
89

QUARTERLY OF APPLIED MATHEMATICS
Vol. Ill JULY, 1945 No. 2

SOME NUMERICAL METHODS FOR LOCATING ROOTS
OF POLYNOMIALS*

BY

THORNTON C. FRY

Bell Telephone Laboratories

1. Introduction. It is the purpose of this paper to discuss the location of the roots

of polynomials of high degree, with particular reference to the case of complex roots.

This is a problem with which we at the Laboratories have been much concerned in

recent years because of the fact that the problem arises rather frequently in the degign

of electrical networks. I shall not give any attention to strictly theoretical methods,

such as the exact solution by elliptic or automorphic functions: nor to the develop-

ment of roots in series or in continued fractions, though such methods exist and one

at least—development of the coefficients of a quadratic factor1—is of great value in

improving the accuracy of roots once they are known with reasonable approximation.

Instead, we shall deal with just two categories of solutions: one, the solution of

the equations by a succession of rational operations, having for their purpose the

dispersion of the roots; the other, a method depending on Cauchy's theorem regarding

the number of roots within a closed contour.

PART I—MATRIX ITERATION

2. Duncan and Collar. We shall treat the first category by a method recently

elaborated by Duncan and Collar in two papers in the Philosophical Magazine.21 do

not know how thoroughly these writers appreciate the close relationship of their work

to that of the other writers whom I shall mention in the course of my presentation.

The fact that their interest was primarily concerned with certain broad dynamical

problems may perhaps have inhibited them from taking some of the steps which I

shall take in their name. But they at least possessed the essential idea, and exhibited

quite sufficient ability in the development of it to warrant the assertion that my

presentation only differs from theirs in detail—sometimes details of omission, some-

times details of amplification.

* Received Dec. 26, 1944.

1 The essence of this method is contained in a section of Legendre's Essai sur la theorie des nombres.

It is also attributed to Bairstow by Frazer and Duncan. It was developed independently, and perhaps

somewhat more fully, by the present writer; but the extensions seem so obvious that it has not appeared

to warrant separate publication.

2 W. J. Duncan and A. R. Collar, A method for the solution of oscillation problems by matrices, Phil.

Mag. (7) 17, 865-909 (1934); Matrices applied to the motions of damped systems, Phil. Mag. (7) 19, 197-219

(1935).
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3. The fundamental identity. We begin by noting that the X-determinant

flu + X an • • • an\

d}2 doi ~f" X • • • <Zrt2
£>(X) = = II (X + Xy) (1)

ain a2„ • • • ann + X

is the characteristic function3 of the matrix

M = |M (2)

and its determinant
A = | a,ij |. (3)

It is obviously a polynomial of degree n, which we may write

D(\) = X" + M"-1 - Mn~s + • ■ • ± Pn. (4)

Any quantity which satisfies the equation

D(\) = 0 (5)

and obeys the associative and commutative laws of algebra—-whether it be a number

or not—must also satisfy the relation

x- = - + M»-2 + •••+£»;

and if we multiply this by X throughout and then eliminate X" we get

n+1 2 wn—1 / . w n~2 .

X = (p 1 + /*2)x — (pip 2 + p3)X +

which is of the form
n+l (n+l) n-l (n+1) n-2

A = p t X + pi X +

Similarly, by a continuation of the same process we may get a succession of equa-

tions, all of the form
_ m (m) n—1 . (m) n—2 y .

X = pi X + pt X + • • • . (6)

We call the typical polynomial on the right of (6) /m(X): graphically it represents a

curve of degree n — 1 passing through the n points —X,-, (—X,)m. But we do not wish

to emphasize this geometric interpretation but rather the formal algebraic fact that

our derivation has required only the elementary rules of algebra and the relation (5),

and that when these rules are satisfied

Xm = /m(X). (7)

Suppose, now, that we expand the quotient/m(X)/Z>(X) in partial fractions. The

result is
fm{\) ^ A M- Xy) 1

D(\) X + Xy II(-Xy+X*)

3 The unconventional pecularities of sign in (1) and in (4) below happen to be convenient for our

purposes later on.
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But/m( —X,) = ( —X,)m by (7), and Z)(X) = II(X+X*) by (1). Hence

W-Z(-X)-
y-1 My \A* — Ay/

(9)

Now (9) is an algebraic identity, and though we have used the process of division

in setting it up, it does not require division by X as a process of verification. Hence

it is again true that if X is any quantity which obeys the distributive and associative

laws, such for example as a differential operator, and which satisfies (5),

X--Z(-XJ)-r/(X), (10)
i-1

where

WW = (to- E&-
Note that the quantities denoted by ir,-(X) are polynomials of degree n — 1 in X and are

independent of m.

