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THE PROBLEM OF SAINT VENANT FOR A
CYLINDER WITH FREE SIDES*

J. L. SYNGE
The Ohio Stale University

1. Introduction. Consider a cylinder composed of homogeneous isotropic elastic

material (Fig. 1). The cross section is arbitrary; it may be simply or multiply con-

nected. Body force (such as gravity) is assumed to be absent, and the sides are free.

To the ends we apply any loadings

which satisfy the conditions of X

statical equilibrium. As a result

the cylinder undergoes a small de-

formation. We ask: what is the

stress and what is the displace-

ment throughout the cylinder?

Here we have a well-formu-

lated problem in the theory of

elasticity, and one of the most im-

portant from a practical stand-

point. It may be called the problem

of Saint Venant. It includes as spe-

cial cases the problems of tension,

bending by couples, torsion and

flexure.

•xo

Fig. 1.

Saint Venant1 ingeniously side-stepped the major difficulty of the problem by

substituting a simplified problem. Of the six components of stress (the unknowns of

the original problem) he set three equal to zero, and relaxed the boundary conditions

on the ends of the cylinder. In his solution the terminal loadings are not arbitrarily

distributed; only the total load can be arbitrarily assigned. In his solution of the ten-

sion problem, for example, the load must be uniformly distributed over the cross

section.

In tension or bending by couples, Saint Venant's solution is mathematically

trivial. For torsion or flexure, the mathematical high spot is a problem of Dirichlet

or Neumann (determination of a function harmonic in the cross section, the values

of the function, or of its normal derivative, being assigned on the boundary). Mathe-

maticians have busied themselves through the years with general and particular

methods of solution. The torsion-flexure problem has been regarded as one of the

central problems in the theory of elasticity.

Mathematicians should, however, be reminded that when they speak of the "tor-

sion-flexure problem," they have in mind Saint Venant's type of solution, in which

the terminal loads are not arbitrarily distributed. Relatively little attention has been

* Received May 13, 1944.

1 B. de Saint Venant, Journal de Math., X, 89-189 (1856).
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paid to more general types of solution. It is good, I think, to draw attention to the

work that has been done, and to indicate possible methods of attack.

Section 2 gives the general mathematical statement of the problem of Saint

Venant, and of the relaxed problems associated with it. Section 3 contains an old

friend in new clothes—the Saint Venant solution in tensor notation. I believe that

is worth while to give such a presentation, avoiding as far as possible the customary

special choices of axes and particular integrals, in order to reveal the true mathe-

matical structure of the solution. In Section 4 we pass beyond the Saint Venant solu-

tion, and set up the basic eigen-value problem associated with the exponential type

of solution. In Section 5 we link this formulation with the solution given by Dougall

for a cylinder of circular section. Section 6 contains some questions.

2. The problem of Saint Venant and the relaxed problems. Latin suffixes will have

the range 0, 1, 2, and Greek suffixes the range 1,2, with the usual summation conven-

tion for repeated suffixes. Let x< be rectangular Cartesian coordinates, with the axis

of xo in the direction of the generators of the cylinder. The position of the origin and

the directions of the axes of X\ and xi remain arbitrary. Let m, be the displacement and

Eij (=Eji) the reduced stress, i.e., the stress divided by Young's modulus. We have

the basic stress-strain relations

K"#.' + M •',)') = (1 + — adijEick, (2.1)

or equivalently

2(1 + <r)(l — 2 c)Eij = 2c5< jtik.k + (1 — 2 <r) (2.2)

Here a is Poisson's ratio (a constant which may, in theory, take any value in the range

— 1 <<r<§), and the comma denotes partial differentiation (J,i = df/dxi)\ 5<,• is the

Kronecker delta.

In any problem in elasticity, we have a choice between two methods: we can work

with the displacement Ui or with the stress Eij. When the boundary conditions are

given in terms of stress (as they are in the problem of Saint Venant), the relative ad-

vantages may be set down as follows:

Displacement method: Simple p.d.e. and complicated b.c.

Stress method: Complicated p.d.e. and simple b.c.

