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METHODS OF REPRESENTING THE PROPERTIES

OF VISCOELASTIC MATERIALS*

BY

T. ALFREY

Monsanto Chemical Company, Research Department, Springfield, Mass.

Introduction. In a recent paper1 it has been shown that the solution of the first

and second boundary value problem for linear viscoelastic media can be obtained in

two steps requiring (a) the solution of an equivalent problem for a perfectly elastic

medium, and (b) the determination of the response of the viscoelastic material to an

applied shearing stress (or shearing strain) which is a given function of time. The

study of the behaviour of viscoelastic materials in pure shear is accordingly seen to

be of particular importance. To coordinate various manners of describing this be-

haviour is the purpose of the present paper.

From the mathematical point of view the behaviour of a viscoelastic material in

pure shear is represented by a differential relation between the shear stress 5 and the

shearing strain e. We may write this relation in the form

Ps = 2 Qe, (1)

where the differential operators P and Q are defined by

dm dm_1

P = 1" pm-1    + • ' ' + pO,
dtm dtm~l

d" d"-1
Q = qn [- ?»-i h • • • + ?o-

dt" df-1
-H7.

\

ll

The m+» +1 coefficients pm-\, ■ ■ • , po, <Z», • • • , 2o are

constants characterizing the mechanical properties of the

material. Equation (1) can also be considered as the gen-

eral stress strain relation of an incompressible viscoelastic

medium. In this case, e may be taken as denoting any

component of the strain tensor and s as denoting the cor-

responding component of the deviatoric part of the stress

tensor.

While Eq. (1) gives a complete mathematical descrip- G, ^ I

tion of the mechanical behaviour of a viscoelastic material

in pure shear, it is often found useful to express this be-

haviour in terms of a mechanical analogue, or model, con-

sisting of springs and dashpots. Figures 1 and 2 show

typical models of this kind. . __ . . , , .
Fig. 1. Mechanical model:

Models of the first type, shown in Fig. 1, consist of re- 3 Voigt elements in series.

tarded elements (Voigt elements) coupled in series. Each
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1 T. Alfrey, Quarterly of Appl. Math. 2, 113-119 (1944).
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element is made up of a spring coupled in parallel with a dashpot. In such a model

the total extension (corresponding to the strain e) consists of n contributions, one

from each of the n Voigt elements. The extension contributed by the ith element

is connected with the load s by means of the relation

5 = 2 Giti + (2)

where Gi is the spring constant and 77, the dashpot constant of the ith element, and

the dot indicates differentiation with respect to time. The load 5 is the same for all

elements coupled in series, and corresponds to the stress in the viscoelastic body. The

mechanical behaviour of the model is defined by n equations of the form (2) in con-

junction with the relation t=^ti which defines the resulting extension e.

Models of the second type, shown in Fig. 2, consist of another kind of composite

elements (Maxwell elements) coupled in parallel. Each element is made up of a spring

coupled in series with a dashpot. In such a model the

— total load (corresponding to the stress) is divided

among the n elements. The load s, carried by the t'th

element is connected with the extension e by means

of the relation

1 1
e = —- Si + — Si, (3)

ZUt

where G,- and r;,- have the same meaning as above.

The extension e is the same for all elements coupled

in parallel and corresponds to the strain of the visco-

elastic material. The mechanical behaviour of the

model is defined by n equations of the form (3) to-

gether with the relation s=^si which defines the

Fig. 2. Mechanical model: resulting load 5.

3 Maxwell elements in parallel. in a study of molecular mechanisms of visco-

elastic deformation, a model of the type shown in

Fig. 1 may be preferable to the general stress-strain relation (1). In such a study,

each contribution to the strain may often be identified with some specific molecular

process, and hence the strain contributions «i, e2, e3, ■ ■ • , en, as well as the total

strain e, can be said to possess a physical significance. Likewise some authors have

attempted to identify the various stress contributions of a model of the type shown

in Fig. 2 with individual "molecular mechanisms of supporting stress." From the

point of view of mechanics of continua, on the other hand, the formulation (1) is

preferable to any mechanical model, since in any macroscopic study only the total

stress and total strain are observable quantities.

