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NON-LINEAR THEORY OF CURVED ELASTIC SHEETS*

E. BROMBERG and J. J. STOKER

New York University

1. Theories of plane and curved shells which neglect bending.1 The problem to

be treated here is that of determining, under certain conditions to be stated later,

the stresses and strains in a thin curved elastic sheet in the form of a surface of revolu-

tion held fixed at the edges and subjected to a uniform pressure normal to the sheet.

The problem thus falls under the general class of problems treated in the theory of

elastic shells.

In order to obtain a theory of elastic shells which is manageable from the mathe-

matical point of view, it is customary to make assumptions2 of various kinds, in addi-

tion to those of the general theory of elasticity. These additional assumptions are

usually based on the hypothesis that the shell is very thin. In what follows we shall be

interested in theories which result when the following assumptions are made:

1) The strains due to the normal stress on elements parallel to the surface of

the shell are small enough to be neglected safely.

2) All stresses are constant over the thickness of the shell.

The first assumption is almost always made by writers on the subject of thin shells.

The second assumption of course rules out what are usually called bending stresses.

A linear theory of shells, with a considerable number of practical applications, has

been worked out on the basis of the above two assumptions. It is usually referred to

as the membrane theory of shells.3 The salient feature of the theory is that it is "stati-

cally determinate" since the stresses can be obtained from the equilibrium conditions

alone without reference to the elastic deformations. This results in a very great sim-

plification, by comparison with theories which do not neglect bending. However, the

simplification is coupled with at least one rather serious disadvantage: it turns out

that it is not possible to satisfy the kind of boundary conditions which it would be

natural to impose in these problems, since the order of the system of differential equa-

tions is too low. For example, the condition of a fixed edge (that is, the condition

requiring the displacements at the boundary to vanish) cannot be satisfied in general.

Most writers on the membrane theory of shells attribute the difficulty regarding

* Received May 1, 1945.

1 The theory developed in this paper is an outgrowth of a research project carried out by the College

of Engineering of New York University, under a contract with the War Production Board. The investiga-

tion, which was largely experimental in character, was concerned with the feasibility of constructing

buildings circular in form with a thin steel roof supported by excess air pressure on the inside of the build-

ing. The design problems which arose led to the theory presented here. In this case the sheets considered

were so thin that there was no doubt about the validity of neglecting bending stresses.

2 For an exhaustive classification of the very numerous possibilities here, see the recent paper of

Chien [3]. (Here and in what follows, numbers in square brackets refer to the bibliography at the end of

the paper.)

3 For full treatments of this theory and references to the literature, see the books of Fliigge [5] and

Timoshenko [12 ].
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boundary conditions to the fact that bending is neglected, and it is true that use of

the linear bending theory does make it possible to impose physically reasonable

boundary conditions. However, there are cases in which the shells are so thin that

the bending stresses are small compared with the "membrane" stresses.4 It seems not

to have been noticed that a theory which neglects bending stresses, but which neverthe-

less makes it possible to satisfy physically reasonable boundary conditions, can be obtained

by taking account of certain non-linear terms in the relations for the strains as functions

of the displacements. This paper has as its main purpose the development of such a

non-linear theory.

Our theory is a generalization of an already existing non-linear theory for the case

of a plane sheet5 supported in some way at its boundary and subjected to normal pres-

sure p. It is useful for our purposes to discuss the theory of plane sheets from a num-

Fig. 1.

ber of different points of view, with the object of comparing and contrasting this

theory with the theory of curved sheets to be presented later. The undeformed posi-

tion of the sheet is taken as the xy-plane, the system of stresses in the sheet is denoted

by <TX, cy, and r,, and the displacement components by u, v, and w. In Fig. 1 the

notation for the stresses ar and in polar coordinates (r, <£) is also indicated.

The equilibrium conditions for the stresses ax, <r„, and rxy in the sheet are

dtr x xy di" xii dff ii
— + - = 0, —-+—= 0. (1.1)
dx dy dx dy

The equation of equilibrium for the direction normal to the sheet is

d2w d2w d2w
cy —-- + 2tiv—— h <Jx = — p/h, (1. 2)

dxc axay dy'

4 The present investigation was prompted by the necessity of dealing with just such a case.

5 The word "sheet" is employed here in a noncommittal way. In the course of our discussion a more

precise significance will be given to the phrase "theory of thin sheets."
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where h is the thickness of the sheet and p is the pressure. The non-linear character

of the theory under discussion stems from the retention of certain quadratic terms in

the relations for the strains ex, yxv in terms of the displacements:6

du 1 /dw\2 dv 1 /dw\2

dx~^~ 2 \dx)' " dy~^~ 2 \dy/'
(1.3)

du dv dw dw
y iV = 1 1  

dy dx dx dy

The stresses and strains are assumed, as usual, to obey the stress-strain relations

1 1 2(1 + v)
ex = — (<rx — vtrv), €„ = — (o-„ — wx), Ti» =   txv>

EE E

where E and v are the modulus of elasticity and the Poisson ratio, respectively.

Finally, we have the "compatibility" equation

1/ d2w \2 92w d2w)
+ (,-4>

in which V2 is the Laplace operator.7 This equation is an integrability condition for

Eqs. (1.3), expressed in terms of ax, <rv, and w by the use of (1.1) and the stress-strain

relations.

Two different kinds of conditions will be considered at the boundary C of the

sheet. In one case we prescribe the displacements u, v, w at the boundary;

a = u(C), v = v(C), w = 0. (1.5)

In the other case, instead of the displacements u and v we prescribe the normal and

shear stresses er„ and 7„ at the boundary;

On = trn(C), T„ = Tn(C), W = 0. (1.6)

That we may impose the boundary conditions (1.6) is clear; the differential equations

(1.1), (1.2), and (1.4) together with the boundary conditions (1.6) constitute the

complete formulation of a boundary value problem for the determination of the

functions <rXl <ry, rxy and w. That the conditions (1.5) may be imposed could be seen

readily by formulating our problem in terms of the displacements u, v, w alone, but

we refrain from doing so here. The conditions (1.5) mean that the edge of the sheet

is stretched in its plane by a fixed amount, which does not depend upon the applied

normal pressure p. The conditions (1.6), on the other hand, mean that the stress at

the edge is held fixed while the displacements there will depend upon p.

