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1. Introduction. As a general rule, a problem in physics is not considered solved

unless the solution can be expressed in analytical form. The same usually holds true

in the case of engineering problems, although there the art often progresses faster than

the theory under the impact of economic forces, and the engineer is often forced to seek

a solution by means of an experimental setup, or possibly by means of some numerical

or graphical process.

The disadvantage of a numerical or graphical method is its lack of generality, its

tendency towards inaccuracy, particularly owing to cumulative errors, and its in-

ability to exhibit optimum values for the parameters involved, particularly if these

have to be in numerical rather than in symbolic form. On the other hand, these meth-

ods often yield answers to problems that the analytical method cannot handle, and

furthermore are often very effective as teaching aids. This is particularly true of the

graphical methods.

It is the purpose of this article to illustrate the application of graphical construc-

tions to problems involving nonlinear circuits, particularly those containing vacuum

tubes. It is the writer's hope that some mathematician will be sufficiently attracted

to this method to attempt to establish it on a more general basis, possibly something

akin to the collection of theorems of ordinary Euclidean or of Projective Geometry.

2. Definition of graphical method. Before proceeding with a description of the

method it will be desirable to define it. By graphical constructions are meant those

geometrical manipulations by which a solution to a problem is obtained. It may be

necessary to slide a curve representing a relationship between two variables along

the axis of the independent variable, and to find (geometrically) where it intersects

another curve representing a second relationship between the two variables. The

manipulations may be more involved than those of simple translation along the axis,

and it is to be stressed that the restriction of ruler and compass constructions is not

invoked in these manipulations.

It is apparent that the method is not that usually understood by the average engi-

neer, namely, the plotting of a complicated generalized analytical expression to per-

mit values to be taken off the graph in order to obviate the need for computing the

value of the expression every time the problem arises.

3. Simple series nonlinear circuit. As an elementary example of a graphical con-

struction, let us consider the circuit shown in Fig. 1, that of a diode (two-element
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vacuum tube) in series with a resistance R and a source of d.c. potential E. It is de-

sired to find the current flow in this circuit.

It is necessary to know the voltage-current e—i relationship for the diode, and

for the resistor R. We assume for simplicity that the latter is a linear resistance.

Then the e — i relationship is that shown in Fig. 2. The curve is a straight line making

an angle & with the voltage axis, such that

cot 6 = R, (1)

the resistance of the device. This slope is constant and hence R has a fixed value:

so many volts per ampere, or ohms.

On the other hand, the diode has the characteristic shown in Fig. 3. Here, for

 i

6

T
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Fig. 1. Fig. 2.

negative values of voltage (piate negative to cathode) no current can flow; while for

positive values of voltage current flows in such manner as to generate the curve shown.

The ideal diode would have the following equation for positive plate voltages

i = Ae312, (2)

but actual diodes depart to some extent from the above equation owing to such fac-

tors as initial velocity of emission of electrons from the cathode, the effect of the sup-

porting members for the cathode and plate, etc.

The diode is a nonlinear device; first because of the break in the curve at the origin

and second because even for positive plate voltages the e—i relationship is usually

not a straight line. One can define the resistance as

1) the reciprocal slope of the secant line to any point of the curve (this is the

so-called d.c. resistance) or

2) the reciprocal slope of the tangent line to any point of the curve (this is

usually called the a.c., incremental, or variational resistance of the device).

Fig. 3. Fig. 4.

Such concepts have limited utility however, since the resistance in either case is no

longer a constant, but a function of the applied voltage or current through the device.
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The graphical method to be described takes the fundamental e—i relationship, or

terminal characteristic as it has been called by Kirschstein, and operates directly with

it. Furthermore, the curve does not have to be analytic, nor even expressible in the

form of an equation; it can simply be a plot of experimental data, although this in-

volves interpolation between experimentally determined points.

