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THE KARMAN-TSEEN PRESSURE-VOLUME RELATION IN THE
TWO-DIMENSIONAL SUPERSONIC FLOW OF

COMPRESSIBLE FLUIDS*

BY

N. COBURN

University of Texas

1. Introduction. T. v. Karman and H. S. Tsien1 have treated the two-dimensional

subsonic flow of a perfect, irrotational, compressible fluid by replacing the adiabatic

pressure-volume curve by the tangent line drawn at an arbitrary point of this curve.

First, we shall discuss the applicability of the Karman-Tsien idea in the supersonic

range. Secondly, we shall show that when the Karman-Tsien relation can be used

(fairly uniform completely supersonic flow), the characteristics form a Tschebyscheff

net (fish net).2 However, we shall be concerned with those regions of the physical

plane which can be mapped into a Tschebyscheff net in a unique one-to-one manner.

Hence, we shall not study the onset of shock. Further, we shall show that if the di-

agonal curves of the net of characteristics are drawn so as to correspond to equi-

distant values of the arc length parameter along the characteristics, then these

diagonal curves will be the families of equipotentials and stream lines. Analytically,

this last result means that the determination of the stream lines depends upon two

arbitrary functions of one real variable. It is shown that the angle between the char-

acteristics and the angle formed by a tangent to a stream line and the .r-axis can be

determined in terms of these functions. Further, the magnitude of the velocity and

the density depend upon only the former angle and the Mach number of the flow.

In particular, if a known stream line coincides with the x-axis, it is shown that only

one arbitrary function enters into the problem of determining the stream lines. Even

in this last case where the data are of a simple Dirichlet type (symmetric flow about

the x-axis and a known external boundary stream line—as in the jet problem), the

direct problem cannot be solved easily. Hence, an analytical-geometrical method is

outlined for solving the problem indirectly. A particular example is studied. Finally,

in an appendix, we furnish another proof (analytical) of the fact that when the

Karman-Tsien relation is applicable, the characteristics form a Tschebyscheff net and

conversely.

2. Extension of the Karman-Tsien method to supersonic flow. In this section, we

shall show that the Karman-Tsien method may be extended to the supersonic flow of

a perfect, irrotational, compressible fluid. If we denote the pressure by p, the density

by p, the ratio of the specific heats by y, the adiabatic relation is

pp~y = constant. (2.1)

* Received Oct. 16, 1944.

1 T. von K&rm&n, Compressibility effects in aerodynamics, Journal of Aeron. Sciences 8, 337-356

(1941).
H. S. Tsien, Two-dimensional subsonic flows of compressible fluids, Journal of Aeron. Sciences 6,

399-407 (1939).
2 L. Bianchi, Lezioni di geometria differentiate, vol. 1, Enrico Spoerri, Pisa, 1922, pp. 153-162.
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Replacing the isentropic curve (2.1) by the tangent line drawn at the point (pf1, pi)

in the pressure-volume diagram (or by a hyperbola drawn at the point (pi, pi) in the

pressure-density diagram), Tsien obtains the relation

pi — p = aipi(p — pi ), (2.2)

where a\ is the velocity of sound corresponding to (pi, pi). By use of (2.2), it is easily

shown that the Bernoulli relation becomes (where w is the velocity)

2 2 2 2 —2 —2
w — w 1 = 0ipi(p — pi ). (2.3)

Further, by use of (2.2) and the definition of a2 (that is, a2 = dp/dp), it follows that

2 2 2 2 2
a p — oipi = k , (2.4)

where k is some constant. Hence, (2.3) can be transformed into the following forms:

(2.5, -A (2.6)

where I is some constant.

In the following, we shall assume that the point (pi, pi) corresponds to a super-

sonic state of the fluid. From (2.5), we see that as w increases, p decreases. Further,

from (2.4), we see that as p decreases, a increases. As noted by Tsien, the first result

is in accord with the physical facts; the second result is in contradiction to known

physical facts. However, (2.6) furnishes some useful information. Since the density pi

corresponds to a supersonic state of the fluid, the equation (2.1) is valid for this pi

and the corresponding p\. Hence, by well known results, wx is larger than a\. Thus

from (2.6), we see that w is always larger than a. That is, the fluid is always in a super-

sonic state in this sense of the term. However, by dividing (2.6) by a2 and noting that

as w increases, p decreases, and a increases, we see that as w increases, w/a decreases.