8 Notice that of the three quadratic terms occuring in the usual expression for the strains, only the

one involving w is retained in (1.3). The motivation for this is that the order of magnitude of the dis-

placement w normal to the sheet can be expected to differ from that of the displacement parallel to the

plane of the sheet. The experimental results (see the paper by Eck [4]) confirm the validity of this assump-

tion from the physical point of view.

7 These differential equations were first obtained by Foppl [6] in 1907. They can also be obtained by

neglecting the terms referring to bending in the non-linear theory of plates developed by v. Kdrmin [ll ].

The equations have been solved by Hencky for the case of a circular sheet [9 ] and a rectangular sheet

[10]. Bourgin [2 ] has treated the case of the rectangular sheet by methods different from those of Hencky.
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For the purpose of comparison with our new theory of curved sheets, which we

develop only for the rotationally symmetric case, it is convenient for us to formulate

the plane sheet theory in polar coordinates assuming all quantities to depend only on

the coordinate r.

The differential equations corresponding to (1.1), (1.2), and (1.4) are for this case^

— (rar) = 0>, (1.1)'
dr

Id/ dw\
P/h> (1-2)'

r dr \ dr /

d E /dw \2" 7, (™') +" TV*)'

For the purpose we have in view it is not necessary to write down the strain-displace-

ment and stress-strain relations in polar coordinates. The boundary conditions (1.5)

at the edge r = R become
m = u(R), w = 0, (1.5)'

in which u refers to the radial displacement at the edge. The alternate boundary con-

ditions (1.6) become
ar = <rr(R), w = 0. (1.6)'

We consider three different specializations of the non-linear plane sheet theory as

a basis for comparison with the theory of curved sheets to be developed later. These

are: Case (a), a direct linearization of the differential equations; Case (b), the classical

linear membrane theory; Case (c), the problem of Foppl-Hencky. We proceed to dis-

cuss these three cases in order.

Case (a). A direct linearization of the differential equations. If we simply neglect

the non-linear terms in (1.2) and (1.3) we obtain the relations V2(<tx+<tv) = 0, p = 0.

The sheet is therefore not deflected laterally; it is simply in a state of plane stress.

From our point of view, such a linearization thus leads to a "trivial" problem.

It is worth while to point out that the solutions for Case (a) are also solutions of

the non-linear sheet theory if we impose the condition that the normal pressure p be

everywhere zero.

Case (b). The classical linear membrane theory. The well-known linear theory of

tightly stretched plane membranes can be obtained from the non-linear sheet theory

as an approximation to the solution of the boundary value problem in a special case.

The approximation, as we shall see, results from a development in the neighborhood

of Case (a). The special case of the non-linear theory in question arises when the

boundary condition is taken in the form (1.6) with <r„ assumed to be a constant <x>0,

r„ to be zero:
<rn = o > 0, rn = 0, w = 0. (1-7)

Furthermore, we make the important additional assumption that the applied normal

pressure p is small compared with <j. In other words we assume the membrane to be

tightly stretched and then deflected by a relatively small normal pressure.

We can solve this boundary value problem by a perturbation method consisting

of a development in the neighborhood of the solution for the case in which w = 0,
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p = 0 (that is, in the neighborhood of the undeflected state of the stretched sheet).

The well-known linear membrane theory results as the second step in such a develop-

ment. We need only develop a x, (Ty, Txyj and w in terms of the parameter e defined by

e — p/a, as follows:

(0) 2 (2) (0) 2 (2)
Ox — <*X + ( Vx + • • • , <Ty = <Jy + t Oy + • •

(0) , 2 (2) (1) 3 (2)
Tzy = Txv + i Txy + • • • , W = €W + € W +

(1.8)

The stresses (including the stress a at the boundary) are of lower order in e than the

deflection w and the applied pressure p. Insertion of relations (1.8) in the differentia!

equations (1.1), (1.2), (1.4) and the boundary conditions (1.7) leads to a sequence of

linear boundary value problems for the determination of the coefficients in the per-

turbation series. For the terms of zero order in the stresses one finds readily the solu-

tion <7^ = <Ty0) = c, = 0; in other words the zero order terms represent a state of

uniform tension throughout the sheet. The zero order terms are also, evidently, the

solution for the linearized sheet theory of Case (a). The differential equation for wa)

is then readily found to be

= - 1/h, (1.9)

while the boundary condition is, of course,

w(1)(C) = 0. (1.10)

Equations (1.9) and (1.10) are those of the classical linear membrane theory (for

unit normal pressure). For the applicability of this theory the essential condition is

that the applied pressure p should be small compared with the initial stress a in the

sheet. We note also that this theory results when the stress is prescribed at the bound-

ary rather than the displacement iu the plane of the sheet; in other words, the linear

membrane theory requires that the edge of the sheet be free to move in the xy-plane.

Case (c). The problem of FoppUHencky. The boundary value problem which leads

to our Case (c) is that resulting from the choice of (1.5) as boundary conditions for

the non-linear sheet theory. This theory is sometimes referred to as the large deflection

theory of membranes. It is not assumed, as in the above Case (b), that the normal

pressure p is small compared with the initial stress in the sheet. In fact, we assume for

the Case (c) that the displacements u and v at the boundary as well as w are zero.

We shall refer to this problem8 on occasion as the problem of Foppl-Hencky. Our

boundary conditions of course mean that the sheet was initially unstrained. Thus the

stresses in the sheet are built up only as the normal pressure p is applied, and conse-

quently the procedure outlined above for Case (b) is entirely inapplicable.