Here, and throughout, "p.d.e." means "partial differential equations," and "b.c."

means "boundary conditions."

The two rival formulations of the problem of Saint Venant are set out below in

(2.3) and (2.4). In each case, (a) contains the p.d.e., (b) contains the b.c. on the free

sides («„ are the direction cosines of the normal), and (c) contains the b.c. on the

ends. Tn, Ta are the components of the assigned stress. The symbol A3 is the 3-dimen-

sional Laplacian differential operator (A3 = d2/dx,dxj).

Saint Venant problem in terms of displacement:

(1 — 2a)AsUi + Uj,a = 0; (2.3a)

(u$,o -f- mo,js)W|3 = 0, 2<jUk.kna (1 — 2<r)(up,a -t" ua,p)n@ = 0; (2.3b)

oUk.k (1 — 2<t)mo,o = (1 4" c)(l — 2<r)To, Uo,a *i~ wa,o= 2(1 -(- cr)Ta. (2.3c)
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Saint Venant problem in terms of stress:

Eij.i = 0, (1 + a)A}Eij + Ekk.a = 0, (2.4a)

.Eo/swp = 0, E«pnp = 0, (2.4b)

Eoo — To, Eoa = T a. (2.4c)

We note that in (2.3) there are 3 unknowns, 3 p.d.e., and 3 b.c. In (2.4) there are 6 un-

knowns, 9 p.d.e., and 3 b.c.; but between the 9 p.d.e. there exist 3 differential identi-

ties.

Let us cross out the (c) equations in (2.3) and (2.4), that is, drop the conditions

on the ends of the cylinder. We have then alternative statements of what may be

called the relaxed problem of Saint Venant. The unknowns are of course underdeter-

mined in the relaxed problem, but the system is now linear and homogeneous, so that

solutions may be superimposed. We may hope that, by superimposing solutions of the

relaxed problem, we may succeed in satisfying the b.c. (c), either accurately or ap-

proximately.

In spite of the underdetermination, the relaxed problem is too complicated to yield

to mere guessing, except for one very simple solution: Zs9»=const., £0«=0, Eap = 0.

Indeed, it is usually more difficult to deal with an indeterminate problem than with a

determinate one, and so we impose auxiliary conditions to replace the b.c. (c).

The best-known auxiliary condition is the so-called hypothesis of Saint Venant:

Eal3 = 0. (2.5)

This leads to the Saint Venant solution, which will be discussed in Sect. 3. Another

auxiliary condition, which we may call the exponential condition, is

En = ekx'Fij{xi, x2), (k ^ 0). (2.6)

This is suggested by the fact that if £,■,=/,•,• satisfy the relaxed problem, then so also

do Eij=fa,o■ The problem of determining solutions subject to (2.6) will be discussed

in Sect. 4.

Dougall2 has used the expression permanent free modes for solutions of the relaxed

problem with (2.5) imposed, and transitory free modes for solutions of the relaxed prob-

lem with (2.6) imposed. (This terminology is suggested by the theory of vibrations,

but of course our problem is statical.) According to Dougall, these two types of solu-

tions are fundamental, in the sense that any solution of the relaxed problem is a

linear combination of them.

3. Saint Venant's solution. Any treatise on elasticity contains a treatment of

Saint Venant's solution of the relaxed problem, usually broken up into the problems

of tension, bending, torsion, and flexure3 4 for pedagogic reasons. Clebsch5 appears to

have been the first to see that Saint Venant's solution follows logically from (2.5).

Marcolongo6 has given an elegant general treatment, using displacement as funda-

mental. In the following treatment, stress is used and the axes Oxixi remain completely

general.

2 J. Dougall, Trans. Roy. Soc. Edinburgh, 49, 89S-978 (1913). See also Proc. Fifth International

Congress of Mathematicians, 2 (Cambridge 1913), 328-340.

3 A. E. H. Love, Mathematical theory of elasticity (Cambridge, 1934), pp. 329-334.

4 I. S. Sokolnikoff, Elasticity, Brown University, 1941, pp. 193-202.
6 A. Clebsch, Theorie der Elasticitat fester Kiirper, Leipzig, 1862.