If the molecular and the macroscopic methods of approach to viscoelastic be-

haviour are not to become isolated from one another, it must be possible to change

readily from one method of description to the other. It is the purpose of this paper

to provide simple techniques for these conversions. The paper is divided into four

parts corresponding to the following problems:

1. Given the constants occurring in the stress-strain relation (1), to compute the

constants of the equivalent Voigt model.
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2. Given the constants occurring in the stress-strain relation (1), to compute the

constants of the equivalent Maxwell model.

3. Given the constants of a Voigt model, to compute the constants of the equiva-

lent stress-strain relation.

4. Given the constants of a Maxwell model, to compute the constants of the

equivalent stress-strain relation.

1. Determination of the constants of the Voigt model.

A. Nondegenerate case. In the standard or nondegenerate form of the stress-strain

relation (1), the operator P is of an order one less than that of Q. The relation (1) thus

has the form

d"~ls dn~2s dne

   + pn-2   + • • ■ + poS = 2q„ )-•••+ 2qot. (4)
dtn~l dtn~2 dt"

If both the coefficients go and g„ do not vanish, the corresponding mechanical model

will consist of n Voigt elements, all nondegenerate. If g„ = 0, one element of the model

consists of a spring only, and if go = 0 one element consists of a dashpot only. These

degenerate cases will be considered in the following sections. Cases are also possible

where some other coefficient vanishes. This does not affect the form of the resulting

model or the nature of the mathematical treatment.

A given Voigt element is defined by its consents G and r;. The compliance J is

defined as the reciprocal of G; J— 1 /G. The retardation time r of the element is de-

fined as T — i)IG — Jt\. Our problem is to compute, from the 2n coefficients of the non-

degenerate stress-strain relation the 2n parameters of the mechanical model. The

method given below depends upon the fact that both the model and the stress-strain

relation must give the same prediction as to how the total strain will change with

time when a given stress s(t) is applied. It is sufficient to equate the responses to the

particular stress The general solution of the equation P{tn~l) = 2Qe is

the sum of the general solution of the associated homogeneous equation Qe = 0 and the

particular polynomial solution of the complete equation. In the same way, the re-

sponse of the model to the stress tn~l is the sum of the general response to a zero stress

and a particular polynomial response to the stress tn~l. If the response of the model

is to be identical with that predicted by the stress-strain relation, the constants

of the model must satisfy certain conditions. First, the retardation times r<

(i = 1, 2, •••,«) of the Voigt elements are the negative reciprocals of the roots Xi

of the characteristic equation qnxn-\-qn-\Xn~l-\- ■ ■ ■ + go£+go = 0;

1
Ti    (5)

Xi

Thus, the n retardation times of the model are determined by the general solution

of the homogeneous differential equation.

In order to complete the specification of the model the particular polynomial solu-

tion must now be used. The particular polynomial solution of the equation P(/n_1)

= 2Qe will be of the form

2t(t) = ao + ait + a212 ■ • • 4* an—\tn~(6)

The coefficients a0, ai, ■ ■ ■ , a„_i are determined in the usual manner.
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In order to obtain the model strain e corresponding to the stress s = t"~1, we con-

sider first the behaviour of a single element under this stress. Equation (2) can be

written in the form
JiS = 2«, + 2rj€i.

Setting s = t"~1 and determining the polynomial solution of this differential equation

for e„ we find

r t"~1 t"~2 2 t"~3

2€i — lit — l)l/i Ti — f" Tj"
L (« — 1)! (n — 2)! (« — 3!)

/ - «wW—1 n~1 / „ V 1

— (— 1) Ti t - (— l)"TiJ. (7)

Since the total strain is e =^e<, comparison of (6) and (7) shows that the compliances

Ji must satisfy the linear equations

n

^n—1 = ^ > Jii
t'=l

n

an_2 = (» — 1) X ^»*/
1

» 2 (8)

an_3 = (» — 1)(» — 2) 2

a o = (» — 1)! /,/«<

where the retardation times n have been expressed in terms of the roots Xi of the char-

acteristic equation in accordance with (5).