The process of finding the current through the two in series for the impressed

voltage E is essentially that of solving the two equations for the terminal character-

istics simultaneously under the condition that the sum of the voltage drops across

the two elements must equal the impressed voltage E. Thus, if the relationship for

the one element is i=fi(e), then that for the other is i=f2(E — e), and it is desired to

find a common value of i that satisfies both relationships.

Since one or both of the above equations may be of degree higher than unity, the

analytical solution cannot be effected by the method of determinants, but rather by

the method of substitution, and finally results in the necessity for solving an equation

of degree higher than unity.

This, however, assumes that terminal characteristics can be represented by power

series. The graphical method requires no such condition; it operates on the graphical

plots directly. Thus, suppose the terminal characteristic of the diode is represented

by AOB, Fig. 4. Let OC represent the magnitude of the impressed voltage E. Through

C draw DC at an angle 0, as shown, such that cot 6 = R. Then the intersection of CD

and AOB in D represents the required solution, in that DF is the common current

in this series circuit; OF is the voltage drop in the diode; FC is the voltage drop in

the resistor R; and clearly OF + FC equals the impressed voltage E. If E varies with

time, DC can be shifted back and forth along the voltage axis at positions correspond-

ing to the instantaneous values of E, and the intersections will furnish the corre-

sponding instantaneous values of the current.

The above solution represents a well-known method for solving two equations

simultaneously when the equations are of degree higher than the first or even of

transcendental nature. It will be of interest, however, to see how this method is ap-

plied to a more complicated circuit.

4. Triode tube and resistance in series. The next example will be that of a three-

element or triode tube in se-

ries with a resistance and a Triode

source of d.c. voltage Ebb. 1 Load

The electrical connections  CS/ > resisiajice

are shown in Fig. 5. The ad- _. .

ditional complication is that Voltage (o) e" +± PL&ls Supply

in the triode the plate cur- es

rent is a function of two

variables; the grid voltage Ll|l|l,

and the plate voltage. The -BiBS Voliage

terminal characteristic must

therefore be represented by p[G 5_

a three-dimensional plot in-

volving the plate current ip, the grid voltage e„ (which is the sum of the instantaneous

value of the alternating signal voltage e, and the constant, d.c. bias voltage Ec), and

the plate voltage ep.
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The resulting plot is a curved surface in space. It can be represented in two di-

mensions by a family of curves which represent discrete projections of this surface

upon any one of the three coordinate planes. For the problem at hand the most useful

set of projections is that upon the ep — ip coordinate plane, in the form of a family of

ep — ip curves with es as the parameter. This is shown in Fig. 6 (solid lines). Curves

for which e„ is positive have been omitted for simplicity.

Assume further for simplicity that Rl, the load resistance, is linear. The current

through it is a function of but one voltage, that which must be applied across its

terminals to produce the above current flow. To represent its terminal characteristic

in three dimensions, it is plotted as a

QI plane whose intersection with the ep — e0

coordinate plane is a straight line paral-

lel to the e„ axis. In this way the current

in it is independent of the e„ coordinate,

and is a (linear) function of but one

voltage, that corresponding to the plate

voltage ep of the tube. All points of this

plane representing Rl project over to

the iP — eP coordinate plane as a straight

FlG" 6" line that is also the intersection of the

above Rl plane with the ip — ep plane.

The straight line makes an angle 6 with the ep axis such that cot 6 = Rl, i.e., the

Rl plane is inclined at the angle d to the e„ — ep coordinate plane.

The graphical solution consists in drawing the line of intersection EA at the angle

6 to the eP axis. The intersection of EA with the tube family of curves gives the com-

mon value of current flowing through the plate circuit of the triode and Rl in series,

for any given value of grid voltage e„. For example, at a moment when the signal

voltage e, is passing through zero, the instantaneous value of the grid voltage eg is

simply that of the bias battery, Ec. The instantaneous value of the plate current is

BC, where B is the intersection of AC with that curve of the plate family for which

e„ — Ec. It is further to be noted that the instantaneous plate voltage ep is OC, and

the instantaneous value of the voltage drop across RL is EC.

