)

8 This is seen in the discussion following the introduction of Eq. (9).
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has no inextensional solutions. As was mentioned previously, we must, in this case,

use Eq. (9d) for the determination of v. The solution has the form v — bo cos Xs where

bo is given by

b0 X-2 + «(1 - M2/X2)
X„(X) =   (16a)

A0 1 + 3tfi2 - eX2

The solution arising from the loading N/a=A0 sin Xs has the same coefficient. For

small X2, i» = ^40X-2 cos Xs.

The natural frequency for the dilatory type of vibration is found by letting the

denominator of Eq. (16a) vanish. Its value is given by

X„' = [(1 + 3e/i2)/«]1/2.

Returning momentarily to the question of accuracy, we note that here as in all

subsequent problems the exact values of Xn and Yn differ from those obtained in this

section by terms (in the denominator) of order e. Our work is accurate then when

X«e-1'2.

5. The supported ring. The first fact to observe in the investigation of the "free

vibrations" of the partially constrained ring is that when N and P vanish identically,

no solutions to Eq. (9a) which obey the boundary conditions can exist. Specifically,

we consider the ring to be supported by a number of evenly spaced, rigid, radial sup-

ports (let there be J of them), and suppose the ring to be so fastened to these supports

that radial motion is unconstrained at all points, but that v(2iri/J, s) must vanish

for all values of s and for each integer i. The first part of the appendix is devoted to

the outline of a proof that Eq. (9b) has no solution under the foregoing conditions.

Since the same proof holds for Eq. (9), we must conclude that the supports exert

reactions which are to be accounted for in the differential equation by a function N

which does not vanish identically. The problem, physically, becomes that of determin-

ing what periodic forces, applied at the supports, are capable of sustaining a motion

wherein the supported points of the ring have no displacement (tangentially) at any

time. (We assume that the supports must move at precisely the speed «.) Mathe-

matically, we must determine the eigenvalues X< and the corresponding solutions of

the differential equation wherein we set P = 0 and

N/a = fl + 2 cos n^\ M cos Xs + 5 sin Xs].
L n-J,2J. • • • J

(17)

This expression defines a loading which must correspond to a motion which has period

2ir/J in 0, since the force is the same at each support. When J is even, there may also

be solutions periodic in t/J which don't imply extensional motion. We shall not con-

sider these, however, since both the procedures and results are analogous in the two

cases.

We have already shown [Eqs. (15) and (15a)] that for loadings of the type given

by Eq. (17), solutions of the form

v(6, s) = 52 [6„ cos (nO — Xs) + • • • — e„ sin (nO — Xs)] (18)
n

exist for all X except those for which X2 = nJ/3j[. Using Eq. (9b) we determined all co-
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efficients except those of index zero, and these were found with the aid of Eq. (9d).

We may then, in this problem, replace Eq. (9) by the following:

£„(»') = L£(N/a), U{v - v') = (.N - N')/a, (19)

where the former equation is merely Eq. (9d), v' and N' are those parts of v and N

which are independent of 9, and the latter equation is Eq. (9b). The solutions are now

defined by Eq. (18) and the coefficients by Eqs. (14a), (14b), and (16a).

If we now plot for a continuous range of X,

oo

<r(X) = £ Xn(X) + Fn(X) = £(&„ + Cn)/A = £(<*» + en)/B,
n~=J n n

we find that the resulting graph (Fig. 2) contains two singularities corresponding to

each n. Furthermore, there are two values of X which we may associate with each n

for which <r(X) vanishes. One of these lies between the two singularities belonging

to n\ the other lies to the right of these values. We denote the smaller by X„ the

larger by X„*.

30

ioo ctcaj

-3.0

f\

2 09 6.9 X 16.6 19.4

Fig. 2. Response curve for ring driven at two points. <r(X) is the amplitude of the motion of the

points of application of the force. The broken section of the curve is drawn to the scale 1:5. For this

curve, /i = 3.

We observe now that the motion at the points 2ni/J is given by t>(0, s)

= ^4cr(X) cos \s+B<r(\) sin Xs. The values Xt- and X,* therefore define the frequencies

for which the tangential displacements at the points of support are identically zero.

They are therefore the desired eigenvalues. The motion of the ring for any Xi or X,*

is given by

i) = 23 AiXin cos (nd — \is) + • • • + BiYin sin (nd — X<s), (19a)
n

where A < and B i are determined by the initial conditions.

