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— NOTES-

THE PRESSURE DISTRIBUTION ON A BODY IN SHEAR FLOW*

By M. RICHARDSON (Brooklyn Collegel)

Problems involving shear flow have been studied recently by Tsien2 and Kuo.3

The purpose of the present note is to point out that the pressure distribution on an

infinite cylindrical body immersed in a two-dimensional shear flow can be obtained

by means of integral equations, at least for a sufficiently smooth contour. A direct

attack on the boundary value problem for the stream function is avoided. The method

used is essentially that employed by Prager4 in the case of potential flow.

If the undisturbed shear flow is given by the velocity field

vx = U{ 1 + ky), vy = 0, (1)

where U and k are constants, then it has constant vorticity equal to —kU. The con-

tinuity equation implies the existence of a stream function \//(x, y) which satisfies the

Poisson equation
VV = kU

with the boundary conditions

d\I/ d\p
— = - vy = 0, — = vx = U(l + ky)
dx dy

at oo, and \f/ = c, a constant, on the contour C of the cross section of the cylindrical

body immersed in the usual position in the flow. Let us set ^=^0+^1, where

to = [/(y + yy2)

is the undisturbed stream function and is the disturbance stream function. Then

VVo = kU, and i/'i is harmonic in the region E exterior to C, with the boundary con-

dition
tu = c — to.,

on C, where the parameter s may be the arc length on C measured from any con-

venient starting point.

* Received July 6, 1944.
1 This note was prepared while the author was a fellow in the Program of Advanced Instruction and

Research in Mechanics at Brown University (Summer 1943). The author is indebted to Prof. W. Prager

for suggesting the topic and for valuable advice.

* H. S. Tsien, Symmetrical Joukowsky airfoils in shear flow, Quarterly of Applied Mathematics,

1, 130-148 (1943).
* Y. H. Kuo, On the force and moment acting ona body in shear flow, Quarterly of Applied Mathematics,

1, 273-275 (1943).
4 W. Prager, Die Druckverteilung an Korpern in ebener Potentialstromung, Physikalische Zeitschrift,

29, 865-869 (1928).
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By a well-known theorem of potential theory, we have

1 r / d 1 dfi 1 \
i\{P) ~ lM°°) = — I (fi—log —log —Ids (2)

2irJ c \ on r on r /

where « is the exterior normal, P is a point in E, and r is the distance between P

and a variable point whose range will be clear from the context. We now apply

Green's theorem

ff^M - ,V>»)JA " "
where n' is the interior normal and I is the region interior to C, to the functions

u = —ipo and u = log (1/r), obtaining

C C 1 C 3 l r l
kU I I log—dA = I \f/o log—ds — I  log—ds.

J J i r J c dn' r J c dn' r

Using the fact that d/dn' = —d/dn and combining this with (2), we obtain

1 r d l l r d+ l kU c C 1
^l(-P) - M00) = — I ^ — log — ds - — I — log — ds + —- | I log dA, (3)

It J c on r 2t J c on r 2ic J J i r

The first integral in (3) vanishes because ^=con C, and because

C d 1
I — log — ds

J c dn r

is the angle subtended by C at P, which is zero since P is outside C. In the second

integral of (3) we may write —d\p/dn = v(s) where v(s) is the (tangential) velocity

along C. Hence we have

Let us introduce

l r l kU r c i
iM-P) - lM°°) = — I V(s) log — ds + — I I log— dA.

2tJc r 2t J J i r

V = f v(s) log — ds.
J c r

(4)

c

Then there exist interior and exterior limits dVi/dn and dVJbn such that

1 /dVi 3 FA 1 /dVi 3 FA f d 1
™w' 7 W + W ■ J/(,) Slog 7

3F„ r d 1
 = — hd(j) + I v(t) — log — dt.
dn J c dn r

so that

(5)

From (4) and (5), we find that the normal derivative of \pi at the exterior edge of C

is given by

1 „ 1 C 1 kU d r r 1
__ = - — v(s) + — I v(t) —- log — dt + — — I I log— dA,
on8 2 2itJc on, r 2t dn, J J j r

(6)
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where the subscript 5 indicates the point of C at which the quantity is to be evaluated.