As already stated, our purpose is to generalize the non-linear sheet theory (c) to the

case of curved sheets. The essential step for this purpose consists in developing suitable

non-linear strain relations for the curved sheet analogous to those (cf. (1.3)) for the

plane sheet. However it is not entirely clear a priori in the case of curved sheets just

which of the quadratic terms in the strain equations should be retained and which

rejected. Section 2 is devoted to a derivation and discussion of the strain expressions

8 The previously cited papers of Hencky [9, 10] and Bourgin [2] are concerned with this problem.

The problems for the case in which the boundary displacements u and v are not zero (i.e. the case of an

initially stretched sheet) appear not to have been treated.
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used later as the basis for our theory. The discussion is confined to the case of the

rotationally symmetric deformation of a surface of revolution. Only two displace-

ments are involved in this case, the displacement u along a meridian and the displace-

ment w along the normal to the sheet.

Once expressions for the strains in terms of the displacements are available,

it becomes possible to set up the integral for the potential energy in the sheet (as-

suming Hooke's law to hold) in terms of the displacements u and w. The equilibrium

conditions can then be found as the Euler variational equations minimizing the po-

tential energy. The result is a pair of second order non-linear differential equations for

u and w which permit the boundary condition u = w = 0 for a fixed edge to be imposed.

For most purposes it is, however, more convenient to formulate the curved sheet

theory in terms of the two components crs and of the stress in the sheet along and

perpendicular to a meridian curve, respectively, and the displacement w normal to

the sheet, rather than in terms of the two displacements u and w. This is carried out

in Section 3. In Section 4 the general theory is specialized for the case of the spherical

sheet. The result is a set of differential equations for the curved sheet analogous to

(1.1) and (1.2) for the plane sheet. In Section 5 a simplification in the theory for the

spherical sheet is introduced which is valid for a spherical segment of small curvature

(and probably also for all cases of spherical sheets). The differential equations of Sec-

tion 5 are
d

— (<r« sin 6) = <ja, cos 6,
de

1 d ( dw\ (Rp \
 1 <re sin d J = — I 1- a* + ) sin 0,
R dd\ dd J \ h )R

d
 (<r0 tan 6) + (1 + v tan2 d)oe

dd

R I

dw 1 /dw\2")
w tan2 6 + tan 6 1 (  ) >

de 2R \ de ) )

(1.11)

The independent variable 6 is the latitude angle measured from the pole of the sphere.

These equations are exactly analogous to Eqs. (1.1)', (1.2)', and (1.4)'.9 We refrain

from writing the stress-strain and strain-displacement relations which are needed for

a complete formulation of the problem.

As boundary conditions at 9 = 60 we assume either

u = u(60), w = w(e0), (1-12)
or

<r<> = <re(e0), w = w(e 0). (1-13)

At the pole 6 = 0 we require all quantities to remain finite.

We wish to consider the three special cases in connection with Eqs. (1.11) which

are analogous to the three cases discussed above in connection with the plane sheet.

These are: Case (a), a direct linearization; Case (b), the analogue for curved sheets of

' If we were to allow R to tend to infinity while 6 tends to zero in (1.11) in such a way that R0—*r,

the result would be the differential equations (1.1)', (1.2)' and (1.4)'. (The normal pressure p and the dis-

placement w are taken positive in the direction toward the center of the sphere.)
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the classical linear membrane theory; Case (c), the analogue of the Foppl-Hencky

problem for curved sheets. We consider these cases in order.

Case (a). A direct linearization. In contrast to the corresponding case in the plane

sheet theory, we observe that neglect of the non-linear terms in (1.11) does not lead

to a trivial problem. We obtain, in fact, the equations

d _ Rp
— (<re sin 6) = o> cos 6, <7e + = >
dd h

d E / dw\
— (aa tan 6) + (1 + v tan2 d)ae = —I w tan2 6 + tan 6 — J
dd R \ dd /

(1.11)'

These are the differential equations of what is called the "membrane theory" of thin

shells. One observes that the order of the system (1.11)' is two less than that of (1.11)

The stresses can be obtained from the first two equations of (1.11)' without reference

to the strains and displacements. It is, however, not possible to satisfy in general the

kinds of boundary conditions which would be natural in the physical situations en-

countered in the applications. One such case is that of a fixed edge, which would imply

the condition w = 0 at the boundary. That this condition cannot be satisfied, at least

in the case £=const., is readily seen: the only solution of (1.11)' that is finite at 0 = 0

is given by

pR
a, = 04, = _ f—, w = pR\\ - v)/2Eh. (1.14)

2 h

All three quantities are constant throughout the shell.

As in the corresponding Case (a) for the plane sheet, the solution (1.14) of the

linear equations (1-11)' is also a solution of the non-linear equations (1.11) if proper

restrictions are imposed. Instead of prescribing the boundary values ce and w in (1.13)

arbitrarily, we would require them to have values consistent with (1.14).

Case (b). The analogue for curved sheets of the classical linear membrane theory. The

theory of curved sheets analogous to the classical linear membrane theory for plane

sheets seems not to have been developed. For the case of a spherical sheet we can ob-

tain such a theory from Eqs. (1.11) with the boundary condition (1.13), in which,

however, we assume as and w to have values consistent with (1.14) and set p=p(-0).

However, we assume that the pressure p in (1.11) is given by

p = pm + tpmt (1.15)

in which e is a small (and, of course, dimensionless) parameter. The theory we desire

then results from the terms of first order in the development of the solution by per-

turbations with respect to e. We set

(0) (1) ,2 (2)
w = w + tw + e w +•••,■}

fftf = <T( + + • • • , > (1 • 16)
(°) (1) )

= C* + + • • • , J

and insert these series together with (1.15) in the differential equations (1.11) and

the boundary conditions

ae = = - p™R/2h, w = £<°>2?2(1 - v)/2Eh. (1.17)



1945] NON-LINEAR THEORY OF CURVED ELASTIC SHEETS 253

The terms of zero order in (1.16) are then readily found to be those which would re-

sult from the linear theory—in other words crg°\ cr\and w(0) have throughout the

sheet the constant values prescribed at the boundary in (1.17). The first order terms

are then found to satisfy the linear differential equations

d , (1) • (1>
■— {a% sin d) = cta cos 0,
dd

(1.18)
1 d ( (0) . dw^\ (Rpm (i) (1)^ .

