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1. Introduction. The theory of waves associated with the plane boundary of a

semi-infinite, isotropic, homogeneous, perfectly elastic medium was first given by

Lord Rayleigh,1 who discussed the problem for plane waves of fixed frequency. Many

papers have been written giving treatments of variations of the problem studied by

Rayleigh but the treatment in Rayleigh's original paper contained most of the results

of interest for plane waves.

Had Lord Rayleigh realized the great practical importance of his surface waves,

he would doubtless have included more numerical results in his original paper, and

the material of the present paper would have been more or less completely included

therein. Rayleigh waves are important in the seismic method of oil exploration

since they generally occur as a troublesome noise on reflection seismograms.

In the present paper, we are interested in the theory of the reflection of a plane

compressional incident wave at the free surface. In this theory a cubic expression

occurs which also occurs in the theory of the Rayleigh waves. Furthermore our inter-

est is primarily in obtaining numerical results, so that examples may be readily pic-

tured. The results are primarily of theoretical interest since our waves are never plane

and the medium is only rarely approximately homogeneous.

2. Reflection at the free surface. This problem originally treated by Knott2 and

Zoeppritz3 leads to the relation

R v2 sin 2ri sin 2i — V2 cos2 2ri

I v2 sin 2ri sin 2 i + V2 cos2 2ri

where R, I, ru i, v, and V are respectively the amplitude of the reflected compres-

sional wave, the amplitude of the incident compressional wave, the reflection angle

of the shear wave, the angle of incidence, the velocity of the shear wave, and the ve-

locity of the compressional wave.

We may make the substitutions w = sin2 ri = pV and s =X/ju = 2<r/(1 — 2a) and ob-

tain
R 4w(l - w)1/2[l - (s + 2)w]l/2 - (s + 2)I/2(I - 2w)2

I ~ 4j£»(1 - w)l/2[l - (s + 2)w]112 + (s + 2)1/2(1 - 2w)2

N(s, w) N2 ND
= ———- =    (1)

D(s, w) ND D2

Now real values of both N(s, w) and D(s, w) are graphed on Fig. 1, for various values
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1 Lord Rayleigh, On waves propagated along the plane surface of an elastic solid, Proc. Lond. Math.

Soc. 17, 4-11 (1887).
2 C. G. Knott, Reflection and refraction of elastic waves, Phil. Mag. (S) 48, 64-97 (1899).
3 K. Zoeppritz, Uber Erdbebenwellen VIIB, Gottinger Nachrichten 1919, 66-84.
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of 5 or a. It is seen that the graphs break up into two sets, one for wiJ 1/(5 + 2) and

the other for w^l. When w = 1/(5+2) or w= 1, the graphs of N and D both have

vertical tangents. It will be observed that N has two or no real zeros between 0

and 1/(5 + 2) while D has one real zero ^1.09574. The double zero corresponds to

W —

5 .6 .7 .8 .9 I

Fig. 1.

a = 0.26308207, w = 0.27969015. For large values of w wehaveZ>~ — 2(s + l)(s + 2)-I/2w

and iV~ — 8(5 + 2) 1/2w2. Hence the real zeros for w>0 are fully accounted for.

There is some interest in the plot of R/I against i for various cr's. This is shown in

Fig. 2. Observe that the tangent to the curves at i — 0° is horizontal and is vertical

at i = 90°. Observe also that a discontinuity exists for <r = 0 at i = 90° since

lim,-,9Q»(i?//)„=o= +1 and (i?//)<_9o°,o<»<i/2= — 1. One may note that the zeros of

(R/I) correspond to i's, for the given <r, for which there is no reflection of energy in

the wave of compressional type. The change of sign of (R/I) corresponds to a phase

reversal.
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♦I

Fig. 2.