4. Matrices. We next observe that, though matrix multiplication is not in general

commutative, it is so if we restrict ourselves to certain groups. In particular, if we

begin with the unit matrix I, any other matrix M, and all scalar quantities (i.e.,

numbers), then all matrices which can be formed from these by a finite number of

additions or multiplications are commutative. For obviously M is commutative with

itself and its powers, and with I, and with scalars, which observations together

with the associative law are sufficient to warrant the general statement.

Furthermore, we know from the Hamilton-Cayley Theorem4 that

D(M) = 0,

where D(K) represents, as in §3, the characteristic function of M. In other words,

M satisfies all the requirements imposed upon X in deriving the identity (10), whence

we conclude that

Mm, = £!(- X,)-V(M), (12)

where irj (M) is a matrix independent of m.

As a final step, we multiply this equation throughout by an arbitrary matrix

K—which need not be commutative with the rest, since we shall perform no further

operations—thus obtaining

M"K= X)(- Xy) tAM) (13)

where Wj(M) = ttJ (M)K is again independent of m.

This is the fundamental identity upon which Duncan and Collar rely for their method.

It is equivalent to w2 equations of similar form connecting corresponding elements in

the various matrices. For example, if am is written for the element in the i-th row and

j-th column of MmK, and e,- for the correspondingly placed element in tt,(M), it must

be true that

dm = ei(— Xj)m + e2{— X2)m + • ■ • + en(— Xn)m. (14)

M. Bocher, Introduction to higher algebra, MacMillan, New York, 1929, p. 296.
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We again recall that — X, is a root of the characteristic equation of M—that is,

of the polynomial D(\)—and hence is a number. The set —X, are, in fact, just the

roots which we wish to obtain. Similarly, the e/s are numbers independent of m. But

am is a numerical function of m.

5. The roots. Suppose now, that one of the roots which we will call — Xi, is larger

in absolute value than all the rest. Then if we select corresponding elements am and

am+1 from two consecutive orders of MmK we will have

i + Ji(by +«(h)~" +
eiWi/ ei\\i/am+i CiVXi/ CiVXi/

 = — Xi

i + —(—) +—(—) +
e\ \Xi/ e\ \Xi/

and hence obviously

CKm-f 1
lira —L = - X,. (15)

In other words: if an arbitrary matrix K is multiplied repeatedly by M, and if its

characteristic equation has a largest root, then the ratio of corresponding elements in two

consecutive products approaches this largest root as a limit as m—* °o.

Similarly, we readily find that

OCm

OCm OCm— 1 5 (16)
whence if |\i| and |Xj| are greater than all other | X'sj, (whether they are them-

selves equal or not), we again have

&m+1 Otm

lim
OCm OCm— 1

OCm OCm— 1

OCm—1 OCm— 2

= (- X0(- X2). (17)

In the same way it can be shown5 that provided |Xi|, • • • , |X,| are all greater than

| X,-+i | • • • | X„ |

OCm+i OCm-\-t—1 * * * OCm+1

OCm+i—\ C*wi+t—2 * ' * OCm

lim
^wi+1 OCm ' ' ' OCm—i+ 2

OCm+i—1 OCm-\-i—2 * * * OCm

OCm+i— 2 OCm+i— 3 * * * OCm— 1

OCm OCm— 1 * * " OCm—1+1

= (- xx)(- X2) • • • (- X,). (18)

1 A. C. Aitken, Proc. Royal Soc. Edinburgh 46, 289-305 (1926), obtains formulae equivalent to

these in a discussion of Bernoulli's method.
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These equations are sufficient to determine all the roots in the particular case

where

I X] I > I X2 I > I Xj I • • • > I X„ I .

6. Example. As a simple example we may take

3 1
M =

in which case

MK =

M*K =

3

2

171

170

2 2

M*K =

M6K =

K =

11

10

683

682

MiK =
43

42

Taking the ratios of the first elements of consecutive matrices we get as the

successive approximations to — | X |,

11/3 = 3.667, 43/11 = 3.909, 171/43 = 3.977, 683/171 = 3.992.