The Voigt model is completely specified when the compliance and retardation

time of each Voigt element are determined.

B. Degenerate case; q0 = 0. If the coefficient go of the differential operator Q is zero,

one of the roots, Xi say, of the characteristic equation vanishes. This indicates that the

spring constant G of the first element is zero, the element consisting of a dashpot only.

In this case the compliances 7,- can no longer be found from the linear equations (8)

because of the infinite terms \/xu \/x[, • • • . A parameter may be substituted for

the zero coefficient q0, the 2n parameters 771, Gi, 772, Gi, • • • , r)n, Gn, may be determined

in terms of this parameter, and finally the parameter may be allowed to approach

zero and the limiting values of these 2n parameters obtained. However, this involves

a complicated procedure even in simple cases. The following alternative treatment

of this degenerated case seems preferable.

The total extension e of the model consists of the extension €1 of the degenerate

first element and the extension e' of the chain of n— 1 nondegenerate elements;

e = €i + «'. The mechanical behaviour of the degenerate element is given by

— J-2c,, (9)
Vi
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and that of the chain of n— 1 nondegenerate elements, by a relation of the form

P's = 2Q't', (10)

where the differential operators P' and Q' are of the orders n —2 and n — 1, respec-

tively. Applying the operator Q' to both sides of (9), differentiating (10) with respect

to time and adding, we obtain

P's + —Q's= 2 Q'{i' + €,) = 2 Q'i. (11)
V\

With
d"-2 d"~3

P' =  + p'-3 + • • • + pi ,
d(n-2 din-3

Q"-\ Qn-1

Q' = g'-\   + g,',~ 2 — + • • • + go 1
a/"-1 a/--2

(12)

Eq. (11) becomes

Kql-Ad""1 / , 3""2 / , q!\d 1i + —)— + \pi-» + -—)— + ••• + [pi + —)— + — u
V1 / dt" 1 V, 1)1 / dt" 2 \ -r\\ ) dt rji J

r dn a"-1 a n
= 2 gu — + g;_2 + • • • +9o' — U

L a/" a/»-' a/J
(13)

When both sides of (13) are divided by the coefficient of the highest order term on the

left-hand side, this equation must be identical with the stress-strain relation (1) in

which go = 0. Comparison of the lowest order terms leads to the relation

Vi = gi/po",

comparison of the highest order terms leads to

q'-i f pa I-1
1+ —= 1--?J ■

vi L ?i J

Abbreviating this expression by r, we find by further comparison of coefficients in (13)

and (1) that

1 = rqn, g„'_2 = rqn-i, ■ ■ ■ , gd = rqx

( Po \
P n—3 ^ 2 ?n— 1J t

( P° \
pn—i f I Pn—3 gn~2 ) t

\ q 1 /

(14)

po = r - — q2J.

The differential operators (12) are thus determined, and the procedure outlined under

1A permits the determination of the constants of the n — 1 nondegenerate elements.
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C. Degenerate case; q„ = 0. If the coefficient qn of the operator Q is zero, one Voigt

element of the corresponding model consists of a spring only. The compliance of this

isolated spring can be shown to equal l/gB-i. A procedure similar to the one developed

above will permit to determine the constants of the nondegenerate elements.

2. Determination of the constants of the Maxwell model.

A. Nondegenerated case; A nondegenerate model of the Maxwell type corresponds

to stress-strain relation (1) in which qn = 0 and go = 0 (i.e., to a doubly degenerate

Voigt model). When the operators are of this standard form, the model will consist

of m Maxwell elements in parallel. The 2m constants of this model can be computed

from the 2m coefficients of the stress-strain relation by a method which, except for

the interchange of stress and strain, is almost identical with that of Section 1.