6 R. Marcolongo, Teoria matematica dello equilibrio dei corpi elastici, Milano, 1904, pp. 296-310.
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We substitute the auxiliary conditions (2.5) in (2.4a, b), and obtain

■Eoo.o + Eop.p = 0, (1 + (t)A3.Eoo + £00,00 — 0,

Ea0,0 =0, (1 -f- <r)A3£o0 + £00,ao = 0, • (3.1a)

■Eoo.afl = 0;
Eoptip = 0. (3. Ib)

It follows at once that Ea0 are independent of *0. and that

£oo = — %o(ApXp + A) -f- Bpxp -\- B, (3.2)

where Aff, A, Bp, B are six constants, at present arbitrary. The remaining equations

in (3.1a) are equivalent to

AEao = (1 + o-)_1^4a, Ep o,3 = Apxp + A, (3.3)

where A is the plane Laplacian (A = d2/dxpdxp). These three equations are to be solved

for the two unknowns Ea0, with the b.c. (3.1b). The problem is a plane problem, the

domain being the section of the cylinder.

Given the vector Ea0, there exist invariants <f>, 4such that

EaO = <t>,a — (<11 = <22 = 0, <12 = — <21 = 1). (3.4)

Substitution in (3.3) leads at once to

A<t> = Apxp + A, (1 + a)A\f/ = crepyApXy + C, (3.5a)

where C is another arbitrary constant. (Note that ea»tay = Spy.) The b.c. is

<t>.»np — </37M3\!',t = 0 or d<f>/dn — d\///ds = 0, (3.5b)

where dn is a element of the normal na, drawn out of the material and to the right of

the element ds of the bounding curve

(Fig. 2). On integrating (3.5b) around

the bounding curve, and using (3.5a),

we find that

A = — Apxp, (3.6)

where xp are the coordinates of the

centroid of the section. Thus there

are only six arbitrary constants, Ap,

Bp, B, C.
Remembering the Riemann-Cau-

chy relations, we note that <f>, ̂ are

indeterminate to the extent of adding

to an arbitrary analytic func-

tion of *i+ix2.

Let ^(l> be any single-valued

Fig. 2. particular solutions of (3.5a). Let us

define 4>, ̂  by

$ = $ - 0(», * = i), (3,7)

so that $>, ¥ are harmonic. Let U be the harmonic conjugate of so that
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fi.a = ««•/£.7 = fayt.y ~ • 8)

P = 4> - a, (3.9)
If P is defined by

then (3.4) reads

and the b.c. (3.5b) reads
EaQ = P.a + - eay*y, (3.10)

dP/dn = - d<t>^/dn + di^/ds. (3.11)

Thus the relaxed problem of Saint Venant reduces to a problem of Neumann—to

find a harmonic function P under the b.c. (3.11). The solution must be single-valued

in order that the displacement may be single-valued.

This presentation of the problem has a fictitious simplicity; the constants Ap, C

are wrapped up in the Neumann problem. We may split up the problem into problems

involving only the geometry of the section and Poisson's ratio. To do this, we write

(3.12)
P = ApPp + (1 +

= A^\ *«> = A^ + (1 + <r)-'Cx(,).

Here <f>p\ ipp\ x(1) are single-valued particular solutions of

A<^1] = xp — Xp, (1 + a) A^u = atpyXy, Ax0) = 1, (3.13)

and Pp, Q are single-valued harmonic functions satisfying the b.c.

dPp/dn = - d+P/dn + d+P/ds, dQ/dn = dxw/ds. (3.14)

The determination of the vector Pp constitutes the flexure problem, and the determi-

nation of Q the torsion problem.

Since A(r2;ta) =&x:a, A(rJ)=4, where r2=xpxp, particular solutions of (3.13) are

given by

= r*xp/8 - r%/4,' (3.15)

(1 + a)\p{pl> = or2eeyXy/8, x(1) = r*/ 4.

The determination of the displacement in terms of (3.2) and (3.10) in this general

notation is interesting, because it reveals why the components u„ are independent of

the solution of the Neumann problem (3.11). Using (2.5) in (2.1), we have

MO.O = Eqo, Ua,0 + M0,« = 2(1 + c)E„ o,

(3.16)
Up,a + Ua,p = — 2<T&apEoo.