For other instantaneous values of eQ, other curves of the plate family are involved,

and the process of determining the instantaneous values of plate current, plate volt-

age, and load voltage (across RL) is identical to that described above. Thus, for a

signal voltage impressed upon the input or grid circuit, the output signal voltage be-

tween the plate and ground can be found. Such matters as the amplification of the

stage, distortion in the output, etc., can then be determined.

In passing, we may note here that the locus of the plate current for various values

of e„ is the intersection of the tube surface and the Rl plane in space. This intersection

is a curve in space, but fortunately its projection on the ep — ip plane is a straight line,

namely the intersection of the RL plane itself with the ep — ip plane. It is for that rea-

son that the ep — ip family of the tube curves is employed; the graphical construction

is simply the points of intersection of a straight line representing Rl with the above

plate family.

The above problem can become much more complicated under certain conditions.

For example, if the input signal voltage is great enough, the grid can be driven posi-
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tive with respect to the cathode, whereupon it draws current during the positive peak

of the a.c. cycle. If the signal source has appreciable internal impedance, then a volt-

age drop will occur in the source during the above portion of the cycle, and the actual

voltage applied to the grid will differ from the generated voltage e,.

It is therefore necessary to determine the actual grid voltage before the plate

current can be found. Another complication arises however, in that the grid current

(and hence the actual grid voltage) is a function not only of the positive grid voltage,

but of the plate voltage as well. This is because the space current divides between

the two electrodes in a manner depending upon the two electrode voltages. At the

same time the plate voltage is a function of RL and the grid voltage. Thus the above

simple graphical construction can become quite involved if merely the input signal is

increased to a point where the grid is driven positive.

5. The balanced amplifier. Instead of investigating such details, important though

they may be, it will be of interest to examine another type of circuit very important

in the communication industry. Reference is made to the push-pull or balanced am-

plifier. The circuit is shown in Fig. 7.

In (A) is shown the actual circuit, whereas in (B) is shown an idealization or

equivalent form better suited for the purpose of analysis. In the actual circuit (A),

two tubes are employed, inductively

coupled to each other and the output input     output
, f , . . t F transformer ^ I
load resistance rL by an output trans-  —*—» ^

former. The signal on one grid is 180 de- °"

grees out of phase with that on the other

grid, as is suggested by the symbols +e, »

and — e.. The bias voltage Ec, on the other

hand, is applied to both grids in the same

polarity; and the plate supply voltage is

applied to the two tubes in the same polar-

ity too, as shown.

The actual load resistance rL and the

K,
'■-e.

E,

%

'66

output transformer can be replaced by the //+/»

H|l|l|l|l|l|l^ \

-~*L

ceriter-tapped inductance and reflected

load resistance as far as the tubes are

concerned. The simplified circuit is shown

in (B), Fig. 7. In using this equivalent cir-

cuit, it is tacitly assumed that the actual T1 f'

output transformer is an ideal transformer —*it

having infinite primary and secondary

open-circuit inductance, no distributed ca- ®

pacity, unity coefficient of coupling be- Fig. 7.

tween windings, etc. In the equivalent

circuit the center-tapped inductance is assumed to be infinite in value and to have

unity coupling between the two halves of the complete winding. Ordinarily this is a

reasonable assumption.

As a result, the current in one-half of the winding cannot at any moment exceed

that in the other half for otherwise an infinite counter-electromotive force would be

induced in the windings that would tend to prevent such an unequality from taking
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place. The currents in the windings can vary, however, provided they remain equal

to one another at all times. Finally, two further assumptions are made, namely, that

the signal voltages es and — e, applied to the two grids are at all times equal and op-

posite to one another, and that the two tubes have identical terminal characteristics.

These two assumptions seem also reasonable.

Consider first that ea equals zero (no signal is applied). The bias on each grid is Ec,

and the plate voltage for either tube is Ebh, hence the two plate currents h and It are

equal to one another. Since they flow in opposite directions from the ends of the wind-

ing to the center tap, they balance each other magnetically in the output inductance

and produce no voltage across the ends. Consequently no current flows in the load

resistance Rl.

