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/(«)*(» ~ 1
<£(z) = z + f{z) •

/'(z)

Thus we may impose more rigid conditions further strengthening the convergence,

viz.
<£'(<*) = 0, 4>"(a) = 0, • • • , <£(n)(a) = o, (6)

where n is any positive integer.6

A function <j>(z) satisfying the conditions (5) and (6) can be obtained in the follow-

ing way. The conditions (6) will be satisfied if the derivative of <£(z) appears in the

form

= (/(z))"g(z)/'(z),

the undetermined function g(z) being regular at z = a. It remains to adapt g(z) to the

condition <f>(a)=a. One has

</>(z) = J (}{z))ng{z)f\z)dz = J* wng(f~~1(w))dw

whence, by repeated integration by parts, it follows that

0(z) = nlit,   ~r (/(z))"~".g»+i(z)
„_o (w — v)!

where g„(z) is the ^i-fold iterated indefinite integral of g(/_1(w)) for w=f(z). Thus, for

z=a one has
<p{a) = (— l)"»!g„+1(a).

Therefore
(- l)n

gn+l(z) =  — Z
n\

will give a function 0(z) which has all the desired properties. In this way one obtains

the function $„(z) of (3), and it is evident that this function has the properties stated

in Theorem II.

6 From a letter of Professor V. A. Bailey we have learnt (in May 1941) that this problem has been

dealt with in some special cases by E. Netto in his Vorlesungen iiber Algebra vol. I, Teubner, Leipzig, 1896,

p. 300. In the same letter Bailey has given an elegant solution of the problem which, however, does not

suit our present purpose. Further he has drawn our attention to the paper by L. Sancery, De la methode

des substitutions successives pour le calcul des racines des Equations, Nouvelles Annales d. Math.. (2) 1,

30S-31S (1862), which, however, was not accessible to us.

THE CAPACITY OF TWIN CABLE*

By J. W. CRAGGS and C. J. TRANTER (Military College of Science, Stoke-on-Trent, England)

1. Introduction. The problem of determining the capacity of two long parallel

cylindrical conductors can be easily solved by the use of a conformal transformation.1

A simple extension of the method gives the result for the case in which each conductor

* Received April 16, 1945.

1 F. B. Pidduck, A treatise on electricity, Cambridge University Press, 1916, p. 77.
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is surrounded by a dielectric sheath whose boundary is a member of the coaxial sys-

tem of circles defined by the boundaries of the conductors. The case in which the

sheaths are concentric with the conductors is of much greater practical importance

and in many types of cable the sheaths are actually touching. In this paper we give

the derivation of the potential distribution for this latter case together with a prac-

tical method for the calculation of the capacity.

2. Statement of the problem. We consider the symmetrical problem of two circu-

lar wires each of radius R\ surrounded by concentric touching sheaths of radius jf?2

and dielectric constant K\, the whole being immersed in an infinite medium of dielec-

tric constant Kz.

For infinitely long straight wires, the problem reduces to the determination of

potentials Fi, F2 satisfying: (i) the equations

V2Fi = 0, (1)
for Ri^r^R.2, and

V2F2 = 0, (2)

in the region between the circle r = R2 and the line * = 0, where V2 is the two dimen-

sional form of Laplace's operator, the polar coordinates r, 9 are based on the centre

of one of the conductors and the cartesian coordinates x, y have origin at the point

Fig. 1.

of contact of the sheaths and axes as shown in Fig 1; (it) the boundary conditions

Vi = 1 (3)
when r = i?i, and

Fx = Fs, (4) KJVi/dr = K2dV2/dr, (5)

when r =i?2, and
F2 = 0 (6)

when x = 0. Condition (6) is a result of the symmetry of the problem provided that the

potential on the left hand conductor is taken as — 1.
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The capacity C per unit length of wire is then given by C = %Q, where Q is the

charge per unit length on either conductor.

The capacity per unit length is unaltered if we replace i?2 by unity and Ri by

Ri/Ri(=a) and we shall do this in the subsequent work.

3. The analytical solution. It is natural to express the potential V\ in the polar

coordinates defined above. We therefore write

(7)Vi = 1 + B log -1 + £ {(7)"- (7)"} b" cos nd'

this being the most general solution of (1), symmetrical in 9 and satisfying (3).

Conformal representation by the use of

1 1
£ _ iv = __ = (8)

x + ly 1 + re1"

transforms the region r> 1, x>0 into 0<£<5, the boundaries x = 0, r = 1 becoming

£ = 0, £ = § respectively. The general solution of (2) satisfying (6) and the conditions

of symmetry is
/» 00

sinh 2£t cos 2-qtdt. (9)
/» 00

/«) si:
0

The constants B, b„ of (7) and the function f(t) of (9) are now to be determined

from the boundary conditions (4) and (5).