By (3.2), the first two equations give at once

ut = — %xl(ApXp + A) -J- xo (Bpxp + B) + /»,
(3.17)

Ua — A a ~ %xlBa — Xofo.a + 2(1 + <r)xoEaO + fa,

where /», /„ are unknown functions of Xi, x2. When we substitute this expression for u.

in the last of (3.16), we get

/o,a/9 = (1 + <r)(Eao,p + Epo.a) — <r8ap(AyXy + A), (3.18)

ffi.a + fa,13 = — 2<rSap(ByXy + B). (3.19)
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Now, by (3.10),

EaO.fi — Ego.a = — tay^yfi + (fiy^yc = ~ fafiA\f/W, (3.20)

and so, since \pw satisfies (3.5a),

(1 + a)(E„o,fi — Ego,a) = — eafi(orelt,AllXy + C). (3.21)

We now use this equation to sbustitute for Ego,a in (3.18). When we do so, the linear

expression on the right must be a partial derivative with respect to xg. Now if Fag...,,

is a single-valued homogeneous function of degree n in x\, x-i, it follows from Euler's

theorem that

/

1
Fad-• -li.rdXy ~  F afi ■ ■ -it ,y%" ~f" K ag . . (3.22)

n

where K is a constant. Hence we deduce from (3.18)

fo.a = 2(1 ~|~ ff)EaO "I" tafiXg^zGtiivA/iXy -f~ C) <7X0(2-*^yXy "f" A*) Hai (3.23)

where ha is constant. Now substitute for Ea0 from (3.10) and integrate; this gives

fo = 2(1 + <r)P + 2(1 + er)0(1) + f[— 2(1 + o)tay^ + eagXgi^e^yA^Xy + C)J (3.24)

CTXadAyXy + A)\dxa + haXa ~ >'■

where h is constant. By virtue of the p.d.e. (3.5a) satisfied by this integral has

the same value for reconcilable paths. But we have no guarantee that it has the same

value for irreconcilable paths in the case of a multiply connected section. To secure

a single valued displacement, we should choose for i^(1) a function which satisfies the

p.d.e. (3.5a) throughout the whole interior of the outer boundary. We may, for ex-

ample, use the expression given in (3.12), (3.15).

The equations (3.19) determine fa to within a plane rigid body displacement,

and so

fa = <r(%Bar2 — XaByXy — Bxa) + ktayXy + ka, (3.25)

where ka, k are constants.

To find the displacement, we substitute for/o from (3.24) in the first of (3.17),

and so obtain u0. It involves the solution of the Neumann problem, since P appears

in (3.24). To find ua, we substitute in the second of (3.17). There are two substitutions,

one for/o,a —2(l+o-)£ao from (3.23), and the other for/„ from (3.25). We see that P

does not occur, and thus we verify the well known fact that the lateral displacement

is independent of the solution of the Neumann problem.

4. The exponential type of solution. Let us now investigate the solution of the

relaxed problem with the auxiliary condition (2.6). Since stress determines displace-

ment to within a rigid body displacement (which we shall omit), we may write for the

corresponding displacement

Ui = elz°Vt{x\, Xz). (4.1)

Once more we have a choice between two methods—displacement and stress—

and we shall choose displacement.

When we substitute from (4.1) in (2.3a, b), the equations reduce to
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(A + V)V = 0, (A + V)va = - V.a, (4.2a)

2 aVtla + (Vg,a + Va,g)ttg = 0, (1 — 2o)V + khpflp — V0,p-,ny = 0. (4.2b)

Here V is an auxiliary variable, given by

(1 - 2a)V = kv0 + (4-3)

it is the dilatation, to within a factor.

Inspection of (4.2) shows that we have before us an eigen-value problem of con-

siderable complexity. The system will (presumably) be consistent only for certain

values of k. There is no objection to complex eigen-values, with complex solutions

for V, va, and the corresponding stress. Denoting complex conjugates by bars, we

should take in such cases for the real displacement and stress

Ue^'Vi + \(ekx°Fij+e~kx>Fi,). (4.4)

If k is an eigen-value of (4.2), so also are —k and ± k. In fact, the eigen-values occur

in sets of two if they are real or purely imaginary, and in sets of four if complex.