 1 ere sin 9 ) = — I 1- ae + <r± ) sin 0,
R dd\ dd ) \ h )

d (i) 2 (i) E ( dwm (i) 2 \
 (a$ tan 0) + (1 + v tan d)ae = —( tan0 h w tan 8 J,

dd R \ dd )

and the boundary conditions

a? = 0, wa) = 0. (1.19)

Equations (1.18) and (1.19) are analogous to (1.9) and (1.10) for the corresponding

case of the plane sheet. It must, however, be admitted that this "theory of tightly

stretched membranes" for the sphere is somewhat artificial because of the fact that

the "stretched" state is one for which the initial radial displacement w cannot be held

zero at the boundary.

Case (c). The analogue of the Foppl-Hencky problem for curved sheets. The differ-

ential equations (1.11) are to be solved for a prescribed pressure p when the edge of

the sheet is considered fixed, i.e., under the boundary conditions w = 0 and u = 0.

In this particular case the condition « = 0 can be replaced by the condition that the

strain in the direction of the boundary curve is zero, which implies the condition

<r<i, — voe = 0 on o> and ere at the boundary. The analogy with the corresponding case

for the plane sheet is, as we see, exact in every respect.

It should now be apparent that some such term as "sheet theory" is needed in

addition to the term "membrane theory." This is brought out by Table I which lists

the Cases (a), (b), and (c) together with the present terminology. As we note, the

phrase "membrane theory" is already applied to cases which have almost nothing in

common. Consequently we would recommend (in accordance with a suggestion made

by Bourgin [2]) that all of these theories which neglect bending be referred to in

Table I.

Cases Plane Curved

(a) Plane stress Membrane theory of shells

(b) Membrane with small deflections

(c) Large deflection theory of membranes

general as sheet theories. The Cases (a) and (c) could then be referred to as linear and

non-linear sheet theories respectively, while the term membrane theory might be re-

served for the Cases (b), i.e., for theories of initially stretched sheets which start with
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the linear sheet theory as a first approximation and then proceed to a second approxi-

mation by a development in the neighborhood of the solution to the linearized prob-

lem. This terminology will be used in the remainder of this paper.

In Section 3, the differential equations for the curved sheet theory are obtained,

as we have already indicated, by variational methods. In that section also, the sta-

bility of the extremal solutions for both the linear and the non-linear sheet theories

[Cases (a) and (c)] is considered. At first sight one would be inclined to think that

the solutions in the two cases would not differ greatly as far as stability is concerned

if the pressure, thickness, etc., are the same in both cases. This is, however, not true.

On the basis of the linear curved sheet theory, the solutions would appear to be stable

whether the pressure p is inward or outward, that is, whether the sheet is in compres-

sion or tension, respectively. On the basis of the non-linear curved sheet theory, how-

ever, the solutions are unstable when the pressure is such as to cause the stress ere

in the sheet to be a compression.10 This result follows through consideration of the

Legendre condition for our variational problem. In the case of the spherical sheet the

stress <Te, as given by the linear theory, is a compression when the normal pressure p

is positive (i.e., when the pressure is directed toward the center of the sphere). It also

seems certain that the non-linear theory will yield the same relation between the signs

of <re and p for the case of the spherical sheet, unless the displacements are very

large. Consequently, we have assumed in our numerical work that the pressure p is

negative, i.e., is directed outward, in order to avoid unstable cases.

In Section 5 the non-linear curved sheet theory [Case (c)] is formulated in detail

for the special case of a spherical segment of small curvature. The differential equa-

tions for the spherical sheet can be solved by power series in the independent variable.

Graphs showing the distribution of the stresses and the normal deflection w along a

meridian in a particular numerical case are given in Section 6. Perhaps the most strik-

ing feature of these results is that the non-linear sheet theory [Case (c)] yields results

which do not differ greatly from those of the linear theory [Case (a)] except near the

edge of the sheet. In particular, the stresses and the normal displacement w are nearly

constant over most of the interior of the sheet, but change rather rapidly near its edge.

This observation indicates that we have to deal here with a boundary layer effect.

In Section (7) the existence of such an effect is deduced and treated explicitly. It

turns out upon introduction of proper dimensionless variables in the original differ-

ential equations that only one parameter k remains in the transformed differential

equations. The quantity k is given by

k = pR/Eh, (1.20)

in which p is the normal pressure on the sheet, R the radius, E the modulus of elastic-

ity, and h the thickness of the sheet. If k is allowed to tend to zero in the transformed

differential equations the result is in the limit the differential equations of the linear

sheet theory with a consequent lowering of the order of the system. Hence some

boundary condition must be lost at the edge on the transition to the value k = 0. The

solutions of the boundary value problem for k^O can therefore not be expected to

converge uniformly at the boundary to the solution of the problem for k = 0. It is

10 Comparison with the analogous cases (a) and (c) for the plane sheet theory is illuminating. It is

clear that the plane sheet would be stable under edge compression if no lateral deflection were to be per-

mitted, but decidedly unstable under compression if such a lateral constraint were not imposed.
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possible to treat the boundary layer phenomenon by introducing a new independent

variable which depends upon k in such a way as to stretch the boundary layer to

infinity as k—>0, with the result that the convergence of the solutions becomes uniform

with respect to k at the edge. One notices that the value k = 0 corresponds, according

to (1.20), to the value zero for the pressure p.

The boundary layer solution is given in this case very simply by an exponential

function. It could be used to estimate the stresses in practice in cases for which k is

small (and, of course, negative). In the usual cases it is not difficult to see that k will

be of the order of —0.0005 in practice, since pR/2h is the stress when p is constant,

according to the linear theory, and hence k is a quantity of the order of the longitudi-

nal strains.11

It is clear that the non-linear sheet theory could be worked out in detail rather

readily in other cases such as those of the cylindrical and conical sheets. It would

also be of interest to consider the case of the spherical

sheet with a hole, so that two distinct boundary curves

would exist. Various combinations of boundary condi-

tions at the two edges should be considered; boundary

layer effects could then occur at both edges.