Similarly we find that

171 43

43 11

43 11

11 3

= 4 and

683 171

171 43

171 43

43 11

= 4,

which should be the product of Xi and X2.

The characteristic equation in this case is, however,

D(\) =
X + 3 1

2 X + 2
= X2 + 5X + 4,

and its roots are —1 and —4. The approximation is obvious.

7. Complex roots. So far we have considered only real roots: for obviously, since

complex roots occur in conjugate pairs (the coefficients being assumed to be real)

there can be no largest one. Suppose, then, that |X21 = |Xj| and that all other roots

are smaller in absolute value. Then by (17),

XiX2 = lim

OLm-f-1 Otjn

dm OCm— 1

m—»» — 1

OCm— 1 OLm—2

(19)

This gives us the absolute value of the roots. It does not, however, determine the

angles. To get this, we can best return to equation (14) and write (retaining only the

leading terms)

a» = ei(- X01" + e2(- X2)'».
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Writing the similar equations for m — 1 and m + \, and eliminating ex and elt we get

XlXjQIm-l + (Xl + ~kt)am + drn+l = 0.

Substituting the value of XiX2 as given by (19) we get finally

— (Xj -f- X2) = lim

&m-+-1 &m— 1

OCm &m— 2

OCm OLm—1

OLm— 1 01 m—2

(20)

This, together with (19) is sufficient to determine the pair of roots.

As written, the formula applies even if the roots are real.6 When they are complex

it is best to write — Xi= —\t=pei*. Then obviously we need only replace the XiX2 of

(19) by p2, and the — (Xi+X2) of (20) by 2p cos (/>.
Similar, but more complicated, formulae can be obtained when more than two

roots have the same absolute value.

8. The method of Daniel Bernoulli. We now note that any polynomial in X, which

we take in the form

D(\) = X" + ^iX*-1 — piKn~i + • • • -F pn—iX ± pn (4)

as before, can be written as

X 1 0 • • • 0 0

0 X 1 • • • 0 0

0 0 X • • • 0 0
D{\) =

0 0 0 • • • X 1

pn pn-1 pn-2 • • • Pi pl + X

(21)

But this is the characteristic function of the matrix

0 1 0 • • • 0 0

0 0 1 • • • 0 0

M = (22)
0 0 0 • • ■ 0 0

0 0 0 • • • 0 1

pn pn-1 pn-2 " ' * Pi Pl

Hence if we choose for K any matrix whatever, we may solve for the largest roots by

any of the equations of §§4 and 6.

It is particularly convenient to take K in the form

• It is not even necessary that they be equal in absolute value, though unless they are equal (or

nearly equal) (15) will obviously be a more convenient formula.
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K =

0 0 0

0 0 0

0 0 0

Then we have

MK =

0 0 0

0 0 0 • •

0 0 0 • •

0 0 0 • •

ao

ai

a2

Otn-l

(23)

a l

«3

Pn—j°tj0 0 0
>-o

which is again of the same form as K. If we denote^,jIoPi+ian-j-i an' we a'so have

M*K =

0 0 0 • • • a%

0 0 0 • • • a3

0 0 0 • • • «4

And in general

0 0 0 • • • 2 pi-ian-j
i- o

0 0 0 • • • am

0 0 0 • • • am+i

where

MmK = 0 0 0 • • • am+j

0 0 0 • • ■ am+n-i

n—1

a*+i = pj+iBk-it k > n — 2. (24)

This entire set of matrices, however, is characterized by a simple sequence of a's,

of which the defining equation is (24). Obviously, it is also true that any set of four

consecutive as in this sequence also constitutes a set of corresponding elements from four

consecutive matrices of the set MmK. Hence, the use of the symbol a in this connection

is consistent with its use in §§3-6. But (24) is the recursion formula used in Ber-

noulli's method of solution as developed by Euler, Lagrange and Aitken. Hence this

particular special case of the results of Duncan and Collar is identical with Ber-

noulli's method.

Concerning this method Whittaker and Robinson7 say: "Though hardly now of

first-rate importance, it is interesting and worthy of mention." Our tests at the

7 E. T. Whittaker and G. Robinson, Calculus of observations, 2nd ed., Blackie & Son, London, 1929.
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Laboratories, however, have shown it as good as any other method in the case of

complex roots. Such inferiority as it may have compared to the root-squaring method

as regards speed is quite compensated by the fact that it is self-correcting: that is,

an error at any stage of the process merely prolongs the calculations, but does not

invalidate it.