By a simple and ingenious argument, Dougall® has shown that the system (4.2)

has no purely imaginary eigen-values. A purely imaginary k implies a periodic dis-

tribution of displacement and stress. Consider the energy in a length of cylinder equal

to this period. It is equal to the work done by the terminal stress in passing from the

natural state to the strained state. But, from the periodicity, this is zero. Hence, the

energy of a strained state is zero, which is contrary to a basic postulate of elasticity.

Hence there can be no purely imaginary eigen-value k. It should be added that we can-

not assert this if a is arbitrary. It is necessarily true only if strain-energy is positive-

definite, i.e., if —1

In many problems in applied mathematics, harmonic functions play a funda-

mental role. In our problem (4.2) that role is taken over by plane wave functions,

where by a wave function f(xi, *2) we mean a solution of (A+£*)/ = (). We note that V

is a wave function, but »« is not.

We can, however, easily reduce the unknowns to wave functions by writing

va = w„ + w*a, (4.5)

where w*a is any particular solution of

(A + k*)w* = — V.m. (4.6)

Let us not tie ourselves down to any definite particular solution. Two, however, seem

to be particularly interesting:

w*a=-U.V, (4.7)

«£ = - W,„, (A + k*)W = V. (4.8)

Our problem (4.2) may now be stated as follows:

(A + k2)V = 0, (A + k2)wa = 0, (4.9a)

2<jVna + (Wfa + W*„)»!3 + (Wf,,a + Wattle = 0,

(1 — 2o-)F,g«0 + Ww^nn — Wp4j7«7 + k2-w^ — w^jyny = 0.

In simplifying the p.d.e., we have complicated the b.c.

(4.9b)
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In dealing with Saint Venant's solution, we found it advisable to pass in (3.4)

from a vector to two invariants. The same procedure will be pursued here. We shall

make use of the following fact -.Given a vector wave function wa, there exist wave functions

<t>, such that
Wa - <t>,a — tay^.y, (4. 10)

and <j>, \f/ are unique.

To prove this, we have merely to put

<t> = — k~2Wfi,l5, ^ = k-\yW^,,. (4.11)

It is easy to verify that these satisfy (4.10), by virtue of the wave character of wa. As

for uniqueness, we can add to <j), \p only functions <£(1), ̂ (1) such that is

an analytic function of X\-\-ixi. Thus <£(1), \pa) are simultaneously wave functions and

harmonic functions; therefore they vanish.

Let us now transform the b.c. (4.9b). Let C (Fig. 2) be the boundary curve of the

cross section. Let ta=dxa/ds. Then

na tafltfi! ta £/3aW/J,

J I J J I J *
dyia/d'S ~~ k/jj, dta/(Ls —— Kftay

where k is the curvature of C, positive if C bends away from na.

We may replace the first of (4.9b) by two invariant equations, obtained by multi-

plying by m0. ta, respectively. Thus

aV + w*afinanf> + wtt,pnanp = 0,

(Wfta + w*aji)t«nfs + (wp,a + wa,0)tann = 0.

From (4.10) we have

(wp,„ + wa,(i)nanff = 2<t>,a0nan0 — 2\p ,a$tan$,

(wp,a + wa,p)tanp = 2<t>,aptanp + ,apt at$.

The following identities are easily verified:

(4.13)

(4.14)

- /d<t>\
d2<t>/dn2 = —I — J = 4>,afitan0 +

"t\dn)

d

ds\dnj ' ' (4.15)

A<£ = <t>,apnanp + <t>,aetjff, d2<f>/ds2 = <t>,aptatp — k <t>,ana.

Hence

w.
/a2 a\ /d a d\

' - W + ** + "Tn)* ~ W £ " " to)*'
/a a d\ /a2 a\

(wp,a + wa,e)tanfi = 21—- k —I <£ — 2 ( —- + \k2 + k— W.
\ds an as/ \as2 an/

(4.16)

Thus our eigen-value problem may be stated in the following final general form:

Given a domain in the (xi, x2) plane, bounded by a curve C, we seek eigen-values k and

eigen-functions V, </>, \p to satisfy the p.d.e.