Now suppose that a signal voltage is impressed such that the top grid is driven

positive by an amount e„i from its normal d.c. negative bias value of Ec, and that the

bottom grid is driven more negative by an equal amount, i.e., — esi- The two plate

currents will now vary in opposite directions, namely, I\ will increase and It will de-

crease. However, the sum of these two currents flows through the plate power supply,

and owing to the infinite inductance of the center-tapped winding, (h-\-h)/2 flows

down through the top half of the winding, and an equal amount flows up through the

bottom half, to combine at the center tap to furnish the sum (h+I2) flowing through

the power supply.

Since (/1+72)/2 is the average between 7j and 72, it is equal to neither, and from

the principle of continuity of current flow, the difference

h - i(h + h) = !(/i + h) - h - i(/i - h) (3)

must flow through RL. A quick check will indicate that Kirchhoff's current law is

satisfied at each junction.

The current (Ii — Ii)/2 is the output current. In flowing through Rl, it sets up a

voltage drop

EL = i(h ~ h)Rl. (4)

Half of this or El/2 appears across each half of the output winding of such polarity

that the instantaneous plate voltage of the top tube is isM — (EL/2) and that of the

bottom tube is Ehb-\-{EL/2).

Thus the following facts have been brought to light:

1) The grid voltages change by equal but opposite increments from their

common bias value Ec owing to the center tap on the input transformer secondary.

2) The plate voltages change by equal but opposite increments from their

common supply value En owing to the center tap on the output inductance. More-

over, the plate voltage increments are opposite in sign to the corresponding grid

voltage increments.

3) The plate currents change in opposite directions in the same sense as the

corresponding grid voltages, but not necessarily to an equal degree. If the tubes

are nonlinear, as is usually the case, then the increase in plate current of either

tube for a positive increment in grid voltage is not necessarily the same as the de-

crease in plate current for an equal negative increment in grid voltage.

From the above facts several graphical constructions are available to determine

the plate current and plate voltage variations in the tubes, the output current and
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voltage, the power output, and the d.c. power input. The following graphical method

is preferred by the author. In Fig. 8 is shown the plate family of curves for either

tube. If there is no signal input, the only voltages present are the d.c. potentials Ebb

applied to the two plates and Ec applied to the two grids. The current through either

tube is then Jf, = EbbB, a direct current.

 £  i i I 1 I" 1—It.   

Eu, * &P

Fig. 8.

Now suppose that equal and opposite signal voltages e3 and — e, are applied to the

grids in addition to Ec. Then the current in the one tube will increase from BEm>

to DG, and that in the other tube will drop to FH, as shown. The plate voltage of the

first tube will drop from OEbb to OG = (£&,—Aep), and that in the other tube will rise

by an equal amount to OH = (Em, +Aep).

It is also clear from Fig. 8 that DJ represents the difference between the two cur-

rents or (/i —J2), and JF represents 2Aep, the voltage across the output inductance

and previously denoted by EL in Fig. 7. From Eq. (4), it is evident that

JF/DJ = EL/(h - I2) = RL/2. (5)

Thus DF makes the angle 6 with the ep axis such that

cot 9 = Rl/2. (6)

It is also evident from the geometry of the figure that DC = CF, i.e., that the ordinate

through Ebb bisects line DF in C.

The above facts suggest the following method of graphical construction. We hold

a rule at the angle 6 and slide it up or down until the segment between the desired

ep — ip curves (corresponding to equal and opposite grid voltage excursions from the

bias value Ec) is bisected by the ordinate through Ebb- The intersections of the rule

with the two ep—ip curves gives the two instantaneous values of the two tube currents

h and h, corresponding to the signal voltages e, and — e, and to the plate load re-

sistance Rl, or rather to Rl/2.

Then another pair of equal and opposite grid signal voltages are chosen, and the

process repeated. This is continued until as many pairs of instantaneous grid signal

voltages have been used as is desired. For a symmetrical signal voltage, such as a

sine wave, instantaneous values for only one-quarter of a cycle are required.