From the point of view of the practical applications,

another question is of interest. It is clear that bending

effects will dominate the "sheet effects" near the edge of

the sheet if the sheet is thick enough. This question is

under investigation at the present time.

2. Expressions for the longitudinal strains. We as-

sume the curved sheet to be the surface of revolution ob- x

tained by rotating about the y-axis the meridian curve C, Fig. 2.

x = *(£), y = y(f). (2-1)

The parameter £ is taken to be the arc length of the curve. We consider only deforma-

tions which preserve rotational symmetry, so that the deformation is completely de-

scribed by the displacement components u and w along the meridian and along the

normal to the surface respectively.

It is convenient to introduce the angle 9 between the y-axis and the normal to the

meridian. These notations are indicated in Fig. 2.

The longitudinal strains in the sheet are defined in the usual way. If ds1 is the de-

ormed length of the line element originally of length ds, then the strain e in the direc-

tion of the element ds is defined by

(£)
) = l + 2e. (2.2)

[t is useful to introduce the following relations between the original position (a;, y, z)

md the deformed position (xl, y1, 21) of any point P on the sheet:

11 The effect of the edge constraint seems to be such as to cause the stresses at the edge to be lower in

'alue than in the interior of the sheet. Thus it seems likely that the usual practice in engineering design

if ignoring the edge effect leads to estimates for the stresses which are too high, i.e., are on the side of

afety. Of course, we are entitled to draw this conclusion here only in case the sheet is in tension.
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x1 = x + u cos 9 — w sin 0, yl = y — u sin 0 + w cos 0, z1 = z.

By making use of these relations the strains and in the direction of a meridian

and a parallel (i.e., a curve 0 = const.) are easily computed by using (2.2). We obtain

1 / du \ 1 / dw\2 1 1 (du V
c« = — ( iv ) -\ ( u H ) H ( w ), (2.3)

P \dd ) 2p2 V d6 J 2 p2 \d0 )

u cos 6 — w sin 6 1 (u cos 6 — w sin 0\2

*- » + t( 1 )• (2'4)

The quantity p is the radius of curvature of the meridian curve and x is, of course,

the abscissa of the point P.

Just as is done in the analogous case of the plane sheet, we retain only certain of

the quadratic terms in the strain expressions, which then amounts to the assumption

that these non-linear terms are considered to be of the same order as the linear terms.

Thus it would be logical to reject the third term on the right hand side of (2.3) and

the second term on the right hand side of (2.4), since they are squares of the linear

terms. We shall follow this procedure and thus take for the strains the expressions

1 / du \ 1 / dw\*

p

u cos 6 — w sin 0 ,
e* =  (2.6)

x

The following special cases are of interest:

a) The sphere.1* Here p = R (the radius of the sphere), and we find from (2.5) and

(2.6) that
1 /du \ 1 (dw \2

69 = — I — — w } —( 1 h u J, (2.7)
R \de ) 2R2 \ dd )

= —(w cot 0 — w). (2.8)
R

b) The circular cylinder. Here p= «>, 0=7t/2, x — a (the radius of the cylinder),

and £=y. We find that

du 1 /dw\2 w
+ -(-T- - (2-9) e*=  <2-10)

dy 2 \dy/' a

c) The circular cone. Here p— » , 0=y = const. The strains are given by

du 1 /dw\2
e« = cos 7 1 cos2 7( —— ), (2.11)

dx 2 \dx/

u cos 7 — w sin 7

x
(2.12)

12 These expressions coincide with those used by Friedrichs [7 ]. Similar expressions were used earlier

by Biezeno [l ].
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3. Formulation of the boundary value problem for a sheet with fixed edges. On

the assumption that Hooke's law holds for the relation between the strains ee and et

defined above and the corresponding normal stresses ere and cr^,13 we have for the po-

tential energy V of the sheet the expression

C £» / 1 Eh r, , , \
V = 2ir\ ( —    [e2a + el + - pw xd$, (3.1)

J \ 2 1 — v2 /

in which p is the normal pressure on the sheet counted positive in the direction of the

inward normal. The quantities £ and x(£) are the arc length and abscissa of the me-

ridian curve, and h is the thickness of the sheet. The quantities v and E are the elastic

constants.

The potential energy could be expressed in terms of the displacements u and w

by replacing ee and in terms of these quantities through (2.5) and (2.6). The varia-

tional equations for the minimum problem would then clearly be a pair of non-linear

ordinary differential equations for u and w, each of which would be of the second

order. We shall not write these equations down since in the following we wish to work

with the stresses ae and o>, and the displacement w as dependent variables. However,

we do wish to draw one conclusion from the existence of two such equations. The

differential equations for u and w are of the proper order to permit imposition of the

boundary condition u = w = 0 appropriate for a fixed edge.

The variational equations resulting from (3.1) are

1 d f ere /dw u\ cra cos 6~\
— — (xtr>) — — ) "I =
x d£ L p \ d£ p / * J

1 d f / dw «\1 Tcro (r$ sin 9 p ~1

7 T^™'\it+i)\+h+~r+ir0- (33)
The quantity p in these equations represents the radius of curvature of the meridian

curve; the quantities p, 6, and x are, of course, given functions of £. In deriving (3.2)

and (3 3) use was made of the stress-strain relations

Eee = as — Ee$ — a $ — vae, (3.4)

and of (2.5) and (2.6) in order to introduce <r« and as dependent variables. Equa-

tions (3.2), (3.3), (3.4), (2.5), and (2.6), together with appropriate boundary condi-

tions, yield the complete formulation of the boundary value problems we consider

here. We note that there are six equations for the six quantities u, w, ere, o*, e», t*.