(A+£2)F = 0, (A + k2)<t> — 0, (A+W = 0, (4.17a)

and the b.c. on C
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* /a2 a\ (d a a\'r + " W'+ **'+" TJ * " W S " " W* " '

* * /a a a\/a2 a\ „
KWa.0 + W0,a)tanfi + (—   K—)<t> — ( — + 2^2 + * — W = 0, (4.17b)

\a$ a» as/ \as2 a«/

aF * * d<t> dt
(1 — 2<r) 1" k2Wp1lp — Wpjytly + 2&2 k2 — = 0.

a« a« a«

Here iua* is any particular solution of (4.6).

If we choose w* as in (4.7), we may substitute in (4.17b):

* l l a dv
(TV+wa,f,nani)=—— (1 — 2<r)V—- — (r2) — >

2 4 An dn

1 * * 1 d dV I d dV r
— (nfc.+ w.j)/.**- — (r2)   — — (r2) —> (4.18)
2 8 ds dn 8 an as

dV * * aF 1 a i a ,
(1 — 2<r) \-k2wpnp— w^,(j7«T=2(l — a-) £2F — (f2H («/sF,s).

dn dn 4: dn 2 dn

On the other hand, if we choose w* as in (4.8), we may substitute for these three

quantities, respectively,

/ a a a \ dV dw
aV - d2W/dn2, - ( K —) W, 2(1 — <r) 2k2 (4.19)

\ds dn ds/ dn dn

If we choose w* as in (4.7), we have the following expressions for the displacement

in terms of F,

Mo = ekx°vo, «a = ekx*va,

fao - 2(1 - o)F + §*«F,. + AV. (4-2°)

Va = ~ ixaV + <j>,a ~ faffll'J.

It takes only a moment to verify that these expressions satisfy (4.2a). These formulas

(in a slightly more general form) are the key to Dougall's treatment of the circular

cylinder.2 However, he gives no indication as to how to he obtained them, or whether

they, are a general representation of the exponential type of displacement. I have

shown that they are in fact a general representation. Given »,• and k, then F, <f>, if/

are uniquely determined.

The stress corresponding to (4.20) is

Eij=ekx°Fij, Fat) = — k~lFapi$, Foo = k~2Fa$,ap,

2(1+0r)Fa0= —(l—2<7)8apV—%(xaV,fi+XpV,a) + 2<l>,aS—(eayll',yfi+t()y>l/,ya),

2k(l+<T)Fao = 2(l — a)V,a+i(x^V,fi),a—^k2xaV+2k2<t>,a—k2ea^,g,

2(l+o)F00 = 2(2-ir)F+*«F1«+2AV.

S. The case of the circular section. The circular section has been dealt with so

thoroughly by Dougall2 that there is little more to be said about it. However, it is
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interesting to see how his method of solution connects up with the preceding ap-

proach.

Let the boundary be r = a, and let co be the polar angle. Then the following are

wave functions
(V, <f>, i) = (A, B, C)Jm(kr)eim", (5.1)

where A, B, C are any constants. Each of these functions satisfies on r = a the equa-

tions

df Kf df imf d df imKf

dn a ds a ds dn a2 (5.2)

K = VUD/JM), Z = ha.

They also satisfy for r=a,

— (xgf.s) = (m2 - ?)f/a. (5.3)
an

Substitution in (4.18) and (4.17b) gives

Li 0V a2 + Ln<t> + Liiip = 0,

Loo = 4(1 - 2a) + IK, L01 = -m2 + e + K, L02 = im(K - 1),
(5.4)

Loi = — im/4, Ln = im(K — 1), Lu = w2 — |^2 — K,

Lm = (1 - <y)K + \m2 - U2, Ux = K?, Ln = - «2.

The characteristic equation is

|£,i|=0, (5.5)

which is essentially the determinantal equation of Dougall for the determination of £,

and hence k.