When the above graphical construction is performed, there is obtained a curve
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on the plate family of curves such as that shown in broken lines ABCDE in Fig. 9.

This represents the locus of the current for either tube over a cycle of grid signal volt

age. It also represents the terminal characteristic for Rl as it appears to either tube

in the presence of the other tube.

The significance of the last statement is as follows: the two tubes may be regarded

as two generators connected to a common load RL. Owing to their nonlinear charac-

teristics, the tubes do not share the load equally throughout the signal cycle; that

tube whose apparent internal resistance is lower takes a greater share of the load,

i.e., furnishes more than half of the load current (7i —72)/2 flowing through RL. As a

result, Rl appears as a variable or nonlinear resistance to either tube even though it

is actually a linear resistance, and its terminal characteristic on either tube's ep — ip

family of curves is in itself a curved rather than a straight line.

Lack of space precludes a detailed discussion of this interesting circuit. However,

several important features will be presented. As indicated in Fig. 9, the two ep — ip

curves passing through B and D, respectively, represent equal and opposite grid

swings. The corresponding currents Ii and Ii for the two tubes are BF and zero; in

short, the tube experiencing the negative grid swing has just reached plate current

cutoff.

For ep—ip curves passing through A and E, corresponding to a still greater grid

swing for either tube, h is AG, and /2 still remains zero. This means that the second

tube is inoperative over this part of the cycle and acts therefore as if it were discon-

nected. Under these conditions RL appears to the operative tube as Rl/4, which can

be expected since the 2 to 1 turns ratio of the output inductance will produce this 4

to 1 impedance transformation if it is unhampered by the other tube.

Portion BA is therefore a straight line whose reciprocal slope corresponds to Rl/4.

It is easy to show that if it were prolonged, it would pass through Ebb- Normally

the tubes are operated so that maximum grid signal voltage drives each tube alter-

nately to cutoff or beyond. Maximum output occurs if RL/4 equals either tube's

apparent internal plate resistance at the peak of the cycle. The plate resistance of

either tube is given by the reciprocal slope of the ep — ip curve at point A. Hence a

quick determination for the optimum value of Rl, or rather RL/4, is to draw a line

through Ebb at an angle equal to that of the ep — ip curve at point A, and calculate

from the reciprocal slope of this line the value of Rl/4 and hence of RL. The complete
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characteristic can then be determined by means of the sliding rule as described pre-

viously.

Fig. 8 also reveals an interesting point. CEbb is the average between DG and FH,

i.e., it represents (h + I2)/2. This is the mid-branch current that flows through the

plate supply, as indicated in Fig. 7(B). For various.pairs of values of h and J2 as

determined by the sliding rule, the average, or (/i+/2)/2 moves up and down along

EbbA. This is a vertical line or ordinate, and indicates that the resistance to the mid-

branch current is zero. This has been tacitly assumed; the output inductance and the

plate supply have been assumed to be free of resistance.

If this is not the case, then a line must be drawn through Ebb whose reciprocal

slope indicates one-half the value of the mid-branch resistance that is present, and

the sliding rule must be bisected by this line rather than the ordinate EbbA, as is the

case in Fig. 8. From this follows several further interesting characteristics.1

Another point is that not only is the locus of the mid-branch current along the

ordinate EbbA in Fig. 8, but that this current executes two alternations per cycle of

the grid signal voltage. This means that the mid-branch current is at least double the

frequency of the incoming signal; actually, for perfect symmetry, all the even har-

monics generated by the tubes flow in parallel through the mid-branch portions of

the circuit, while the odd harmonics, including of course the fundamental, flow

through the output resistance Rl■ Thus, if the tube characteristics are such that the

second harmonic is quite prominent, but the third (and higher) harmonics are of small

amplitude, then the output wave will be a fairly faithful copy of the input grid signal

voltage and the stage will exhibit little distortion. Such a tube characteristic is pos-

sessed, for example, by the 6L6 and 807 beam power tubes.