9. The method of R. L. Dietzold. Another form into which the general results of

Duncan and Collar can be thrown is obtained by using the conjugate form of (21)

together with the same matrix for K as before. Denoting the conjugate of M by M',

we have from (22) and (23)

0 0 0 • ■ • pn an-1

0 0 0 • • • ao + p„-\an-\

M'K = 0 0 0 • • • ai -f- pn-.zan—i

0 0 0 • • • a»-2 + pian_i

If, then, we define

«0 = PnCtn-l, OLj = «j_1 + pn-jdn-1, (25)

M'K becomes identical with (23), except that all the a's arc primed. In general, if

we set
(m) (m—1) (m-1) . .

Qj — &}— 1 l Pn—j&n— 1 »

and understand that o£} is zero for all m, we have

(m)

0 0 0 • • • ao

M K =

(m)

0 0 0 • • • «,
(m)

0 0 0 • • • <*2

(m)

0 0 0 • • • a„_i

(27)

In this case, as in all others, the index m is the one which is to be varied in using

formulae such as (16)-(20).

This variant of the general scheme of Duncan and Collar was developed by Mr.

R. L. Dietzold of the Bell Telephone Laboratories, but has not been published.

As compared with Bernoulli's, it has the merit of using a large number of simple

operations instead of a small number of complicated ones. It is approximately as fast,

and like all schemes based on Duncan and Collar's results, it is self-correcting.

10. The method of Graeffe. There is also a clos< connection between Duncan and

Collar's processes and the root-squaring method. This method, which is usually

attributed to Graeffe, seems actually to have been developed first by Dandelin, and

has had the attention of a long list of mathematicians, including Lobachevski, Encke,

Brodetsky and Smead, and Hutchinson.

This connection can best be established8 by recalling that the roots —X, of the

8 M. Bocher, Introduction to higher algebra, MacMillan, New York, 1929, p. 283, Theorem 3.
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matrix \I-\-M are invariant under transformations of the type r_l[\/+if]7\

Furthermore, it is possible to find a transformation of this sort which will throw M

into the form

M* = T~lMT =

\! 0 • • • 0

0 X2 • • • 0

0 0 ■ • • X„

and hence X/+ M into the form \I-\-M*, since T~lIT is obviously I.

This same transformation, however, carries Mm into M*m, as we readily see from

the identity

T~]MmT = T~\MTT~lMT ■ ■ ■ T~lM)T

= (T~1MT)(T~,MT) ■ ■ ■ (T-'MT)

= M*"'.

Hence the characteristic equations of Mm and M*m must also have identical roots.

But, obviously,

stem

M =

Xj • • • 0

0 X? • • • 0

0 0 • • • K

so that the roots of its characteristic equation, and therefore also those of the char-

acteristic equation of Mm, must be —

But if we take K = I in Duncan and Collar's process of matrix iteration, the suc-

cessive matrices obtained are Mm. Hence the whole process may be regarded as one

which sets up a sequence of characteristic equations with roots — X„ — X*, • • • and

in general — XJ\

In the root-squaring process as originally developed only the powers — X^, — Xj,

—X^, ■ • • were obtained, which corresponds in matrix terms to getting first the

product of M by M, which is ilf2; then the product of M2 by M2 which is M*, and so

on. Thus high powers are reached with a smaller number of matrix operations, which

is theoretically desirable. Practically, however, the superiority is not so apparent.

For the zeros of (22) are rapidly replaced by numbers in forming powers of M, so

that a multiplication such as M* MS involves many more arithmetical operations

than a multiplication of the form M■ Ms. Furthermore, an error at any point of the

root-squaring method perpetuates itself, whereas in the other method an error at

any stage is merely equivalent to starting over again with a new value of K.

Our experience leads us to believe that the methods of §§8 and 9 are generally

to be preferred, at least when computations are to be performed by a clerical staff of

computers.

