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flow, respectively. Hence To = fcvotdt where v0 is the undisturbed velocity field given

by (1) and the subscript t indicates the tangential component. By Stokes' theorem,

r0=//,(curl Vo);dA = — UkA where A is the area of /. Hence in our example,

r0= - Ukird1. If we substitute this for T in (9), assuming, as Tsien does,6 that ri = 0,

then our result (9) reduces to (10).

' The author is indebted to Dr. Tsien for pointing this out. He had at first mistakenly supposed that

Tsien's result was based on the assumption F = 0.

ON PLASTIC BODIES WITH ROTATIONAL SYMMETRY*

By C. H. W. SEDGEWICK (University of Connecticut)

Introduction. The rotational symmetry problem in plasticity was discussed by

H. Hencky1 in 1923. In the present paper some new results are obtained. Furthermore,

the presentation is different from that used by Hencky.

In the following discussion, r and z in the cylindrical coordinate system (r, 9, z)

will be replaced by a(r, z) and /?(r, z) in such a way that a, (3, 6 form a curvilinear,

orthogonal system. The line element ds will be written in the form

ds2 = A2da* + BHp + rW,

where A and B are functions of a and /3. Furthermore, if the angle between the curve

/3 = const, and the direction of increasing r is denoted by y, we will have

dr dr
— = A cos y, — = — B sin y, (1)
da dp

dz dz
— = A sin y, — = B cos y. (2)
da dp

From these, we get

dA dy dB dy
  = - B — , (3)  = A — ■ (4)
dp da da dp

The stress components will be designated by <raa, crw, aee, <rap, aa9l a0e. In the prob-

lem under discussion, <rao=<rpo = 0.

1. Lines of principal stress. Along the lines of principal stress, craS = 0. In this case

the equations of equilibrium2 reduce to

* Received December 5, 1944. This paper was written during the summer of 1944 while the author

was a student in the Program of Advanced Instruction and Research in Mechanics at Brown University.

The author wishes to express his appreciation to Dr. W. Prager for suggesting the problem and for valu-

able criticisms.

1 H. Hencky, Uber einige statisch bestimmte Fdlle des Gleichgewichls in plastischen Korpern, Zeitschr.

fiirangew. Math. u. Mech. 3, 241 (1923).

2 A. E. H. Love, The mathematical theory of elasticity, 4th edition, Cambridge University Press, 1934,

p. 90.
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1 T d "1 <raa d tree d

-J5, Is {B"-] J ~ — rJa" B) ~—^ (ln') = "•
1 T d "I cee d <raa d

  — (Arm) (In r) (In A) = 0.
ABrldp J B dp B dp

On simplifying, these become

daaa d d
 (- (ffa« — ops) — (In B) + (faa — <tm) — (In r) = 0, (5)

da da da

dapp d d
— (<r„a — fffts) — (In A) + {opt3 — <7M) — (In r) = 0. (6)

dp dp dp

Assuming the Tresca yield condition, we have traa — a^ = 2k, where k is constant.

Furthermore, in the so called "fully plastic state," must be equal to either <raa

or <7m- Let us assume first that = <roa. Writing <raa+<rM+<7ee = 3«r, we have 0"aa ~~~ &QQ

= (T+2k/3, om = <t — 4^/3. From (5) and (6), we then get

da d d<r d r ,
— + 2k — (In 5) = 0, (7)  2k — [in (Ar)] = 0. (8)
da da dp dp

Elimination of <r furnishes

~ [in {ABr)\ = 0. (9)
dadp

If above we had assumed that <Tee = <TMy we would have obtained

^ + 2k [In (Br) ] = 0, (7*) ^ - 2k ^ (In A) = 0. (8*)
da da dp dp

These also lead to Eq. (9), the solution of which is

ABr = (10)

Let us define a' and fi' by*

da' = e'^da, dp' = e'^dp. (11)

This transformation merely relabels the families of surfaces a = const, and

/? = const.