Now on r = l (£ = J) the relation (8) gives

17 = £ tan \6 = J/3 (10)

say, and
dV dV dV
  i sec2 *0 — = - 1(1 + (3*) — • (11)
dr d£ d£

Thus (4) and (5) become

« 1 _ a2n /.co

1 — B log a + 2_,  bn cos nd = I /(<) sinh / cos /SfcW, (12)
n=l On J 0

" 1 + a2" r00
ifi? + jRT2J  cos n9 = — J(1 + /32) I </(/) cosh t cos

»-i a" J 0
(13)

where K =Ki/K2.

Multiplying (12) by cos nd (w = 0, 1, 2, ■ • • ) and integrating with respect to 6

from 0 to it, we have

1 rr r00 (*00

1 — B log a = — I I j(t) sinh t cos fitdtdO = I e~'f(t) sinh tdt (14)
7T J 0 J 0 J Q

rx r°° cos pt
I cos (itdd — 2 I  <2/3 = ire-'

Jo Jo 1+/32

since

and
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1 - a2  q2u 2 /•*■/•» f* 00

 = — I I /(/) sinh t cos [it cos nddtdd = I sinh t In(t)dt, (15)
7T o o *^0

where

2e' C T 4e' /*00 cos fit
In{t) =  I cos «0 cos =   I  cos (2» tan-1 /3)<//3

T Jq -7tJo1+/32

= 2 ( - !)p 7 ~7 (2<)n-p- (16)
p=o {n - p) I

Applying Fourier's integral theorem to (13), we obtain

* 45 r" cos /S/ 4 " 1 + a2n fM (
 /(0 cosh / =   I  d/3 -f 22  nb„ I cos n8 -

KJ tt J o 1 + /32 7T Zl a" Jo 1

COS fit
dp

+ /32

A 1 + a2n
= 2Be~' + e~' £  nbnIH(t). (17)

n=l

Equations (15) and (17) lead to

Kap

where

1 - a2p " 1 + a2n
Jp = 5ap + 2Z  (18)

/tanh t
e 21 Ip(t)dt,

o t

and

tanh t/'" tanh t
e-2' IP{t)In{t)dt.

0 t

(19)

(20)

Finally (14) and (17) give

1 r °° tanh t 1 " 1 + a2n
— (B log a - 1) = 2B e-» <» + —£  4«, (21)
K J o t 2 a"

The infinite set of equations (18) gives the values of the coefficients b in terms of B.

Substitution in (21) yields an equation for B and the capacity per unit length C can

then be determined from C= —\K\B, since

r 21 /dVA
2C = Q = | ( ) add.

4ir J o V dr /r-a

This completes the analytical solution.

4. Method of computation. In practice, a good approximation to the capacity

may be obtained by retaining only a finite number m of the coefficients bn. Eliminating

the m quantities [(1 +a2")/a"]w&„ (« = 1, 2, • • • , m), from the (w + 1) equations (18)

ar.d (21), and writing
1 - a2"

7n =    ; (22)
nK(l + a2")
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we obtain

A11 + 71 A12 • • • A im ai

A 21 -4 22 + 72 ' ' - A 2m C*2

A ml Am2 ' ' * A mm + 7m «m

2/1 \
ai a2 • • • a. — ( — — log a J + 4 log

x

since

5o

K

tanh t ir
 dt — log —

* 2

= 0, (23)

The quantities an, A„P can be easily computed from Eqs. (19), (20) and (16) with

the help of the result2

J" (2t)ne~21 tanh tdt = n\^1 — + 1) — 5^ »

where f(«) is the Riemann Zeta-function, tabulated for integral n in J. Edwards,

"The integral calculus," vol. 2, Macmillan, London, 1922, p. 144.3

The solution for K = 1 differs from the well-known exact solution for this case by

less than 0.2 per cent, when only the first three of bn are retained, provided that

For larger values of K and a it may be necessary to retain more terms to achieve the

desired accuracy but for practical values the amount of computation required is not

excessive.

2 When n = 0, the result reduces to /„ e'2t tanh tdt = log 2 — J.

3 A four-figure table is given in E. Jahnke and F. Emde, Tables oj functions, Dover Publications,

New York, 1943, p. 273.

LARGE DEFLECTION OF CANTILEVER BEAMS*

By K. E. BISSHOPP and D. C. DRUCKER (Armour Research Foundation)

The solution for large deflection of a cantilever beam1 cannot be obtained from

elementary beam theory since the basic assumptions are no longer valid. Specifically,

the elementary theory neglects the square of the first derivative in the curvature

formula and provides no correction for the shortening of the moment arm as the

loaded end of the beam deflects. For large finite loads, it gives deflections greater than

the length of the beam! The square of the first derivative and correction factors for

the shortening of the moment arm become the major contribution to the solution of

* Received April 6, 1945.

1 This problem was considered by H. J. Barten, "On the Deflection of a Cantilever Beam," Quarterly

of Applied Math., 2, 168-171 (1944). Previously an approximate solution had been obtained by Gross und

Lehr in Die Federn, Berlin VDI Verlag, 1938.