11. The method of Bernoulli as developed by Lagrange. There is also a very close

connection between the iterated matrix Mm and a development of Lagrange's which

he characterizes as based upon that of Daniel Bernoulli. In it, he notes that
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Z)'(X) 1 n Si s2 s3

7"T + ̂  + ̂ +v+" • <28)

where

Sm = (- x,)- + (- X2)-» +...+(- X,)-; (29)

and it is the quotient sm/sm-i which Lagrange uses. Obviously, these are just the sums

of the elements in the principal diagonals of M*m. But Lagrange's method of obtaining

them by dividing D(X) into its derivative is preferable. Besides, in spite of what

might at first be assumed, it is self-correcting.

It is of historical interest to note that a very similar development was worked out

by Legendre9 independently of Lagrange, and at about the same time. Both of these

writers, however, knew of earlier work by Euler, who had carried out a similar de-

velopment using instead of D'(\) an arbitrary polynomial of degree n — 1, which

X.-PLANE 0-PLANE

Fig. 1.

merely has the effect of replacing the sm's in the right-hand member of (28) by the

am's defined by (14). In other words, the method of Euler was exactly equivalent to

that of Duncan and Collar, except that in the former there was no obvious criterion

for the choice of a convenient form of numerator, whereas it is easy to choose matrices

K which will lead to a simple succession of operations, as we have illustrated in

Sections 8 and 9.

PART II—CONFORMAL MAPPING

12. The method of Routh. The second group of methods to which I wish to refer

are all founded upon a well-known theorem of Cauchy. If we represent the complex

variable X by one plane, and the complex variable D by another, then the equation

Z?(X) = X" + MB_1 - M"~2 + • ■ • + pn, (4)

may be looked upon as a transformation by means of which the X-plane is mapped

upon the Z?-plane. The correspondence between X and D, however, is not 1:1 but in

general n'A\ and hence a simple closed curve C in the X-plane (Fig. 1) passes into a

much more complicated curve C' in the £>-plane. In regard to the curve C' the the-

orem in question says that the number of times it loops around the origin is exactly

equal to the number of roots of D(K) = 0 which lie inside C.

9 Legendre's development was in terms of the reciprocal powers of the roots, instead of their direct

powers. Otherwise the two were identical.
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This rule appears first to have been applied by Routh to the problem of determin-

ing the number of roots with positive real parts, a problem which interested him be-

cause of its relation to the stability of linear dynamical systems. For this purpose he

used as the contour in the X-plane the imaginary axis closed by a semicircle of infinite

radius, thus enclosing the entire right half of the plane. For this particular contour

he explained in great detail how from the sequence of intersections of C' with the

real and imaginary axes the number of roots could be found without more definite

information as to the shape of C'. He also developed a sequence of functions, similar

to Sturm functions, by means of which the number of roots could be determined

from the polynomial directly without even knowing the real and imaginary inter-

cepts of C'. He did not extend either of these studies to the point of locating the roots

more exactly, but both are capable of such extension and have actually been used.

13. The method of G. R. Stibitz. The second method—the one using functions

similar to the Sturm functions—was developed further by G. R. Stibitz of the Bell

Telephone Laboratories. He observes, first, that the method can also be used to find

the number of roots with real parts greater than X0. To do this, it is merely necessary

to replace X by X—X0 in the polynomial (4), and then proceed as outlined by Routh.

By carrying out this process for enough values of X0, the roots can be segregated within

strips parallel to the imaginary axis. Then by a definite routine (resembling in its

essentials the Weierstrass subdivision process in point-set theory) the real values of

the roots can be found to any desired degree of approximation. When this has been

accomplished, the imaginary parts are determined at once as a ratio of two of the

Sturm-like functions.

Stibitz has developed complete schedules for the computations required in solving

polynomials by this method, for all values of n up to 10. The method has been tried,

and works reasonably well, though perhaps not as rapidly as those explained in

Sections 8 and 9. I suspect that the decision in this case, however, must remain a

conditional one; for the computational routine of Stibitz' method is complicated

(i.e., varied) as compared with the extremely simple (i.e., repetitive) routines of

Sections 8 and 9. For this reason, it is not as well adapted to use in an industrial

computing laboratory. In the hands of a mathematician who thoroughly understood

its theoretical origin it might show up much better.

14. The method of A. J. Kempner. Kempner's methods10 resemble more nearly the

other portion of Routh's work. He chooses as his contour C a circle of radius r about

the origin as center. Then \=re<9, and (4) becomes

D(\) = [rn cos nd + pirn~l cos (n — 1)0 — />2rn~2 cos (n — 2)6 + • • • ] ^

+ i\rn sin nd + pxrn_1 sin (n — 1)0 — pirn~2 sin (n — 2)0 +•••].