This ratio approaches the limiting value 1 as w tends to infinity. Hence, the behavior

of w/a is contrary to that of a real fluid.

Perhaps the best indication of the permissible values of w which can be used for

a given Wi is obtained by following the procedure of Tsien. If we consider the upper

limit of the useful values of w as occurring for p = 0, we find that the corresponding p

is given by
2

1 pi -f- dipi- = £LT7A- <2-7>
P a2p2

Substituting this value of p into (2.3), we obtain the relation

(iY_ , + +1Y_,1 (2.8)W (m/V) LV / J

Since the values of pi, pi satisfy (2.1), we find

= — • (2-9)_ (^£\ ~
\dpj i pi
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Thus (2.8) becomes

©-'♦sbKM-O- (210)
If 7 is taken as 1.4, a simple computation reveals that as Wi/oi goes from 1 to <», the

ratio w/wi runs from 1.7 to 1. That is, for large values of the ratio wi/ai, the range of

applicability of formula (2.2) is severely restricted as regards the upper limit of w.

Hence, the Karman-Tsien relation should be useful in the supersonic range for a

fairly uniform fluid flow. Further, as we shall show in the next section, the character-

istics in this case form a Tschebyscheff (fish) net. We shall not be concerned with the

onset of shocks.

3. The geometry of the characteristics for the relation (2.2). If u(x, y) and v(x, y)

denote, respectively, the x and y components of the velocity for the steady flow of a

fluid at any point P of the plane region considered and p(x, y) denotes the density of

the fluid at P, then from the equation of continuity it follows that a stream function

\f/(x, y) exists such that
dtp d\p

pu = — j pv =   (3.1)
dy dx

Further, since the motion is irrotational, a velocity potential exists such that

dip d<f>
u = — • v = — • (3.2)

dx dy

For a given pressure-density relation, the Bernoulli relation determines p as a func-

tion of u2+v2. Hence (3.1), (3.2) constitute a non-linear system. Eliminating the par-

tial derivatives of p from the continuity relation by use of the Euler equations,

we find that <j>(x, y) satisfies3

d2<j> d2<j> d2d>
(a2 — u2) 2uv b («2 — »*) = 0. (3.3)

dx2 dxdy dy2

In the supersonic range, the equation (3.3) is hyperbolic. Let us denote the equa-

tions of the two parameter family of characteristics of (3.3) by

x = x(a, 13), y=y{a,P), (3.4)

where a = constant and (3 = constant are the parametric equations of the characteris-

tics. We denote the arc length element of the net formed by the characteristics by

ds2 = A2 {da)2 + B2{d$)2 + Cdadp, (3.5)

where A2, B2, C are the metric coefficients of the net. It follows from (3.3) that the

projections of the velocity vector on the normals to the characteristics have the

magnitude a. This means that the projections of a vector, normal to the velocity

vector and of magnitude equal to that of the velocity vector, on the tangents to the

characteristics have the magnitude a. Also, the projections of the velocity vector on

the tangents to the characteristics have the magnitude v/m2+i'2—a2- Further, from

3 R. von Mises and K. O. Friedrichs, Fluid dynamics, Brown University, Providence, R. I., 1941,

p. 230.
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(3.1), it follows that p-1 times the gradient of ^ is a vector, normal to the velocity

vector and of magnitude equal to that of the velocity vector; and, from (3.2), it fol-

lows that the gradient of cj> is the velocity vector. From the above properties of the

characteristics and those of the gradient, it follows that

dip d\p
— — paA, — = — pa.B, (3.6)
da dp

d(f>   d<t>
— = \/u1 + s2 — a2 A, — = V«! + (3.7)
da d^

We shall prove that the net of characteristics forms a Tschebyscheff net, when the

Kdrmdn-Tsien relation is applicable.