* As in the case of the previous constructions for the single-ended tube, various de-

grees of complication can arise. For example, if the grids are driven positive so that

grid current flows, the signal voltage at the grids will be distorted, and this distortion

must be determined separately before the above construction can be concluded. An-

other case is that where the mid-branch plate supply has an internal resistance that

is adequately by-passed for the even harmonics, all except the d.c. component. This

represents a particularly difficult problem that can be solved only by a series of ap-

proximations.

6. Reactive circuits. The previous circuits contained only resistances, linear or

nonlineai*. If reactances were present, such as the center-tapped output inductance,

they were assumed infinite in value and so situated in the circuit as not to have any

appreciable a.c. components flowing in them. However, many nonlinear circuits con-

tain reactances of finite value that influence the behavior of the circuit directly, and

hence must be taken directly into account.

Owing to lack of space, only the case of an inductance in series with a nonlinear

resistance and an a.c. source will be discussed here. Consider the circuit shown in

Fig. 10. Here a source of a.c. voltage e is in series with a nonlinear resistance r and

inductance L. The voltage e is a known function of time, and the terminal character-

istic for r and the value of L is given. It is desired to find the current flow in this cir-

cuit.

1 See, for example, A. Preisman, Graphical constructions for vacuum tube circuits, McGraw-Hill Pub-

lishing Co., New York, 1943.
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We have the fundamental relation

e(t) = ir + L — ■ (7)
at

Expressing Eq. (7) in terms of finite increments, we obtain

Aii
ei + Aci = (t'i + At'i)r + L   (8)

At

In Eq. (8), it is assumed that at the start, the voltage e has a certain value ei, the

current i has a certain value ii, and < = 0. These are the initial conditions. During a

l +A. I

1
z

Fig. 10. Fig. 11.

small time interval At, ei is assumed to change instantly to ei+Aei and remain at this

value during the interval At, and similarly ii is assumed to change instantly by an

amount Aii and to remain at the value ii+Aii during the time At. This is of course%n

approximation, sufficiently close if At is taken sufficiently small. Under these condi-

tions Eq. (8) holds.

The quantity L/At has a finite value if At is finite. It can represent the cotangent

of some angle 6. Then—as far as Aii is concerned—the circuit consists of two resist-

ances in series: that of r at the value ii, and that of L/At. The graphical construction

then takes the form shown in Fig. 11, where OA represents the initial value ei, and

AB the initial current ii. We now suppose that the voltage changes from e\ to ei+Aei

in a small chosen time interval At, and let OD represent ei+Aei so that AD repre-

sents A«i.

The voltage across L is due to the change of current Aii and not due to ii itself,

which has already been established in L. This is indicated by the fact that OA = ei

represents the drop across the nonlinear resistance r; there is no voltage drop across L

for h at the time 2 = 0. Hence, in view of the above, a point C is located in line with B

and directly over D, and through C line EC is drawn to represent L/At such that

cot «£ ECB = L/At. (9)

The line EC has been designated by the author as a finite operator because it re-

sembles the Heaviside operator Lp. The intersection of this finite operator with the

terminal characteristic of r in E gives the value of Aii, namely, EJ. Here BJ repre-

sents the additional voltage drop across r (in addition to the original voltage drop OA

owing to ii), and JC represents the voltage drop across L. In short, OA+BJ represents

(ii+Aii)r; JC represents L{Aii/At)-, and OA+BC therefore represents ei+Aei, and

hence satisfies Eq. (8).
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The point E is projected over to F directly above C and D, and FD represents

then the new value of current ii+At'i, at the end of the time interval At. Another

small time interval can now be chosen, preferably equal to the previous one, so that

L/At remains at the same angle to the e-axis as before. We suppose that in this new

time interval, e changes from ei+Aei to ei+Aei+Ae2- Letting OG represent the new

value of voltage, we project F over to H directly above G. Through H we draw HK

parallel to CE, intersecting the terminal characteristic for r in K. Then KL represents

the new increment of current Ai2, EL the additional voltage drop across r, and LH

the new voltage drop across L. It is evident that Eq. (8) is once again satisfied. It is

also evident that IG represents (i'i+Aii+Ai2), the new value of current at the end of

the second time interval.