Thus the real and imaginary parts of D are trigonometric sums, which, as Kempner

remarks, could be calculated by means of a harmonic synthesizer, such for example

as the Michelson "analyzer." Thus two curves would be obtained, one giving the

real part of D, and the other its imaginary part, both as functions of 8. From this

point on, Kempner suggests two possible routines. First, to regard these curves as

parametric representations of D, and from them construct the curve C' itself. Second,

to keep them as separate curves and not bother further about C'. In both cases, he

" University of Colorado Studies 16, 75 (1928); Bulletin of the Amer. Math. Society 41, 809 (1935).
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develops rules very similar to Routh's for finding the number of roots directly from

the sequence of intercepts with the axes.

He uses this routine to segregate the roots in annular rings, and then tracks down

their absolute values by a suitably chosen succession of intermediate circles. The

angle of any root is, of course, automatically determined as the value of 6 at which

the real and imaginary parts of (30) vanish when r is given the particular value

appropriate to that root.

Kempner also mentions the possibility of applying the method to sectorial in-

stead of annular regions, but does not develop this idea to a significant degree.

Fig. 2.

15. The isograph. Kempner's method was also developed independently, but

somewhat later (1934) at Bell Telephone Laboratories, and led to the construction

of a machine, called the isograph, which draws the curve C' corresponding to a circle

of any radius r.

Since the independent variable in plotting the curves is an angle, what is required

for the isograph is a rotating unit that provides two linear motions—one proportional

to the sine and the other to the cosine of the angle. There would have to be ten of

these units to provide for the ten variable terms of a tenth degree equation, and while

the first unit moves through an angle 6, the second unit must move through an angle

29, the third unit through an angle 30, and so on. Then by providing a means of

summing the sine and cosine motions separately, and allowing these sums to control

two perpendicular motions of a pencil and drawing board, a closed curve will be de-

scribed as 9 increased from 0 to 360 degrees.

To secure motions proportional to the sine and cosine of the angle of rotation,

the isograph utilizes the "pin and slot" mechanism illustrated in Fig. 2. Here an arm

rotating about a fixed point carries a pin arranged to slide, by means of a rectangular

block, in rectangular slots cut in two slide-bars, each of which is free to move back

and forth in one direction only—the two motions being at right angles to each other.

These motions are equal to the length R of the arm times the sine and cosine of the

angle of rotation.
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The ten units provided are geared to a common driving motor, but the gearing is

designed so that when the arm of the first unit moves through an angle 6, that of the

second unit will move through an angle 26, that of the third through 39, and so on.

To provide for summing up all the sine terms and all the cosine terms, the ends

of all the slide-bars carry pulleys so that a single wire may be carried around all the

sine pulleys and another around all the cosine pulleys as indicated in Fig. 3. Station-

TO COUNTER-
WEIGHT

Fig. 3.

ary pulleys are mounted between the movable ones so as to keep the direction of

pull on the wires in line with the motion of the slide-bars. These wires control the

relative motions of a pencil and drawing board to plot a curve as the angle is varied

from zero to three hundred and sixty degrees.

The construction of the rotating elements is shown in Fig. 4. The drive shaft

passes through the bed plate and is fastened to the center of a steel bar that acts as

the arm of Fig. 2. This bar is grooved to receive the pin of the "pin and slot" mecha-

nism. In order that the pin maybe adjusted for different crank lengths, corresponding

to the coefficients p^n-k of the various terms in the equation, a rack is cut along

one edge of the groove so that a pinion attached to the pin may move it along the bar.

After adjustment the pin is secured in place by a set-screw.

The top of the bar carries a carefully graduated scale to which the center of the

pin must be set accurately. The scale is made visible at the center of the pin by con-
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structing the latter as a hollow cylinder. A vernier scale within the cylinder enables

the effective arm length to be adjusted very exactly to the desired value on either

side of the center—one side for positive coefficients and the other for negative. The

total range of adjustment is three inches.