From (2.4), (2.6) and (3.6), (3.7), we find

d\p d\f/ dtb d<b
— = kA, -=-kB, (3.8) — = IA, — = IB. (3.9)
da dp da dP

The integrability conditions for (3.8), (3.9) furnish the result

dA dB
 =  = 0. (3.10)
dp da

Hence A and B are functions of a and |3, respectively. By proper choice of scale fac-

tors, A and B may be assigned the value unity. The new parameters a and ft are then

arc length parameters and the net is a Tschebyscheff net.

Next, we shall derive a result similar to that obtained by von Mises4 in plane

plasticity: when the Kdrmdn-Tsien relation is applicable and the diagonal curves of the

characteristics are drawn so as to correspond to equi-distant values of the arc length pa-

rameter along the characteristics, then these diagonal curies will be the families of equi-

potentials and stream lines.

Since (2.2) is valid, we see from our previous result that a and ft may be chosen

as arc length parameters. Hence, the nets

a + P = 2£ = constant, a — P = 2-q = constant, (3.11)

represent, respectively, the diagonal curves of the net of characteristics, correspond-

ing to equi-intervaled values of the arc length parameters a and /3. Further, from (3.8),

(3.9), we obtain
<b \L

a + P = — j a — /3 = — • (3.12)
I k

Hence, the diagonal curves £ = constant and 77= constant represent, respectively, the

equipotentials and stream lines.

With the aid of our previous results and known properties of Tschebyscheff nets,

we obtain some additional results. The general representation of the stream lines in the

supersonic range for the Kdrmdn-Tsien relation depends upon two real arbitrary func-

tions. If one stream line coincides with the x-axis, these two functions are equal except for

4 R. von Mises, Bemerkung zur Formulierung des mathematischen Problems der PlastizitHtstheorie,

Zeitschr. fiir angew. Math. u. Mech., 5, 147-149 (1925).
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a constant. Further, the velocity and density depend only upon the angle between the char-

acteristics and the Mach number of the flow.

For a Tschebyscheff net, it is well known2 that (3.5) may be written in the form

ds2 = (day + 2 cos codadfi + [d$)\ (3.13)

where w is the angle between the two families of characteristics of the net at any point.

Further, it is known that w may be expressed in terms of two arbitrary functions F(a)

and G(/3) by the relation
a, = F(«) + G(/3). (3.14)

Finally, the general representation of the net is given by

/a n 0
cos F(t)dt+ I cos G(t)dt, (3.15)

/o /• 0sin F(t)dt — I sin G(t)dt. (3.16)

Introducing the parameters along the equipotentials and stream lines from (3.11),

we find that the above equations become

rfj2 = 4 cos2 j (d{)2 + 4 sin2 (dy)2, (3.17)

"=F(i + v)+G(S-y), (3.18)

/{+* /• c-icos F{t)dt+ I cos G(t)dt, (3.19)

/{+* /• f—isin F(t)dt — I sin G(t)dt. (3.20)

Another relation of the form (3.18) can be obtained by introducing the angle

"(£> v) which the tangents to the stream lines (77 = constant) form with the x-axis.

Let the equations of a stream line be

x = x(s), y = y(s), ij = constant, (3.21)

where 5 is the arc length parameter along the stream line. From (3.19), we find by

differentiation
dx r , d£
— = [cos/^f + rj) + cos G(£ — >;)]  (3.22)
ds ds

By use of the well known addition formulas of trigonometry, (3.22) becomes

dx „ pFft + „)+Gtt-i,ri mt.+ v) -G(t-v)-\dS  
— = 2 cos   cos   — • (3.23)
ds L 2 J L 2 J ds

From (3.17), we find that along ??=constant

7s- 7«c[ j J-
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Substituting (3.24) into the right-hand side of (3.23), we obtain

-F(a + v) - G(g -v)-\

2 J'

From (3.25), we find that except for a constant

dx r/
— = cos -
ds L

(3.25)

26 = F({ + i,) - - i?). (3.26)