Points B, F, and I represent three points on the overall terminal characteristic for

L and r in series for the given function e(t). If e(t) is a periodic voltage, the overall

terminal characteristic will spiral around counter-clockwise and ultimately form a

closed curve, the steady-state solution for the given circuit and given function e(t).

The initial open branches of this spiral represent the transient solution. If r is a

linear resistance so that its terminal characteristic is a straight line instead of the

curve shown in Fig. 11, the closed loop will be an ellipse inclined to both axes; if on

the other hand r is nonlinear, the closed loop will be some form of distorted ellipse

depending upon the nonlinearity of r. It can be shown from the graphical construction

that the tangents to the closed loop at the points where it intersects the terminal char-

acteristic for r are parallel to the e axis and hence perpendicular to the i axis.

Fig. 12.

7. Relaxation oscillator. Similar methods can be developed for r in series with a

condenser C, and for LCr circuits, and for parallel as well as series arrangements.

Owing to lack of space these will not be treated here.2 An interesting case is that of a

nonlinear resistance having a suitable negative branch, in series with a pure induct-

ance. For graphical purposes the simplest form for the terminal characteristic of r

is possibly that of three intersecting straight lines, as shown in Fig. 12. Such a char-

acteristic may be approximated by a tube having positive feedback, by a dynatron,

etc. Usually a d.c. polarizing voltage is required, but this merely represents a transla-

tion of the axes and does not materially change the construction or results as obtained

in Fig. 12, in which the impressed voltage is assumed to be zero.

1 Cf. Preisman, Ioc. cit., p. 109.
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Suppose that the initial conditions at / = 0 are that e = 0, and that i=AB, the

peak current for the left-hand portion of r. Then C will be the starting point, where

CO = AB. Through C the finite operator L/At is drawn corresponding to a time in-

terval At. If At is sufficiently small, L/At will be practically a horizontal line through C.

In Fig. 12, L/At has been drawn with a finite tilt to clarify the construction, and is

represented by CD. This finite operator curve intersects the terminal characteristic

for r in D, as shown.

The current therefore decreases from CO to DG. Point D is projected over to the

i axis as point E. From E, EF is drawn parallel to CD under the assumption that the

second time interval is equal to the first. The current now decreases from DG to FH.

Point F can now be projected over to the i axis and the process repeated. It is clear

from the figure that the intersections will proceed down the right-hand branch of r

to I, hop over from I to J, directly opposite I, then proceed from J up to A, hop over

to D, and repeat the first set of intersections. As At approaches zero, the finite opera-

tor curve approaches a horizontal position, DG=CO = AB, and the points of inter-

section become more and more closely spaced so that they form essentially all the

points of ID and JA.
The overall terminal characteristic is by definition all the points between C and

K in that the overall impressed voltage has been assumed zero, so that the points

must lie along the i axis, and the current range is from C to K. However, a more sig-

nificant terminal characteristic in this case is the relationship between the current

and the voltage across either circuit element. The voltage across the inductance, for

example, is equal and opposite to that across r when taken in a circuital direction,

since the algebraic sum of the two must equal the impressed voltage, which is zero.

According to this definition, the terminal characteristic is represented by such

points as D, F, etc.; in this case, it is lines DI, IJ, JA, and AD, traversed in the order

given. This means that for the circuit given, the terminal characteristic is very simply

given by a quadrilateral involving the two positive resistance portions of the terminal

characteristic for r contained between their peak values A and I.

The time required to traverse these portions depends upon the relaxation time

for L in series with the incremental resistance of r for each portion, under the proper

initial conditions. The time required to traverse the horizontal portions AD and IJ

is infinitesimal, and is independent of the shape of the negative resistance portion AI

provided it has no maxima or minima exceeding or less than A and I, respectively.