The question now arises as to whether linear combinations of the will always

describe the motion arising from an initial set of conditions which are arbitrary except

for the previously prescribed periodicity in 6. An outline of a proof that the i>, are

complete in this sense is included in the appendix. Since the natural modes of the

possible vibrations are described accurately by Eq. (19a) only for the smaller values

of X,-, it may seem at first that this question of completeness is superfluous. However,

the completeness of such sets of solutions provides an assurance that no other possi-
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ble solutions of the equations have been overlooked in the analysis. In view of the

fact that the foregoing procedure started with a guess as to the probable form of the

support reactions, this indication that certain initial conditions would not lead to

different types of motions is helpful. We conclude, then, that all vibrations, arising

from initial conditions whose Fourier series expansions are such that the low index

terms predominate, can be closely approximated by sums of the form,

»(0. 5) ~ 12 KiVi{Q, s). (20)
»

We also conclude that the supports will continue to exert exactly those reactions re-

quired to sustain this motion, or in other words, those forces required to prevent all

tangential motion of the supported points of the ring.

The problem of the radially constrained ring may be treated in a manner similar

to the foregoing, with analogous results. When the ring is constrained at its supported

points against both radial and tangential displacement, Eqs. (9a) and (9b) must both

be used. Support reactions of the form

N/a = ^4^1 + 2 cos cos Xs, P/a — B j^l + 2 ̂ 2 cos sin Xs,

and solutions of the form

i= cos (nd — \s) + a„' cos (nd + Xs),

«= sin (nd + Xj) — b„ sin (nd — Xs),

are assumed to exist as before. This time we find four functions analogous to o-(X)

which enter the equations for the motion of the supported points. When this motion

vanishes, these equations become .<4cri(X)+.Bo2(X) =0, ^4ct3(X)+5<74(X) =0. The criti-

cal frequencies are defined by o-i(X)<r4(X) — <r3(X)<r2(X) = 0. Since nothing essentially dif-

ferent from the preceding results would be shown, the formulas for the terms in the a,-,

the explicit expressions for the Vi, etc. are omitted.

The forced vibration problem of the supported ring can now be easily treated.

For example, let us consider the ring to be supported as in the first problem of this

section of the paper, but to be loaded by a force distribution which may be expanded

into the form Ni/a=^nDn cos (nd + vs). The particular solution to Eq. (9b) corre-

sponding to the loading Ni is found as before, and the function

»(0, j) = ^ j, cos vs = G cos vs
n

representing the displacement at the supports, has an easily evaluated amplitude G.

Remembering that a support reaction,

N2/a = A j^l + 2^ cos cos vs

produces a motion at 9 = 2ivi/J which is given by 1^(0, s) =A<r(v) cos vs, we may de-

termine from the response curve (Fig. 2) the value of A such that A<j(v)= —G. The

motion is then given by the solution to Eqs. (19) corresponding to the loading N\-\-Nz.

When more than one value of v enters the problem, the solution is changed only by

the fact that the summation now takes place over two indices.
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We note that when v in the problem just discussed is equal to one of the X<, a

resonant condition exists, as one would expect from the results of the preceding prob-

lem. Also, we note that when the loading consists of a single term, cos mO cos vs, and

when v is one of the roots of Xm+ Ym = 0, the solution requires no support reactions.

Perhaps the most interesting result of this analysis is the observation that, unlike

most problems of this sort, the forces exerted by the rigid supports of the vibrating

system must be included in the differential equation before the solution can be ob-

tained.

6. The elastically supported ring. A rather interesting eigenvalue problem arises

when we consider the ring with elastic rather than rigid supports. Let us suppose

again that the ring is unconstrained radially but that the supports resist the displace-

ment of the points of attachment by a force, N/a= —Kv{0, s).

Using Eqs. (19) as before, we find that the differential equations governing the

motion now have the form,

U{v') = - KLq [»(0, *)], (21a)

L\{v — v') = — AT[w(0, 5)] [2 cos n#]• (21b)

For solutions of the form,

v = S k cos (»0 — Xi) + • • • — &n sin (n6 — Xs)],
n

Eqs. (21a) and (21b) become

«„ = - KFXn(\), 7» = - KHXn(\),
(« = 0, J, 2J, • ■ • ). (21c)

ft. = - KFYn(\), Sn = - KH Fn(X),

In these equations, F=52n(a„+/3»), „+5„), and the Xn and Y„ are again

given by Eqs. (14a), (14b) and (16a).