By use of (3.14), (3.15), (3.16), and (3.26), the magnitude of the velocity w and

the density p may be shown to be expressible solely in terms of u and the Mach

number of the flow. Thus, from (3.2), (3.12)

(da dP\ (da d$\

-'(r.+rJ- -'frrj- (3'27)
Hence, by interchanging the independent and dependent variables, it follows that

I (dy dy\ I (dx dx\
« = v — ( ), (3.28)

D \dp da/ D \da a/3/

where
dx dy dx dy

D =     (3.29)
da 3/3 3/3 da

Computing the partial derivatives by use of (3.15), (3.16) and simplifying by use of

(3.14), (3.26), we obtain

u — 21 sin cos 8/sin co, v = 21 sin |co sin 0/sin to. (3.30)

Hence, for the magnitude w of the velocity, we find

21 sin Jo)
w =  (3.31)

sin o>

From (2.6), we see that P is equal to Making this substitution in (3.31) and

dividing the resulting equation by Wj, we obtain

w 2\/l — (ai/u>i)2 sin Jco
* (3.32)

Wi sin oj

In Fig. 1, these curves are plotted for the following values of the Mach number,

wi/a] = 1.5, 2.0, 2.5, 3.0, 4.0. Note, by the discussion following equation (2.10), as

Wi/ai varies from 1 to », the permissible values of the upper bound of w/w\ varies

from 1.7 to 1. In each case, the upper bounds are to be determined by use of (2.10).

The dotted lines in Fig. 1 denote these upper bounds. Other useful results may be

obtained by combining (3.31) with (2.6) and (2.3). Thus, dividing the equation

w2—a2 = l2 by w2 and inserting the value of w as determined from (3.31) into the

right-hand member of the resulting equation, we find after a few trigonometric sub-

stitutions
w 1
—    (3.33)
a sin Jco
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This equation is of value in determining the lower limit of the ratio w/a, namely,

a/2, for to =7t/2. Again, inserting the value of w as determined from (3.31) into the

left-hand side of (2.3), dividing the resulting equation by oj, and replacing the term

P/a\ by w?/o? — 1 (see 2.6), we obtain

p sin to
(3.34)

Pi 2 sin2 §co\/(wi/ai)2 — 1

These curves are plotted in Fig. 2 for the values of the Macn number as indicated

above.

1.35

1.25

1.15

w
W,

1.05

.95

.85

Fig. 1.

An important case in practice5 (the jet problem) is that for which one stream line

is a straight line. In this case, if we assume that the stream line coincides with the

*-axis and is r; = 0, (3.26) furnishes the result

F(£)=G(£). (3.35)

Under properly given Dirichlet data, the function F(£) can be determined and the

representation of all stream lines can be obtained from (3.19), (3.20). Thus, if 0(£, c)

is known along some known stream line rj =c, then the equations (3.26) and (3.35)

furnish the result
m, c) = F(t + c) — F(S - c). (3.36)

The equation (3.36) can be solved for /<"(£) by use of the theory of difference equations.

' J. Ackeret, Gasdynamik, Handbuch der Physik, vol. 7. pp. 318-322.
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Unfortunately, 0(£, c) is unknown; 9(s), where 5 is the arc length parameter, is known.

Hence, one must solve problems by an indirect method. That is, one must introduce

a function F(£) and then determine the corresponding stream lines.

In calculating the stream lines for particular functions F(£), the following analyti-

cal-geometrical scheme appears to be the most satisfactory. First, obtain two curves

90°

Fig. 2.

of the generating Tschebyscheff net (one of each family) by use of equations (3.15),

(3.16). That is, determine the curves

/a a
cos F(t)dt, y\ — I sin F(t)dt, (3.37)

/£ /» 0cos F(t)dt, yi — — I sin F(t)dt. (3.38)

To obtain the initial point of each curve in the x, y plane, we compute one set of

values of (x, y) by use of (3.15), (3.16), for some set of values of (a, /3) such as a = 0,

/3 = 0. By translating the curves along each otherv the complete Tschebyscheff net

may be obtained. However, the translation must furnish curves of the families which

correspond to equi-distant values of a and /3 in order that the diagonal curves be

stream lines. In view of (3.15), (3.16), this means that the abscissas of the initial

points of two corresponding curves must be equal.
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Finally, as an example of this method, let us consider the case F(t) =arc cos t. From

(3.37), (3.38), it follows that

1
Xi = —> yi = —\/\ — a2 + — arc sin a, (3.39)

X2 = — > 3>2 = — \/l — /32 — arc sin /3. (3.40)

Fig. 3.