But
^ dip d\ft 0 d\f/le

dn, dn, dn,

d^o 1

= -f+T'Wdn, 2

if d 1 kU d r r 1
- r- I — log — dt - — — I I log —

2ir J c on, r 2ir dw, J J1 r

Therefore, the velocity distribution along C, v{s), satisfies the integral equation

(7)
If d 1 dto kU d r f 1

v(s)  I r(/) — log-dt=- 2- — I I log — dA,
■k J c °n, r dn, ir dn, J J / r

or, since the last integral may be differentiated under the integral sign,

1 f cos (r,t, n,) dil/o kU f f cos (r, «,)
v(s) + - v(t) ——-dt = - 2^-  (8)

7T J c r,t dn, 7r J J1 r

where s and t are points of C, (r,(, n.) is the angle between the direction st and the

exterior normal at s, r is the distance from s to a variable point p of dA, and (r, n,) is

the angle between the direction sp and the exterior normal at s. This result reduces

to Prager's equation (6a), loc. cit.,s for the special case of uniform flow, that is, when

k=0.
The integral equation (7) or (8) for the velocity distribution on the contour C

may be solved in general by approximative methods. Knowledge of the velocity dis-

tribution on C is equivalent to knowledge of the pressure distribution on C.

Example. Suppose C.is a circle of radius a with center at 0. In this case, the in-

tegral equation can be solved explicitly. We have, cos (r,(, n,)/r,t= — \/2a. It is not

difficult to show that
d r r 1

— I I l°g — dA = — ira.
dnJ J1 r

Finally, d\j/a/dn, = Usin 0+ Uka sin2 6 at the point with polar coordinates (a, 6). Hence

(7) or (8) becomes
r

v(s) = 2U sin 6 — 2Uka sin2 0 + Uka, (9)
2 air

where T = fcv(t)dt is the circulation.

For the same example, Tsien (loc. cit., equation 18) finds the stream function

}J/ = U |^r sin 6 + — ̂ r2 sin2 9 + cos 26^jJ.

Hence,
d\//

v(s) = = — 2U sin 6 — 2Uka sin2 6 + \Uka. (10)
dr

To reconcile this result with (9), we must observe that we can write T = To+Ti, where

r0 and Ti are the circulations arising from the undisturbed flow and the disturbance

8 The difference in sign is due to the fact that our (r,t, n.) is the angle supplementary to that so de-

noted by Prager.
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flow, respectively. Hence To = fcvotdt where v0 is the undisturbed velocity field given

by (1) and the subscript t indicates the tangential component. By Stokes' theorem,

r0=//,(curl Vo);dA = — UkA where A is the area of /. Hence in our example,

r0= - Ukird1. If we substitute this for T in (9), assuming, as Tsien does,6 that ri = 0,

then our result (9) reduces to (10).

' The author is indebted to Dr. Tsien for pointing this out. He had at first mistakenly supposed that

Tsien's result was based on the assumption F = 0.

ON PLASTIC BODIES WITH ROTATIONAL SYMMETRY*

By C. H. W. SEDGEWICK (University of Connecticut)

Introduction. The rotational symmetry problem in plasticity was discussed by

H. Hencky1 in 1923. In the present paper some new results are obtained. Furthermore,

the presentation is different from that used by Hencky.

In the following discussion, r and z in the cylindrical coordinate system (r, 9, z)

will be replaced by a(r, z) and /?(r, z) in such a way that a, (3, 6 form a curvilinear,

orthogonal system. The line element ds will be written in the form

ds2 = A2da* + BHp + rW,

where A and B are functions of a and /3. Furthermore, if the angle between the curve

/3 = const, and the direction of increasing r is denoted by y, we will have

dr dr
— = A cos y, — = — B sin y, (1)
da dp

dz dz
— = A sin y, — = B cos y. (2)
da dp

From these, we get

dA dy dB dy
  = - B — , (3)  = A — ■ (4)
dp da da dp

The stress components will be designated by <raa, crw, aee, <rap, aa9l a0e. In the prob-

lem under discussion, <rao=<rpo = 0.

1. Lines of principal stress. Along the lines of principal stress, craS = 0. In this case

the equations of equilibrium2 reduce to

* Received December 5, 1944. This paper was written during the summer of 1944 while the author

was a student in the Program of Advanced Instruction and Research in Mechanics at Brown University.

The author wishes to express his appreciation to Dr. W. Prager for suggesting the problem and for valu-

able criticisms.

1 H. Hencky, Uber einige statisch bestimmte Fdlle des Gleichgewichls in plastischen Korpern, Zeitschr.

fiirangew. Math. u. Mech. 3, 241 (1923).

2 A. E. H. Love, The mathematical theory of elasticity, 4th edition, Cambridge University Press, 1934,

p. 90.