Since the zeros of N(s, w) are of considerable interest we have plotted to against <j

(where t'o is incidence angle for which

N = R = 0) in Fig. 3. This graph brings out

a point which is indeed curious, namely if

a = 0.15 then for i0 = 87.76° all the reflected

energy appears in the shear wave, whereas,

if we add only 2.24° to i all the reflected

energy appears in the compressional wave.

Birch4 records Poisson ratios for granite

blocks of 0.093, 0.096, 0.116, 0.086 and
0.109. These are selected low values. It

is established in a later paragraph that

(dio/d(r)„„o = — 00 for the upper branch

and (dt0/<M»-o=+0.178 for the lower

branch and {dio/da),^.^ = oo for the upper

and lower branches.

4 Francis Birch, Handbook of physical constants,

Special Paper no. 36, Geol. Soc. of Amer., pp. 73-74

(1942). Fig. 3.
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If we rationalize either the denominator or numerator of (1) as indicated we obtain

y = ND = 16(s + l)w3 - 8(35 + 4)w* + 8(s + 2)w - (s + 2). (2)

The curves for y — y{s, w) are plotted in Fig. 4. The fixed point at w = 1.0957444,

Fig. 4.

y= —1.83927 will be noted. It corresponds to the w for which dy/ds = l6w3 — 24w2

+ 8w—1 =0. Note also that

yfri. w) - y(st, w) = (si - St)(dy/ds). (3)

If either N or D is zero then y is zero. Assume y = 0 while 5 and w vary. Then after

a few reductions we obtain

dig (s + l)2(s + 2) (dy/ds)
2 ™ ~ , (4)

da sin 2i0 (dy/dw)w=wa
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This relationship should be kept in mind in connection with the plot of Fig. 2. Note

that the double zero of the cubic (2) is the common zero of y = 0 and dy/dw = 0 (yield-

ing after elimination of w the relation 33s3 + 12s2 — 27s —30 = 0, so that s0 = 1.11043541

and (r = 0.26308207 while *o = 68°51'44";s hence the dy/dw in (4) is zero, leading to

the vertical tangent. Note that the point cr = 0, i0 = 90° is not attained on Fig. 3 but

Fig. 5.

that as we approach this point from cr>0, dio/da— «> because sin 2i0—>0 where-

as the other factors are bounded away from zero.

3. Rayleigh waves. In the usual theory of Rayleigh waves' a cubic equation oc-

curs which, using our s-notation, can be written in the form,

16(5 + 1) - 8(3s + 4)0 + 8(« + 2)w>2 - (s + 2)u>» = 0, (5)

where w= V\/i?, v and Vr being respectively the velocities of the shear wave and

Rayleigh wave. Thus when y = 0, w = w~1. But «/ = sin2 ri = pV where p = s'mi/V

= sin fi/v. Hence = Vi/V^ so p = \/Vr. Thus p, which for real values of i or ru

can be interpreted in terms of the reciprocal of the velocity with which the wave

6 B. Gutenberg, Energy ratio of reflected, and refracted seismic waves, Bull. Seis. Soc. Amer. 34, 85-102

(1944).
6 J. B. Macelwane, Theoretical seismology, Part I, Wiley & Sons, New York, 1936, p. 114, Eq. (5.33).
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Fig. 6.

sweeps along the surface, dt/dx, has the same interpretation in the case of the Ray-

leigh wave.

The Rayleigh wave case corresponds to the zero of D(s, w) which in turn yields

a poristic problem when 1=0.7

The Rayleigh wave velocities can be readily computed by solving the cubic

equation or by an inspection of Fig. 4. However, Figs. 5 and 6 show V, v, and

Vr for the respective cases where j*=ponstant = 2.96iX1010 dynes/cm.2, and where

& = Ou/3)(3s + 2)=constant = 4.94X1010 dynes/cm.2 = modulus of compression for

various values of a.

7 T. Sakai, On the propagation of tremors over plane surface, Geophysical Magazine, Tokyo, 8, 1-71

(1934).