For the most part, we are concerned with the case of a sheet without a hole at the

axis of symmetry, so that the quantity x in (3.2) and (3.3) has the value zero where

the meridian curve crosses the axis, which we may assume to occur for £ = 0. In this

case we would require the solution to be regular at £ = 0. At an edge £ = £o of the sheet

we require u — w = 0, for a fixed edge. In view of (2.6) we see that this implies e^, = 0;

hence we may prescribe the following conditions at a fixed edge:

< w = 0, (3.5)

= cj, — vers = 0. (3.6)

In this way we express the boundary condition in terms of w, <Te, and ov

at £

u On account of symmetry the shear stresses in the coordinate directions are of course zero.
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We remark that the so-called membrane theory of axially symmetric shells results

from the above theory when all non-linear terms in <r», u, and w are rejected.

We have already stated in the introduction that the solutions of the variational

equations (3.2) and (3.3) are unstable when the "radial" stress ae is negative (i.e.,

when it is a compressive stress). On the other hand, it was stated that the solutions

of the linear sheet theory are stable whether ae is positive or negative. The conclusion

regarding the instability in the non-linear case results immediately from the fact that

the Legendre condition on the second variation of V is not satisfied if ae is negative,

which means that the extremals do not render V a minimum in this case. The Le-

gendre condition14 for a minimum in our case requires that the quantity A given by

A = FU(U(Fvl(Wt — FllW( (3.7)

should be positive. The quantity F is the integrand in (3.1) and subscripts denote

differentiations. It turns out that the quantity A can be expressed in the form

A =4ir-hiE{l — »'2)-1:e2ffe. The right hand side has the sign of ae, and consequently the

Legendre condition is violated at all points where <r« is negative.

In the special case of the spherical sheet, it is possible to put the sign of ae in rela-

tion to that of the applied pressure p. If the boundary conditions are specialized in

such a way that the solution of the linear sheet theory results, we know [cf. (1.14)]

that p and ae are opposite in sign, so that the solutions in this case are unstable when p

is positive, i.e., when p is directed toward the center of the sphere. Since it is not pos-

sible to give the solutions explicitly in the general non-linear case, we have not been

able to prove readily that ae and p are opposite in sign in this case; but if the dis-

placements remain small there can be little doubt that p and ae differ in sign in these

cases also. In our further discussion of the spherical sheet we have therefore assumed

always that p is negative, i.e., that it is directed outward from the center of the

sphere.

The linearized sheet theory results from (3.1) when all terms of degree higher than

the second in u and w and their derivatives are neglected at the outset. If this is done,

the Legendre condition for the resulting variational problem becomes A = FU£U£>0,

with
2-KxEh

A = , (3.8)
1 - f2

which is always positive, since x (the coordinate measuring the distance from the axis

of the sheet) is always positive. Hence the Legendre condition is always satisfied in

the case of the linear sheet theory, and we expect all solutions to be stable. The reason

for the stable character of all solutions given by the linear theory, as contrasted with

the unstable character of some of the solutions given by the non-linear theory, is that

the linearization is equivalent to the imposition of a constraint powerful enough to

cause stability in all cases.

4. The spherical sheet. In the special case of the sphere we may write £ = R9,

p = R, and x = R sin 6, R being the radius of the sphere. The differential equations for

the sphere are

14 See, for example, R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, Julius

Springer, Berlin, 1931, p. 184.
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d 1 ( dw \
— (o*0 sin 0) = — ( h u I ao sin 0 + fa cos 9, (4.1)
dd R \ dd )

[V,sin - (fy + <r» + sin 6. (4.2)
1 d

R dd

The system of equations is completed by the two strain-displacement relations (2.7)

and (2.8) and the stress-strain relations (3.4).

As boundary conditions at a fixed edge 9 = 90 we have [cf. the remarks preceding

(3.5) and (3.6)]

w = 0, (4.3) o> — vae - 0. (4.4)

In case the sheet has no hole at the axis, we require the solutions to be regular at 9 = 0.

It is of interest to consider the special case of the complete sphere, in which the

boundary conditions would become regularity conditions for 9 = 0 and 9 = ir. In case

we assume that the load -p is constant, it is readily verified that a solution of our dif-

ferential equations which satisfies the regularity conditions is u = 0, w = pR2( 1 — v)/2Eh,

<rs = o>= —pR/2h. It could also be shown that this is the unique solution to this prob-

lem. We observe that this solution is identical with that furnished by the linear sheet

theory (a) of shells. In other words, the non-linear terms have no influence on the

solutions for the full sphere in case the applied pressure p is constant. If p is not con-

stant, however, the non-linear terms will influence the results for the full sphere.

5. The spherical segment with small curvature. The differential equations of the

Foppl-Hencky theory for the deflection of a radially symmetric plane sheet are con-

tained in the above equations as a limit case. We need only allow R to tend to infinity

while 9 approaches zero in such a way that the product R sin 9 approaches a finite

limit r, and r is thus the polar coordinate which locates points in the plane sheet.

The resulting equations (1.1)' and (1.2)' have already been given in the introduction.

In passing to the limit, one observes particularly that the term u in the second paren-

thesis on the right hand side of (2.7) drops out, so that the non-linear term reduces to

\(dw/dr)2. As a consequence of this, the variational equations for the case of the plane

sheet are much simpler than (4.1) and (4.2), since the terms corresponding to the

first term on the right hand side of (4.1) and the term u in the parenthesis on the left

hand side of (4.2) disappear.

It is clear that we could also simplify our equations for the spherical sheet quite

considerably by omitting the non-linear terms involving u in the expression (2.7)

for €«. It would seem fair to expect that such a simplification would be justified for the

special case of rather flat spherical sheets. We recall that the choice of the expressions

for the strains in terms of the displacements was in any case somewhat arbitrary. At

the beginning, we might have considered the displacement u as negligible compared

with the quantity dw/d9, since we expect the order of magnitude of the displacement

w in the direction of the applied load to differ from that of the displacement u. In

other words, it may well be that this term could be neglected even for sheets of rather

large curvature.15 In what follows we shall neglect this term.