The Tschebyscheff net and the resulting stream lines, obtained by the procedure

outlined in the preceding paragraph, are illustrated in Fig. 3. By use of a protractor

and the graphs of Figs. 1 and 2, the values of w/wi and p/pi can be immediately de-

termined at each point of the plane.

In concluding, it should be pointed out that it would be highly desirable to obtain

a mechanical method for constructing the Tschebyscheff net when two stream lines

are known. This would furnish a direct solution to the problem of the uniform flow

of a supersonic jet. It appears that a more thorough understanding of the relation

between Tschebyscheff nets and their diagonal curves is needed.
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APPENDIX

First, we shall give an analytic derivation of relations (3.6), (3.7). Since the pro-

jections of the velocity vector on the normal to the characteristics have the magni-

tude a, it follows that
dy dx

aA = u v — > (A. 1)
da da

dy dx
— aB — u v — ■ (A. 2)

3/3 dp

Further, by projecting the velocity vector on the tangents to the characteristics, we

obtain
  dx dy

\/u2 — v2 — a2 A = u 1- t — > (A. 3)
da da

dx dy
\/u2 + v2 — a2 B — u (- v — • (A. 4)

3/3 3/3

Solving relations (A.l), (A.2) and (A.3), (A.4) for u, v, we find

a / dx dx\ \/m2 + »2 — a2/ dy dy\
u = 1 B [- A — J = — (A—-B — ), (A.5)

D \ da 3/3/ D \ 3/3 da)

a / dy dy\ \/u2 + v2 — a2 / dx dx\

D \ da dp J D \ da 3/3/

where D is the Jacobian of the transformation (3.4). By interchanging dependent

and independent variables, (A.5), (A.6) become

/ da dfi\  / da 3/3\
u = alA B—) = v/w2 + v2 - a2[A — + B —), (A.7)

\ dy dy) \ dx dx)

/ da 3/3\  / da 3/3\
v= — al A B—) = a/«2 + f2 - a2[A — + B-). (A. 8)

\ dx dx) \ dy dy)

From (A.7), (A.8) and (3.2), we find (3.6), (3.7).
Next, we shall show that the Kdrmdn-Tsien relation (2.2) is valid, if the net of char-

acteristics form a Tschebyscheff net.

Since the net of characteristics is a Tschebyscheff net, we may consider the metric

coefficients A and B as having the value unity. Hence, from (3.6), (3.7) and the chain

rule for differentiation, we obtain

di d{a — 0) di d(a — fi)
— = pa  1 — = pa  > (A. 9)
dx dx dy dy

dcf)   d(a + /3) d<j>   d(a + /3)
— = 's/u2 + v2 — a2 > — = y/u2 + v2 — a2 • (A. 10)
dx dx dy dy
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With the aid of (3.1), (3.2), we may write the integrability conditions of (A.9),

(A. 10) in the form

d
pa = 0, (A. 11) — y/u* + v* - a* =- 0, (A. 12)

ds dn

where d/ds represents differentiation along a stream line and d/dn represents differ-

ential along an equipotential. If we assume that a relation exists between p and p,

then by use of the definition of a2 (defined as dp/dp), we find from (11)

d2p dp
P—+ 2 —= 0. (A. 13)

dp2 dp

Further, from the generalized Bernoulli relation

dP 1 dp
u2 + v2 + 2 P(p) = constant,  = — > (A. 14)

dp p dp

we find that (A.12) reduces to (A.13). Integrating (A.13), we obtain (2.2).
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