The hollow pin turns in a rectangular bronze block which fits the slots of two

slide bars, one for the sine motion and one for the cosine motion. The slide bars are

identical steel plates running in bronze ways set accurately at right angles to each

Fig. 4.

other. At the end opposite to the slot each plate carries a pulley around which is

passed the wire that sums up the sine or cosine motions of the ten elements. One

end of each wire is fixed. The other end of the cosine wire is led by pulleys to the

drawing board, which consists of a thin aluminum sheet mounted on ball-bearing

rollers so that it is free to move back and forth in only one direction. A counterweight

fastened to the other edge of the board keeps the wire under constant tension. The

free end of the sine wire is led by pulleys to a counterweighted pencil carriage, which

is mounted with ball bearings in a fixed guide crossing the drawing board at right

angles to its direction of motion. Thus the board is displaced back and forth in

proportion to the sum of the cosine terms, and the pencil is displaced back and forth
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in a perpendicular direction in proportion to the sum of the sine terms; and this com-

bined motion gives the desired curve.

In operation, the isograph has given accuracies of one per cent or better; and of

course gives them quite rapidly. In fact, the most rapid method we have at present

is that of using the isograph to obtain this degree of accuracy, and then improving

it either by the methods explained in §§8 and 9, or by successive approximation to

the quadratic factors.

16. Conclusion. In conclusion I wish merely to point out that in none of the

methods which I have described is computation with complex numbers involved.

They are all real methods. At present this seems to be a fundamental requirement

imposed upon us by commercial computing machines, since the multiplication of two

complex numbers on such machines requires six, and division eight, separate opera-

tions. If this restriction were removed, other methods might conceivably prove to be

more rapid.

Partly with this in mind, and partly because we must frequently deal with com-

plex quantities in other connections, we are at present developing a computing

machine for complex quantities. When it is completed, as we hope it will be in the

course of the present year, we shall undertake a further study of methods which now

are clearly ruled out by mechanical limitations.*

POSTSCRIPT BY R. L. DIETZOLD

When the foregoing paper was written, it was intended for immediate publication.

By coincidence, however, several other papers of similar character appeared at just

about that time, and Dr. Fry concluded that the subject was of too limited interest

to justify publishing another.

Since then, the situation has changed in several ways. First, the interest in meth-

ods of numerical computation has greatly increased, largely because war activities

have led to much work of that kind. Second, the specific problem of root-finding has

become a live one because its fundamental importance in linear dynamics is more

widely recognized. Finally, a few new methods of iteration have been evolved and

some new types of computing machines developed. The paper therefore now has a

timeliness which it lacked when written, but a few comments are required to bring

it up to date. The most important of these are noted in the following paragraphs.

In the Bell Telephone Laboratories the available computing equipment has been

materially improved through the development of the relay computer by Stibitz and

this inevitably reacts upon the relative convenience of various methods of solution.

Although the relay computer is very flexible in respect to the type of problem it can

handle, it is particularly well suited to iterative processes such as Bernoulli's method

of root extraction; for once the proper instructions have been set into the control

tape which governs the machine, all successive operations are performed without

further supervision. The simplicity of Bernoulli's rule, which requires only that the

machine accumulate n — 1 of the a's, each multiplied by the appropriate coefficient

from the polynomial, recommends it for mechanization. The instructions are easily

* This machine was placed in service in 1940 and was demonstrated at the summer meeting of the

American Mathematical Society in Hanover, New Hampshire in September of that year. The relay com-

puters referred to in Dr. Dietzold's postscript are still more versatile devices which have been developed

since that time.
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set up, and the machine is not required to recall very many numbers at any stage in

the process. Bernoulli's method is likewise well adapted to computing equipment of

the punched-card type, provided only that the accumulator is designed to recognize

algebraic sign.

One of the routines which may be set up in a relay computer enables the algebraic

operations to be performed on complex numbers with the ease that the same opera-

tions are performed on real numbers with a mechanical computing machine. The

availability of this aid makes Newton's method useful for root improvement in the

complex domain, and some on the Laboratories' computing staff prefer it to Bair-

stow's method, although the margin of choice is not great.

Bairstow's variation of Newton's method avoids computation with complex

quantities by improving the coefficients of a trial quadratic factor. The trial factor,

say Q(K) =X2+oX+6, is divided twice into the polynomial, and the rates of change of

the remainder coefficients found from the second remainder, as in Horner's process.