16 It might be noted that the limit problem which leads to the boundary layer phenomena (to be

treated in the next section) is the same whether the terms in the displacement u under discussion here are

retained or not. This is another valid reason for considering these terms to be negligible in most cases.
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One result of this assumption is that the variational equations no longer contain

the function u, but only w, ae, and a>. We can obtain a third equation in these same

quantities—a "compatibility equation"—by eliminating u from (2.7) and (2.8) and

then replacing «« and by <r« and v# through use of the stress-strain relations. The

result is the system of equations

d
— (ire sin 6) = a a, cos 6, (5.1)
dO

1 d T dw ~\ T Rp
 <r, -:"'1 1 1  
R del dd

sin sin (5-2)

d e r dw i /dw \n
 (o* tan Q) + (1 + v tan2 d)o6 = —\w tan2 6 + tan d 1 ( ) . (5.3)

dO R L dO 2R \ dd ) J
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Fig. 3. Normal displacement.

These equations are identical with Eqs. (1.11) which served as the basis for the dis-

cussion of the curved sheet theory in the introduction.

We are interested in solving the differential equations (5.1), (5.2), (5.3) for the

case of a spherical segmenf without a hole about the axis 0 = 0 and with a fixed edge

at 6 = 6o. This means that we require the solution to be regular at 0 = 0 and to satisfy

at the edge 6 = 60 the conditions

w = 0, (5.4) o> — vae — 0. (5.5)

6. Numerical solution of the boundary value problem for the flat spherical seg-

ment. Our principal object in this paper is to present a new theory of thin sheets and

to compare and contrast it with other theories, rather than to give numerical solu-

tions for the resulting boundary value problems. However, we have obtained approxi-
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mate numerical solutions of the boundary value problem formulated in Eqs. (5.1) to

(5.5) of the preceding section, and will report the results briefly in this section.

The graphs of Figs. 3, 4, and 5 indicate the results of an approximate solution1'

LIMIT SOLUTION, K = 0

0.4

0.3

KE

0.2-

0.1-

0.0-1

0 50

0.48-

0.40-

fz
kE

0.44

0.42-

0.40

BOUNDARY LAYER

SOLUTION, -K =1.56 X I0"3 '

0.00 0.04 0.00 0.12 0.16 0.20

9 (IN RADIANS)

Fig. 4. Circumferential stress.

BOUNDARY LAYER SOLUTION,-K = 1.56 X I0~3

POWER SERIES  \

LIMIT SOLUTION, K=0

-K = 1-56 X 10"3 "v
\

\

\
\

\
\
\
\
\
\
\
\
\
V
\
\
\

0.00 0.04 0.08 0.12 0.16 0.20

$ (IN RADIANS)

Fig. 5. Radial stress.

16 The solution was obtained in the form of a development in powers of the independent variable B.

Only four terms in the series (which appear not to converge very rapidly) were retained in calculating

coefficients. On the graphs these solutions are marked "power series, — k = 1.56X 10-3."
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for the case in which the value d0 of 6 at the edge of the sheet is 0.2 rad., and the di-

mensionless parameter17 n = pR/Eh has the value — 1.56X10-3, and v = 0.3. (This was

one of the cases treated as part of the project mentioned in the footnote at the be-

ginning of the paper.The strain everywhere in the sheet is about — ̂ (1 — f)/c in

value. The graphs show values of w/kR, — ct^/kE, and —<tb/kE as functions of 9.

Each graph contains three curves: a dotted curve giving the result of our approxi-

mate solution; and two solid curves which refer to the limit solution obtained as k—>0.

The method of obtaining the limit solutions is explained in the next section. One ob-

serves that the curves marked "boundary layer solution" approximate those of our

numerical solution rather well, at least for the stresses. We have some reason to think

that a more accurate solution of the boundary value problem would show the bound-

ary layer solution to be a better approximation to the actual solution than our graphs

indicate. We note that the curves marked "limit solution, k = 0" are those which

would be obtained from the linear sheet theory.

7. The boundary layer problem. A boundary layer effect has already been men-

tioned a number of times in connection with our boundary value problem. The graphs

of the solutions in the preceding section furnish a hint regarding the character of this

phenomenon. The solutions in the interior portion of the sheet appear to be relatively

constant, approaching there the values furnished by the linearized theory (i.e., those

of the theory usually called the membrane theory of shells). However, toward the

edge of the sheet, the solutions appear to change rather abruptly. This is consistent

with the repeatedly mentioned fact that the condition for a fixed edge cannot be satis-

fied in the linearized theory. The purpose of the present section is to treat this bound-

ary layer effect explicitly.

A necessary step in any treatment of boundary layer phenomena18 consists in the

introduction of appropriate new variables and parameters. In the present case it is

convenient to introduce new dimensionless dependent variables replacing ee, e^, <?e, 0V,

w and u by the relations
Se = ae/Eic, — tr^/En, (7.1)

ee = ««/*, e$ = «^/k, (7.2)

oo = w/Rk, fi = u/Rk, (7.3)

in which the important dimensionless parameter k is defined by the relation

k = pR/Eh. (7.4)

We assume here that the applied pressure p is constant. In terms of the new quanti-

ties, the fundamental differential equations (4.1), (4.2), (2.7), and (2.8) become, in

order
d / dco \

— (se sin 6) = k( h M sin 6 + Sa cos 0, (7.5)
dd \dd )

k — Tssf b sin 0~| = — [l + se + sin 6, (7.6)
d6 L \dd ) J

17 In the next section it will be seen that So and k are the only essential parameters, once the value of

the Poisson ratio v is fixed.