The device operates continuously as an oscillator with a period of oscillation deter-

mined by the two relaxation times.

Similar conclusions can be drawn for shapes of r other than three straight lines.

For example, r can have the form of a cubic parabola. This case has been treated

analytically by Van der Pol.3 However, he started with an LCr parallel circuit or

double-energy condition. For such a circuit the terminal characteristic is a closed

curve or loop that exceeds the above quadrilateral in size. As C approaches zero, the

loop shrinks and appears to have as its limit the above quadrilateral. However, the

analytical method required that some capacity be present even in this limit, relaxa-

tion case, and it has been suggested that in a practical circuit there would always be

some residual stray capacitance present.

8 B. Van der Pol, The nonlinear theory of electric oscillations, Proc. I.R.E., 22, 1051-1086 (1934).
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There are other graphical methods for handling the double-energy case, notably

that by Lienard4 and another by Kirschstein.5 Unfortunately, these constructions be-

come indeterminate in nature as C approaches zero, so that although the relaxation

condition is suggested by them, it cannot be conclusively shown to be the limit form.

The construction given here starts out with merely L and r, and requires no C

for its argument. It appears to give the limit case directly and presents no indetermi-

nate considerations. It has seemed to the author that the necessity for requiring a

capacity to be present, no matter how small, was an unnecessary restriction, and that

the argument advanced that any practical circuit would have some capacity, ap-

peared to be rather irrelevant, since the notion of a circuit is in itself an idealization

of what is really a field problem. In treating an electrical problem as a circuit problem

one assumes that the circuit elements are ideal inductances or capacitances or resist-

ances and develops the various theorems on this basis.

Similar results can be obtained for a capacitance in series with a nonlinear resist-

ance having an S-shaped terminal characteristic provided that it is turned through a

right angle from that shown in Fig. 12, i.e., provided that it is a single-valued function

of the current rather than of the voltage. A familiar example is the neon tube relaxa-

tion oscillator employed to generate a saw-tooth voltage. It is also possible to develop

a graphical construction employing the finite operator method for an LCr circuit, and

in this case L or C may be permitted to approach zero, depending upon the position

of the S-shaped characteristic for r, without the construction becoming indeterminate.

For example, the construction reduces to the form given in connection with Fig. 12

if C is made to approach zero and r has the terminal characteristic shown in the figure.

8. Conclusions. This concludes the discussion on some graphical methods for solv-

ing nonlinear electrical circuits. Simple series circuits involving resistance elements

only, are very simply solved by finding the intersections of their terminal characteris-

tics. This can then be extended to more complicated resistances in which the current

is a function of two voltages, as in the case of a triode tube.

The next circuit considered is that of the ideal balanced amplifier having perfectly

matched tubes and feeding the load resistance through an ideal transformer. Here the

coupling of the two tubes through this ideal transformer requires a special construc-

tion involving the sliding of a rule at a fixed angle along the tube characteristics. The

wave shape of the output and of the mid-branch currents is then discussed, and it is

shown that owing to the symmetry of the circuit the former can contain only odd

harmonics; and the latter, even harmonics.

Finally, a simple case of a reactive circuit involving a nonlinear resistance in series

with an inductance is treated. Here the concept of a finite operator curve correspond-

ing to L/At is developed and this curve is employed to solve the circuit. Similar meth-

ods are available for capacitive circuits and for double-energy circuits involving both

L and C. The method is applied to a suitable negative resistance in series with an

inductance, and it is shown in a direct manner that this circuit can produce relaxa-

tion oscillations.

4 A. Lienard, Etude des oscillations entretenues, Rev. Gen. Elec. 23, 901-946 (1928). See also

P. LeCorbeiller, The non-linear theory of the maintenance of oscillations, Journal IEE (London) 79, 361-378

(1936).
6 F. Kirschstein, Uber ein Verfahren zur graphischen Behandlung elektrischer Schwingungsvorgange,

Arch. Elek. 24, 731 (1930).