Now, the volume bounded by the surfaces or, a+da, /3, P+d/3, 6, 6+dO is equal

to ABrdad$de=A 'B'rda'dP'dB.
Substituting for da' and dfi' from (11) and making use of (10), we get

A'B'r = 1. (12)

Thus, the volume contained between the co-ordinate surfaces a{, ai ; (if , /?I; 0i, 02

is given by

f ' f' I da'dfi'de = (a2' ~ a{)(& ~ ~ dl)-
"i ei

1 \V. Prager, Theory of plasticity, mimeographed lecture notes, Brown University, R. I., 1942.
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It follows that if the differences al —a{, 01 —0{ , 62 — 61 are kept constant for succes-

sive co-ordinate surfaces, the resulting volumes will be equal. This result is analogous

to that obtained by Boussinesq4 in the plane problem.

Dropping the primes for the sake of simplicity we may construct a solution by

setting y=g(0).

From (3), A is then seen to be a function of a alone. We set A = <t>'(a), and obtain

from (4) B = <j>g' + h(0). The first equation (1) leads to

dr
r = <t> cos g + 1(0), —= - sin g) + I'.

d0

But, according to the second equation (1),

dr
— = - (4>g' + h) sin g.
90

Hence h= —V/sin g. The condition (12) now takes the form

p'Us' - —)<
\ sin g/
( 4s' (<t> cos g + 0 = 1.

This can be satisfied by setting / = 0, g' cos g = e, <£V = l/c. where c is a constant. Dis-

carding constants of integration we thus obtain

3a
sin g = ci3, </>3 = — >

c

7 = sin-1 (c0), A = 3-2/3c~1/3ar2/3,

B = - c2^2]-1'2, r = 3I/3c-"'3a1/3[l - c202]112.

Equations (2) now give z = 3I/3e2/3a1/3/3. Hence

z/r = c0[ 1 - c2^2]-1'2, r2 + z2 = 32'3c-2'3a2'3.

The curves a = const, and 0 = const, are thus seen to be concentric circles around

r = z = 0, and radial straight lines, respectively.

In the above example, it may easily be verified that, corresponding to a set of

equidistant values of a, 0 and 6, the resulting volumes will be equal.

By substituting the value for B above in (7) and integrating, an expression for a is

obtained.

2. Lines of maximum shearing stress. Along the lines of maximum shearing stress,

Ta^ — k and <jaa—a^ = <j. (Tee will be equal to either a-\-k or a — k. Let us assume first

that <Tee=cr+k. In this case, the equations of equilibrium (2) are

1 T d k d "I (7 d (a + k) d
  — (Bra) H (A 2r) (In B) -   ^ — (In r) = 0,
ABrlda A d0K 'J A da A da

1 ra k d 1 1 d <7 d
— — (Ara) -\ (BV) (<r + k) — (In r) 
ABr Ld0 B da J B d0 Bd0

These reduce to

4 J. Boussinesq, Lois geometrique de la distribution des pressions, dans un solide homogene et ductile

soumis d des deformations planes. Comptes Rendus Ac. Sci. Paris 74, 242 (1872).
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da k [" dr dA~I 3
 1 A2 V2Ar  I -• +  A2 — + 2Ar  - k — (lnr) = 0,
da ABr L 3/3 3/3 J da

da k dr dB 1 d
 1 B2 — + 2Br  - k —
df) ABrL da da J 3/3

Making use of Eqs. (1), we obtain

da r A 37*1 d
 h £ sin y — 2 — I — k — (In r) = 0, (13)
da L r 3aJ da

da r B 37"] d
 1- k \ — cos 7+2 — — k — (In r) = 0. (14)
3/3 L r d/3j d/3

Eliminating a, we find

d f — A sin 7[— A sin 7 £7! d I~B cos 7 37"!

r daj da L r 3/Sj

Carrying out the differentiations and substituting for dA/d/3, dB/da, dr/da, dr/dfi

from Eqs. (1), (3) and (4), we obtain

327 1 T dy 37"] AB
 1 A cos 7 B sin 7 — cos 2y — 0. (15)
dad/3 2rl 3/3 3a J 4r2

We may remark that as r—Eq. (15) reduces to that governing the case for

plane strain, i.e., d2y/dadfi = 0.