18 Such boundary layer effects have been well-known for many years in fluid mechanics. They occur

also in problems in elasticity other than those considered in this paper. (See, for example [7, 8].)
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ee
/ d/i \ k / dco \2

= (--«) + —( —+A (7.7)
\d6 ) 2 \d0 )

e$ = (n cot 6 — oo). (7.8)

To obtain a complete system of equations we add the stress-strain relations:

ee = so — vst, (7.9) — w». (7.10)

As boundary conditions we require all quantities to be regular at 0 = 0, while at 6 = d0

the condition of a fixed edge is prescribed,

a = 0, (7.11) s,-«* = 0. (7.12)

We now observe that if k is allowed to approach zero in these differential equa-

tions, the result is a set of differential equations for the limit quantities which are

identically the same as those of the linear sheet theory19 (when formulated in terms

of our dimensionless variables),

d
— (s» sin 0) = st cos 6, (7.13) se + s* = — 1, (7.14)
dd

d/j.
ee = oj, (7.15) e# = n cot 6 — co. (7.16)

dd

Obviously, the boundary conditions (7.11) and (7.12) cannot be imposed in this limit

problem. In fact, the solutions of (7.13) and (7.14) are completely determined by the

regularity conditions at 0 = 0 alone. This solution is, as we know, se = s^= — J,

w = J(l — v), n = 0. In the limit, therefore, the boundary conditions at the edge, in

general, will not be satisfied. It follows that the solution of the boundary value prob-

lem formulated in (7.5) to (7.12) will not converge uniformly at the boundary to the

solution of the limit problem as k—>0, and this is the essential characteristic of a

boundary layer effect.

It is, however, reasonable to expect that the solutions do converge in the interior

(i.e., for Og0<0o' <0o, where do is a constant) as k—>0 to the solutions of the limit

problem for x = 0. The graphs of the preceding section confirm this to some extent.

It is possible to give an explicit treatment of the boundary layer effect. Such a treat-

ment can be obtained through the introduction of a new independent variable which

replaces 9 and which depends on k in such a way that the solutions are made to con-

verge uniformly at the boundary in the limit as K—+0. What one wants, roughly speak-

ing, is to stretch the boundary layer as k—>0 in such a way that its width does not

shrink to zero. In our case, this can be accomplished by introducing as a new inde-

pendent variable the quantity t) defined by the relation

V = —(0 " e0). (7.17)
V- K

19 It is perhaps of interest to observe that the limit situation characterized by k—>0 can be achieved

by allowing the pressure p to approach zero. However, if p is simply set equal to zero in the original dif-

ferential equations (4.1) and (4.2), the order of the system is not decreased. Thus the introduction of

new dependent variables through division of the original ones by k is an essential step in the treatment

of the boundary layer effect.
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The reason for the minus sign under the radical is that we wish to consider only cases

for which the solutions are stable, which means cases in which k is negative. (Cf. the

remarks at the end of Section 3.)

If we introduce the new independent variable in Eqs. (7.5) to (7.8) and then allow

k to tend to zero, we obtain the set of limit differential equations

dse d / du\
— = 0, (7.18) T\s'TI = (1+ * + *♦), (7-19)
at) dr) \ dr)/

0 = — > (7.20) = /i cot 6a — u = s$ — vs$, (7.21)
dr)

for the range — °° <77^0, where 77 = 0 corresponds to the edge of the sheet. This sys-

tem of equations, which has the same order as the original system, yields the bound-

ary layer "resolution" which we seek. The boundary conditions at 17 = 0 are given by

(7.11) and (7.12). At 77= — =o we expect all quantities to tend to the values furnished

by the solution of the interior limit problem given above. Thus we expect c0 to ap-

proach the value i(l — v) as V~00 •

Since the boundary layer differential equations have constant coefficients, they

are readily solved by exponentials. One finds, for example, that « satisfies the differ-

ential equation
d\0
— - 2u = - 1 + v, (7.22)
dr,*

so that the homogeneous equation is solved by real exponentials.20 The solution of

(7.22) which satisfies the conditions at 77 = 0 and 77= — 00 is

to = £(1 - - 1). (7.23)

The results for the other quantities are easily found to be

n = 0, (7.24) se=-h, (7.25)

**= -i{l + (l-iO(^'-l)}. (7.26)

The graphs of Figs. 3, 4, and 5 contain in each case a curve marked "boundary

layer solution, k= —1.56X10-3." These curves were obtained from (7.23), (7.25), and

(7.26) by reintroduction of 6 as a variable through use of (7.17) with k= — 1.56X10-3.

Comparison with the curves for the numerical solution of the original boundary value

problem indicates that such a "compressed" boundary layer solution may furnish a

fairly good approximation to the values of w and ere near the edge of the sheet if k is

not too large.
References

[1] C. B. Biezeno, Uber die Bestimmung der Durchschlagkraft einer schwachgekriimmten, kreis-

formigen Platte, Z. angew. Math. Mech. IS, 10-22 (1935).
[2] D. G. Bourgin, The clamped square sheet, Amer. J. Math. 16, 417-439 (1939).

[3] W. Z. Chien, The intrinsic theory of thin shells and plates, Parts I, II, III, Quart. Appl. Math. 1,

297-327 (1944); 2, 43-59, 120-135 (1944).

20 If we were to try to resolve the boundary layer in the case when k is positive (that is, the unstable

case) the corresponding equation for 01 would possess simple harmonic solutions and no limit would exist

as »— 00.



1945] NON-LINEAR THEORY OF CURVED ELASTIC SHEETS 265

[4] B. Eck, Z. angew. Math. Mech. 7, 498-500 (1927).
[5] W. Flugge, Statik und Dynamik der Schalen, Julius Springer, Berlin, 1934.

[6] A. Foppl, Vorlesungen iiber technische Mechanik, vol. 5, G. Teubner, Leipzig, 1907, §24.

[7] K. O. Friedrichs, On the minimum buckling load for spherical shells, Applied Mechanics, Theo-

dore von K&rm&n Anniversary Volume, 1941, pp. 258-272.

[8] K. O. Friedrichs and J. J. Stoker, The non-linear boundary value problem oj the buckled plate,

Amer. J. Math. 63, 839-888 (1941).
[9] H. Hencky, Uber den Spannungszustand in kreisrunden Platten, Z. Math. Phys. 63, 311-317

(1915).
[10]  , Die Berechnung diinner rechteckiger Platten, Z. angew. Math. Mech. 1, 81-89, 423-424

(1921).
[11] T. von Karman, Festigkeitsproblem im Maschinenbau, Encyk. d. math. Wiss. IV4, 311-385

(1910).
[12] S. Timoshenko, Theory of plates and shells, McGraw-Hill, New York, 1940.