The method has by now been sufficiently publicized;11 nevertheless, it can be given

here, since it is short to state. The polynomial being expressed as

D(\) = (r0X -f- so) + (?M(riX + Si) + + • • ■ ),

improved coefficients for Q are

I r o r i

' *0 Si

a' — a , 6=6 +

ari — Si r0 |

bri Jo I

| ari - Ji r, j | ar, - s, r, ,

bri Si i i bri \

Newton's method typifies a class which is deliberately excepted from treatment

in Fry's paper; methods in this class are characterized by the property that only some-

times do they lead to a solution. Newton's method, for example, can never lead to a

complex root if the iterative process is started from a real trial value. Bairstow's

method has a similarly restricted region of convergence and was, quite properly,

advanced by him only as a means for improving roots already located approximately.

Methods which sometimes fail to converge may still be very useful if, in appli-

cation, they converge often enough and fast enough. Newton's method and its varia-

tions, however, almost always fail unless they can be started from values closely

corresponding to roots. But in 1941,Shih-Nge Lin revealed an algorithm12 remarkable

11 Bairstow gave the method only in Reports and Memoranda No. 154, Advisory Committee for

Aeronautics, Oct., 1914 (H. M. Stationer's Office), but it was made generally available by Frazer and Dun-

can, Proc. Royal Soc. London 125, 68-82 (1929). Hitchcock offered the method as An improvement on

the C.C.D. method for complex roots, Jour. Math. Phys. 23, 69-74 (1944). Hitchcock proposes that the

roots be improved by this method after only approximate location by the G.C.D. method, which he gave

in Jour. Math. Phys. 17, 55-58 (1938). The G.C.D. method is nearly identical with the method of G. R.
Stibitz, described by Fry. Bairstow's method was also rediscovered by Friedman, whose work is noted in

Bull. Amer. Math. Soc. 49, 859-860 (1943). Bairstow's formulae give the leading terms of series develop-

ments of the coefficients by Fry, who concluded, after an investigation of the convergence, that the ex-

pansion was suitable only for root-improvement.

15 A method of successive approximations of evaluating the real and complex roots of cubic and higher

order equations, Jour. Math. Phys. 20, 153 (1941).
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both for simplicity and convergence. By Lin's method, the polynomial is divided

only once by a trial quadratic factor; if13

D(\) = po + pi\ 4- p2^2 + • ■ •

= (»"oX + so) + Q0^)(qo + <7iX 4- ?2X2 +•••)»

improved coefficients for Q are

qopi — qipo po
a = b' =

1a

If it converges, the process determines the factor corresponding to the roots of

least absolute value; thus a suitable initial choice for Q is

X2 + {pi/pi)\ 4- (po/pz)-

In application, the process does very often converge, although sometimes slowly.

When the convergence of Lin's method is slow, Bairstow's method offers a valuable

supplement. Lin's method is used until the size of the remainder indicates that an

approximation to a quadratic factor has been obtained; Bairstow's process, started

from a sufficiently close approximation, will converge, and when it converges, it

converges rapidly.

The combination of these two methods provides useful, and usually adequate,

equipment for the work-a-day solution of polynomial equations. In recalcitrant cases,

mechanical aids are particularly helpful. Bernoulli's method is always available, but

is quite likely to be slow in cases for which Lin's method has already failed. This

makes little difference if the iterative process is performed automatically by a relay

computer, but recommends devices to accelerate the convergence if the computation

must be performed without aid. An efficient device for accomplishing this is given by

A. C. Aitken in a very full discussion14 of numerical methods for evaluating the

latent roots of matrices.

Like most of those who use matrix methods, Aitken is concerned not solely with

the solution of polynomial equations, but rather with the more general problem of

determining the characteristic roots (and also the characteristic vectors) of matrices.

Preliminary reduction of the matrix to the rational canonical form involves so many

operations,15 that one would commonly start the general problem with a matrix M

having few vanishing elements. In this event, we lose one of the reasons for preferring

Bernoulli's method (i.e., repeated multiplication by M) to matrix powering by the

root-squaring method, for the latter method arrives at high powers of M with fewer

operations, thus providing another means for hastening the convergence. The ad-

vantage is, however, partly illusory except for the limited class of computers who are

so unerring that they can afford to sacrifice the self-correcting feature of the former

procedure.

13 A departure from Fry's notation is convenient here.

14 Proc. Royal Soc. Edinburgh 57, 172-181 (1930.
15 Harold Wayland, Expansion of determinantal equations into polynomial form, Quarterly Appl.

Math. 2, 277-306 (1945).