It is easily seen that the only solution pf equation (15) having two orthogonal

families of straight lines occurs when 7=45°, i.e., when the two families of straight

lines are inclined at an angle of 45° to the axis of symmetry. This result was obtained

by Hencky.1

If we had assumed above that aee = <r — k, our equilibrium equations would re-

duce to

da T- A 37-I 3
— + £  sin 7 — 2 — + k — (In r) = 0, (13*)
3a L t 3aJ 3a

r B 37"! 3
+ k  cos 7 + 2 — I — k ■— (In r) = 0, (14*)

L r 3/3 J 3/3

da

3/j

which also lead to Eq. (15).

Let us assume a solution of Eq. (15) in the form y =f(a)+g(/3). The equation then

becomes

2r[{A cos (/+ g)}g' - [B sin (/+ g))f ] - AB cos 2(/+ g) = 0.

Substituting for A and B from relations (1), we get

3r 3 rcos 2(/ + g)l | dr 3 Tcos 2(/ + g)l = q

da 3/3 L r J 3/3 da L r J (16)

A solution of (16) is given by r = C cos 2 (J+g) where C is a constant. Without loss

in generality we may set/(a)+g(/3) =a—/S. We then have
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r = C cos 2{a — /3),

dr
— = — 2C sin 2(a — /3) = — 4C sin (a — /3) cos (a — 0).
3a

Equations (1) now furnish

^4 = — 4C sin (a — |3), B = — 4C cos (a — /3),

and Eqs. (2) give
2 = - 2C(a + j8) + C sin 2 (a - 0).

It follows that the curves a — const, and /3 = const, are cycloids tangent to the lines

r = C and r = —C, respectively.

From Eqs. (14) and (15), we are able to determine cr. Substituting our values

for y, A, B, r and integrating, we find that

a = 4k(a + /3) + k In [l — sin 2(a — j3) ] + const.

Another solution is obtained by setting /(a)+g(/8) = «—/?, as before, and substi-

tuting r = ea+p4> where <t> =</>(«—/3) is a function yet to be determined. After making

these substitutions and carrying out the differentiations, we get

[<t>2 — <£'2] cos 2(a — j3) — 2<j>4>' sin 2(a — (3) = 0

which is satisfied by

<t> = C[cos (a — 0) + sin (a — 0)].

We thus have
r = Ce°+^ [cos (a — /3) + sin (a — /S)].

Using relations (1) and (2), we find that

z = Ce"+0[sin (a — 0) — cos (a — /?)].

The curves a = const, and /3 = const, are logarithmic spirals which intersect the

straight lines through the origin at an angle of 7t/4. This solution corresponds to the

solution obtained in 1.

It is interesting to see that these networks of cycloids or logarithmic spirals, known

in the case of plane strain, are also admissible in the case of rotational symmetry.

ON THE TREATMENT OF DISCONTINUITIES IN BEAM
DEFLECTION PROBLEMS*

By S. TIMOSHENKO (Stanford University)

In a note on the treatment of discontinuities in beam deflection problems Mr.

E. Kosko1 attributes to R. Macaulay the method whereby the number of constants

of integration can be always reduced to two, independently of the number of forces.

This method was, however, originated by A. Clebsch, and is discussed in his book

"Theorie der Elasticitat Fester Korper," 1862, page 389. In Russia it was called the

Clebsch method and was widely used in textbooks on strength of materials. It was

also used in German books. See, for example, A. Foppl, Festigkeitslehre, 5th ed. 1914,

page 124.

* Received Jan. 14, 194S.
1 Quarterly of Appl. Math. 2, 271-272 (1944).


