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we obtain

A11 + 71 A12 • • • A im ai

A 21 -4 22 + 72 ' ' - A 2m C*2

A ml Am2 ' ' * A mm + 7m «m

2/1 \
ai a2 • • • a. — ( — — log a J + 4 log

x

since

5o

K

tanh t ir
 dt — log —

* 2

= 0, (23)

The quantities an, A„P can be easily computed from Eqs. (19), (20) and (16) with

the help of the result2

J" (2t)ne~21 tanh tdt = n\^1 — + 1) — 5^ »

where f(«) is the Riemann Zeta-function, tabulated for integral n in J. Edwards,

"The integral calculus," vol. 2, Macmillan, London, 1922, p. 144.3

The solution for K = 1 differs from the well-known exact solution for this case by

less than 0.2 per cent, when only the first three of bn are retained, provided that

For larger values of K and a it may be necessary to retain more terms to achieve the

desired accuracy but for practical values the amount of computation required is not

excessive.

2 When n = 0, the result reduces to /„ e'2t tanh tdt = log 2 — J.

3 A four-figure table is given in E. Jahnke and F. Emde, Tables oj functions, Dover Publications,

New York, 1943, p. 273.

LARGE DEFLECTION OF CANTILEVER BEAMS*

By K. E. BISSHOPP and D. C. DRUCKER (Armour Research Foundation)

The solution for large deflection of a cantilever beam1 cannot be obtained from

elementary beam theory since the basic assumptions are no longer valid. Specifically,

the elementary theory neglects the square of the first derivative in the curvature

formula and provides no correction for the shortening of the moment arm as the

loaded end of the beam deflects. For large finite loads, it gives deflections greater than

the length of the beam! The square of the first derivative and correction factors for

the shortening of the moment arm become the major contribution to the solution of

* Received April 6, 1945.

1 This problem was considered by H. J. Barten, "On the Deflection of a Cantilever Beam," Quarterly

of Applied Math., 2, 168-171 (1944). Previously an approximate solution had been obtained by Gross und

Lehr in Die Federn, Berlin VDI Verlag, 1938.
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large deflection problems. The following theory which utilizes these corrections is in •

agreement with experimental observations.

The derivation is based on the fundamental Bernoulli-Euler theorem which states

that the curvature is proportional to the bending moment. It is assumed also that

bending does not alter the length of the beam.

Considering a long, thin cantilever leaf spring, let I. denote the length of beam,

A the horizontal component of the displacement of the loaded end of the beam, 5 the

corresponding vertical displacement, P the concentrated vertical load at the free end,

B the flexural rigidity, that is B=EI, when cross-sectional dimensions are of the

Fig. 1.

same order of magnitude, and B = EI/{ 1—p2) for "wide" beams, where v is the Pois-

son ratio. The exact expression for the curvature of the elastic line may be stated

conveniently in terms of arc length and slope angle denoted by 5 and <£, respectively,

so that if x is the horizontal coordinate measured from the fixed end of the beam, the

product of B and the curvature of the beam equals the bending moment M:

d<f>
B — = P(L — x — A) = M (1)

ds
or

d2tj> P dx P
  = = cos 0, (2)
ds2 B ds B
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whence
1 /d<t>\* P

— I — J = sin <f> + C.
2 \ds/ B

(3)

The constant C can be evaluated directly by observing that the curvature at the

loaded end is zero. Then if <po is the corresponding angle of slope

d<t> /2P
— = y — (sin <f>0 - sin 4O1'2. (4)

The value of 4>o cannot be found directly from this equation but it is implied by the

requirement that the beam be inextensible, so that

J2 P rL r*° _/PZ,2\l/2
~ J (sin <f>o — sin <f>)~1/2d</> = (5)

In order to evaluate this elliptic integral, denote PL2/B by a2 and let

1 + sin <j> = 2k2 sin2 6 = (1 + sin <t>0) sin2 0. (6)
Then

> T/2

/» T/2 (1 - k2 sin2 e)-l'2de, sin 0, = y/2/2k.
01

(7)

The next step is to represent the deflection 5 in terms of a and an elliptic integral.

Since
dy d<j> dy
 = — — sin <f>,
d<j> ds ds

and since we have d<j>/ds from Eq. (4),

>2P
d_y /'<_

dd,V
(sin <t>o — sin <^>)1/2 = sin <f>.

d<f> Y B
Thus

t = rd,.J±r—mm*—
J o V 2P J o (sin 0o — sin <^>)1/2

With the aid of Eq. (6) we obtain

8 V2 r+° sin 4>d<t> 1 r -'2 (2k2 sin2 6 - l)dd/■ sin <t>d<j> 1 r'

o (sin <j>o — sin <j>)112 a J»,L 2a J o (sin <j>0 — sin <j>)112 a J (1 — k2 sin2 0)1/2

This equation can be split up into complete and incomplete elliptic integrals of the

first and second kinds. In the notation of Jahnke and Emde,

4 = — [F(A) - F(k, 61) - 2E(k) + 2E(k, 6J], (8)
L a

a = F(k) - F(k, 60,
so that

4= l--[E(k) -E(k,ej]. (9)
L a
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The horizontal displacement of the loaded end is calculated from Eqs. (1) and (4) with

x = 0 when <f> = 0. Thus

p(i-4,-BQ.„-VT<si" 4>o)1/2

or

L - A y/2
—-— = (sin 0)l/2. (10)

L a

From Eq. (6) we have sin <£0 = 2&2— 1.

Numerical results can be obtained by: (1) selecting values of k corresponding to

tabulated values of the modular angle in the elliptic function tables and (2) determin-

ing 0i and a from Eq. (7). After this has been done, S/L and (L—A)/L can be calculated

from Eqs. (9) and (10) and plotted against a2 — PL2/B. The results of these calcula-

tions are shown in Fig. 1.

CORRECTIONS TO MY PAPER

ON THE DEFLECTION OF A CANTILEVER BEAM*

Quarterly of Applied Mathematics, 2, 168-171 (1944)

By H. J. BARTEN

This paper is correct up to the equation

«/ o

The next step

. L

Ol = I as cos 6 ds.

dd £
 = aL cos
dL

is incorrect since 6 is not only a function of L, but is also a function of s. This error

makes Eqs. (9), (11), and (12) incorrect.

Using the relation
dd
— = a{xL — x)
ds

and the various steps used in the original paper, we find that

ainL = F^k, -0 - F{k, 8).

By using 5 as an independent variable we can calculate corresponding values of k and

* Received June 25, 1945.