For modes independent of w, we put m= 0. Then (5.5) reduces to

+ 2K)[?(K2 + £2) - 2K2(1 - a)] = 0, (5.6)

and we get the two characteristic equations

MZ) = 0, + y„'2) = 2(1 - <T)Jl\ (5.7)

The first equation has an infinite sequence of real roots; the second has an infinite

sequence of complex roots.

Dougall states (p. 902) that for every m, (5.5) has an infinite number of real roots

and an infinite number of complex roots (but no purely imaginary roots, as pointed

out earlier).

For other work bearing on the circular section, reference may be made to Poch-

hammer,' Thomae,8 Schiff,9 Chree,10 Tedone,11,12,13,14,15 Filon,16 Purser,17,18 Timpe,19

7 L. Pochhammer, Journal f. Math., 81, 33-61 (1876).
' J. Thomae, Berichte Verh. K. Sachs. Ges. d. Wiss. zu Leipzig, Math. Phys. CI., 37, 399-418 (1885).
' Schiff, Journal de Math., 9, 407-424 (1883).
10 C. Chree, Cambridge Philosophical Transactions, 14, 250-369 (1887).

11 O. Tedone, Atti R. Acc. Lincei Rend. CI. sci. fis. mat. nat., 10, 131-137 (1901).
12 O. Tedone, Atti R. Acc. Lincei Rend. CI. sci. fis. mat. nat., 13i, 232-240 (1904).

13 O. Tedone, Atti R. Acc. Lincei Rend. CI. sci. fis. mat. nat., 202, 617-622 (1911).
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Wolf,20 Barton.21 Barton makes use of the general Papcovitch22-Neuber23,24 solution

of (2.3a), viz.,

Ui = ~ — r ~— (xtfj + <t>)< (5.8)
4(1 - a) dXi

where A3^, = 0, A3$ = 0. Any solution of (2.3a) may be so expressed, but it seems that

for present purposes Dougall's expressions (4.20) are more convenient.

6. Conclusion. The method of Dougall can be extended to a pipe, i.e., a section

bounded by two concentric circles. Here are some questions:

1) Are there any other sections which can be solved by simple extensions of the

method used for the circle?

2) Do eigen-values exist under reasonably general assumptions regarding the

smoothness of the boundary curve?

3) Is there always a set of real eigen-values, or is that a peculiarity of the circle?

4) Write k=p-\-iq, and let m be the least value of | p | in the sequence of eigen-

values for a given section. Then m2S, where S is the area of the section, depends

only on the shape of the section. For arbitrary sections, miS forms a positive se-

quence. Is it bounded below, and, if so, what is the lower bound?

This last question is very interesting from a practical point of view, because | p |

represents the rate at which end effects decay as we pass along the cylinder. The

greater \p\, the more rapid the decay. Engineers are worried by end effects, because

the Saint Venant solution gives no information about them. The assignment of such

a lower bound might be more valuable than the description of a complicated process

for the evaluation of eigen-values.

14 O. Tedone, Atti R. Acc. Lincei Rend. CI. sci. fis. mat. nat., 21;, 384-389 (1912).
15 O. Tedone, Encyk. d. math. Wiss., 4() p. 150.

" L. N. G. Filon, Phil. Trans. Roy. Soc. London, A 198, 147-233 (1902).
17 F. Purser, Trans. Roy. Irish Academy, 32 A, 31-60 (1902).

18 F. Purser, Proc. Roy. Irish Academy, 26 A, 54-60 (1906).

19 A. Timpe, Mathematische Annalen, 71, 480-509 (1912).

,0 K. Wolf, K. Akad. d. Wiss. Wien, Math.-naturwiss. Kl., Abt. I la, 125, 1149-1166 (1916).
!t M. V. Barton, J. App. Mechanics, 8, A-97-A-104 (1941).

22 P. F. Papcovitch, Comptes rendus Acad, des Sci. Paris, 195, 513-515 (1932).

" H. Neuber, Zeit. angew. Math. u. Mech., 14, 203-212 (1934).
M H. Neuber, Kerbspannungslehrc, Berlin, 1937.