For any given imposed strain sequence e(t), the stress must vary in a definite

fashion s(t). The predictions of Eq. (1) and the set of differential equations (3) must

be identical for every case—in particular, for the strain sequence e(/) =/m. The results

are as follows:

The m relaxation times of the m Maxwell elements are the negative reciprocals of

the m roots of the characteristic equation xm+pm-i;em_1 + • • • +piX+po = 0\

r, = - — • (15)
Xi

The specification of the model is completed by determination of the m dashpot con-

stants t]x ■ • ■ r]m. These are obtained by solving the following set of m linear equations.

m

dm—1 = T/it

i-1

m

am-2 = m(m — 1
i-i

m m— 1

a0 = ,

t=i

where the a< are the coefficients of the particular polynomial solution

s(t) = ao + ait + + • • • +

of the differential equation

Ps = 2Qtm.

B. Degenerate case; qn5^0, go = 0. If the order of the operator Q is one greater than

that of P (i.e., if qn9^0), then one Maxwell element of the model consists of a dashpot

only. The constant of this isolated dashpot is found to equal qn. A procedure patterned

on that of Section IB will permit the determination of the constants of the remaining

nondegenerate elements.

C. Degenerate case; qo^Q, qn = 0. If the coefficient q0 does not vanish, then the

model contains one element which consists of a spring only. The constant Gi of this

spring, is found to equal qo/po■ The constants of the remaining nondegenerate ele-

ments can again be determined by a procedure similar to that of Section IB.

(16)
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3. Determination of the operators P and Q from the constants of a Voigt model.

Consider a material whose behavior in shear is reproduced by a model consisting

of n Voigt elements in series. The 2n parameters of this model are known. The equiva-

lent relationship between stress and strain can be determined by either of two

straightforward methods.

1. The method of part 1A can be used in reverse. This immediately gives an opera-

tor which is directly proportional to Q.

*-S(£+£)- (17)

where X is an undetermined multiplier.

The operator P can subsequently be determined by equating the particular poly-

nomial responses to a stress s = t"~1.

2. The mechanical behaviour of the Voigt model is expressed by the following set

of equations:

s = 2Gi«i + 2r)iii,

S = 2G2«2 + 2lJ2«2.

S 2Gnen -}- 2rinin

n

f =

i'=l

The nth equation can be rewritten, as

(18)

= 2Gn (e — «i^ + 2v„ (i — Xj • (19)

If each of these equation is differentiated (« — 1) times, a total of n2 equations will

result. These equations will contain (w2—1) derivatives of the form drei/dtT. All of

these derivatives can be eliminated, leaving a differential relation between s and e,

by multiplying each of the m2 equations by an appropriate factor and adding. The

determination of the factors may, of course, be rather cumbersome.

3. The problem can, however, be simplified by a judicious combination of meth-

ods (1) and (2). We determine first the operator \Q in accordance with (17). We then

formulate the set of re2 equations considered above, n of the necessary »2 factors can

immediately be written down. They are obtained from the coefficients of the opera-

tor (17). The form of the «2 equations is such that the remaining factors can be evalu-

ated one at a time if the above set of n factors is known. The result of this procedure

is the desired operator equation.

4. Determination of the operators P and Q from the constants of a Maxwell

Model. Consider a material whose behaviour in shear can be reproduced by a model

consisting of n Maxwell elements in parallel. The 2n parameters of this model are

known. The equivalent relationship Ps = 2Qe can be determined by methods almost

identical with those of Section 3. Only the simplified third method will be repeated

here.

The operator P is given by the equation
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^ = n(^+-\ (20)
,= 1 \at Ti /

where X is again an undetermined multiplier. The mechanical behaviour of the model

is expressed by the equations

1 1
~~ + ~T— sl
2G\ 2rji

2G„ \ Zi ) 2Vn \ £1 /

(21)

If each of these equations is differentiated (« —1) times, a total of n2 equations are

obtained, involving n2— 1 derivatives of the form drs/dtr. All of these derivatives can

be eliminated, leaving the desired stress-strain relation, by multiplying each equation

by an appropriate factor and adding. The n coefficients of the operator (20) provide n

of these factors. The remaining (n2 — n) factors can then be obtained one at a time.