When Eqs. (21c) are added by pairs and then summed over n, the following re-

sults are obtained: F[l + JsTcr(X)] =0, i7[l+JCo-(X)] =0. But if F and H vanish the

solution is the trivial one; hence,

<r(X) = - l/K. (22)

This equation defines the eigenvalues and hence the natural modes at which the sys-

tem may vibrate. We note that as K tends to infinity X approaches that value found

in the problem of the more strongly constrained ring (as it obviously should). As K

tends to zero, the solution approaches that for the unconstrained ring. It is again easily

shown that the set of eigen-functions obtained in this problem is complete in the pre-

viously used sense.

A final problem in forced vibrations follows easily from the foregoing. Let the ring

be supported as above, but with the supports rotating at a speed w+^X sin \s,

where w is again constant. Briefly, we replace v(0, s) by v(0, s)+\f/ cos X5, on the right

sides of Eqs. (21a) and (21b). The previously used procedures lead to the familiar

set of solutions with the resonant frequencies obviously defined by Eq. (22).

Appendix

In this section, we wish to show, first, that Eq. (9b) has no solutions which are periodic in both 0

and s and which vanish at 0 = kir/J, (k = 0, 1, 2, • • • , P = JV=0).
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We assume a solution periodic in $ and write it as the sum of an even and an odd function (in 0);

v(6, s) = x{e, s) + y(0, s),

where x(9, s) = x( — B, s) and y{8, s) = —y(—0, s). In order that v satisfy the specified requirements, both

x and y must vanish at the prescribed points.

In an abbreviated form we write Eq. (9b) as L2(v) =d2v/d0ds, where the operator Li transforms even

functions into even and odd into odd. This can be seen by inspection of Eq. (9b). The equation is now

separable into two parts:

c^V d^x
w •M-Si- ""

We operate on Eq. (b) with the operator d2( • • • )/d$dt and substitute Eq. (a) into the result, obtaining

2 d'x
Li(x) = , (c)

which has solutions of the form, x =y"„q, cos nd exp iy„s. All even, continuous, periodic, solutions of Eq.

(c) may be written in this form but all of such solutions will fail to vanish at the specified points unless the

on vanish identically, since ■ym/fn is irrational and cos nB never vanishes at B = 0. Equation (a) then reduces

to d2y/dddt=0. It now becomes obvious that the solutions sought do not exist.

Before showing that the functions derived as natural modes of vibration in the section on the sup-

ported ring are capable of describing all motions periodic in 2ir/J which arise from arbitrary initial con-

ditions, we introduce the following notation:

Xin + Yin = -fin, X,[- Xin + Fi„] = *4„, X*n + F*„ = <&„, ■ ■ ■ . (d)

For any motion described by Eq. (20), the possible initial displacements and velocities may be written

00 00

1>(6, 0) = Yi X! [(•4<</>h; + A*<t>tn) cos nB + (B<0i„ + B*<(>*„) sin nff],
t—0 n—0,J, • • •

dv (e)
— (ff> 0) = H {(Aii'i,, + /I*!/-*.) sin nf) + + B*\l>*n) cos n/)\,
OS i n

where the Ai, • • • , Bi* are to be determined by the initial conditions. However, any initial conditions,

periodic in 2-ir/J can be written

v(6, 0) — y, an cos nd + pn sin nB, — (6, 0) = yn cos nff + S„ sin nB. (f)
n ds

This leads to the relations,

X (Ai<f>in + A ,■ 4>i„) — a„, ^ (Bi<t>i„ + B*, ,*) = pn, • • ■ •
* i

This set of equations may be considered as a group to be solved for the A{, • • ■ , Bi* whenever such

solutions exist. Except for special cases, such a set of equations always leads to a unique set of solutions

corresponding to each set of an, • • • , S„. Since Eqs. (f) can express all the specified sets of initial condi-

tions, we see that Eqs. (e) can also accomplish this purpose and hence the »,• are complete in /Sthe sense de-

fined above.

The case where i equals zero requires a few additional words. The fact that there is no oo or 5o seems

to imply that we have two too few equations for the determination of the Ai, • • • , B*. Hewever, there

is only one root of <r(\) corresponding to n equal to zero. Henc e, the correct correspondenc between the

ai, Si and the Ai, ■ ■ • , Bi* exists.

The proofs outlined in this section are not claimed to be rigorous. They are presented merely to out-

line the reasoning by which the two hypotheses might be proven if so desired.


