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I. INTRODUCTION

Determinantal equations of the form

| ^4oX" + -4i\n-1 + • • • + An \ = 0,

where the coefficients A,• are square matrices of order m, arise in quantum mechanics,

electrical circuit theory, the theory of small vibrations, and in many other branches

of physics and engineering. In the process of solving such equations, it is frequently

desirable to expand them into polynomial form. Since most of the techniques for such

expansion are not discussed in the standard works on numerical computation, it has

seemed advisable to make a critical comparison of the methods available. The most

important methods will be described in sufficient detail to aid the non-professional

computer.

1. Basic techniques of solution of determinantal equations. Three basic techniques

for solution of determinantal equations must be considered: (1) Direct solution of the

equation by numerical methods [l]. (2) Direct solution by the method of matrix

multiplication [2-6] (directly applicable only to the case | A — A| =0). (3) Expansion

into polynomial form [6-14] and solution of the polynomial equation by standard

methods.

In spite of the fact that much effort has been spent in developing techniques to

avoid expansion into polynomial form, that very technique frequently proves to be

most economical of effort. Let us consider the numerical solution of the simplest case:

D{\) = | A - A |

an — X a 12 • • • ai»

d 21 #22 — X

an i an2

02n

- X

= 0. (1)

If we assign a value to X and evaluate D(k) using Chio's expansion [15 ] of the numeri-

cal determinant, we shall make the following number of operations:

* Received March 24, 1944.

** On leave from the University of Redlands, Redlands, California.



278 HAROLD WAYLAND [Vol. II, No. 4

(l/3)(«3 + 2n — 3) M-D (multiplications and divisions),

(w/6)(» + 1)(2» + 1) A-S (additions and subtractions).

The number of additions and subtractions includes the n subtractions required to

evaluate the diagonal terms of (1). If we have D(\) in polynomial form, we can evalu-

ate it by synthetic division with only n multiplications and n additions and subtrac-

tions. We can obtain the polynomial expansion of (1) by Danielewsky's method

(§2c) with n3 — 2« + l multiplications and divisions and n(n — l)2 additions and sub-

tractions; hence to obtain k different values of D(\) by first obtaining the polynomial

expansion, and then evaluating the polynomial, we need

(«3 - 2n + 1) + kn M-D,

n(n — l)2 + hi A-S.

To obtain k values of D(A) from the determinant will require

(k/3)(n3 + 2n - 3) M-D,

(kn/6)(n + 1)(2 n + 1) A-S.

A comparison of these results shows that it will be quicker to obtain the polynomial

expansion first if we need more than three values of D(K).

If we use iterative methods to solve (1), we form the sequence of matrices

AX, A2X, A3X, ■ ■ ■ , (2)

where X'• is an arbitrary column matrix,*

X = {Xx, • • •, xn\.

To form each member of the sequence (2) requires n2 multiplications and divisions

and n(n —1) additions and subtractions; hence for k iterations we need

kn2 M-D,

kn(n — 1) A-S.

If we have the polynomial form, each iteration requires only n multiplications

and divisions and n— 1 additions and subtractions. Adding these to the operations

required to expand (1) into polynomial form by the modified Danielewsky method

(§2c) we need
(ns — 2n + 1) + kn M-D,

n(n — l)s + k(n — 1) A-S.

Hence if k^n+1 the expansion to polynomial form represents a net saving, still

using the powerful iterative method [3, 4, 16, 17, 18].

II. EXPANSION OF A DETERMINANTAL EQUATION INTO POLYNOMIAL FORM

2. Methods applicable to the case | A — 7X| =0. Direct expansion is tedious except

for the very lowest orders, although sometimes it is desirable because all the elements

need not be given numerically. Purely numerical methods, such as the method of un-

determined coefficients or the use of an interpolation formula, will be described further

* In this paper, a row of quantities enclosed in braces will denote a column matrix.
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on, as they are applicable to the most general case. Of the various methods particu-

larly applicable to the present case (Eq. 1), five will be discussed. These will be taken

up in chronological order of discovery.

a) The method of Leverrier [7, 12, 19]. Until recently, Leverrier's method was

probably the best general method for obtaining the polynomial expansion of the char-

acteristic equation of the matrix A. Let the characteristic values of this matrix, i.e.,

the roots of the equation | A — /\| =0, be Xi, X2, • • • , X„. Then from well known rela-

tions between the coefficients of a polynomial equation and its roots [20 ], we have

| A - I\ | = (- l)"Xn + (- l)"-1(Xi + X2 + • • • + XJX"-1

+ (— 1)"~2(XiX2 + X1X3 + • • • + Xn_iX„)X"~2 + • • •

+ (X1X2 • • • X„). (3)

But direct expansion of the determinant gives

| A — /X | = (— l)"Xn + (— l)"-1(all + «22 + • • • + ttn»)X"_1 + * • " ,

whence we have the relation

011 + #22 + • • • + dnn — Xl + X2 + ■ • • + X„. (4)

If we consider the kth. power of the matrix A, the characteristic values of the matrix

Ak will be Xj, Xjj, • • • , Xj [21 ]. From this we obtain

I . k _ | , n . , _. n— 1, k k k. n—1

| A — IfJ, I = (— 1) fl + (— 1) (Xi + X2 + • • • + Xn)/Z + • • •

/ 4\n n I / 4\n~1/ W I I . WK .
— (— 1) M + (— 1) (flll + a22 + • • • + Onn )m" + • • • ,

which yields the relation

<*) <*> . <*> * , . * k
St — &11 + 022 + - + «»n = X! + X2 + • " * + Xn, (5)

where the terms aff are taken from the principal diagonal of A k.

If we write our original equation as

I A - /X I = (- l)-[x» + M»-1 + M"-2 H + pn-iX + A,] = 0.

we have, from (3), (4) and (5),

pi — — (Xi + X2 + • • • + Xn) = — (an + a22 + • • • + a»n) = — Ji,

pi — ~ Sipi — (Xi + X2 + • • • + X„)

= Xi + X2 + • • • + Xn + 2(XiX2 + X1X3 + • • • + X„_iXn) = 52 + 2 pi,

or

pi = — •Jli p2 = — h(Slpl + Si), • - • ,

which are of a set of n simultaneous linear equations for the coefficients pk (& = 1,

2, • ■ • , n).

Leverrier's method can be summarized as follows: We form the powers of thfe

matrix A, i.e., Ak (& = 1, 2, • • • , n), and add the diagonal terms of each matrix to

obtain
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(k) (4) (fc)
Sk = Oil + 022 + " * * + «nn •

We then set up the set of n simultaneous linear equations

pk — ~ + Sipk-2 + • • ■ + Sk-ipi + St) (k = 1, 2, • • • , n), (6)

which can be solved for pk {k = 1,2, • • • , n). We can then write the equation

D(\) = | A - I\ | = (- 1)"(X» +.pi\n~1 + M"~2 + • • • + Pn).

Leverrier's method is rather tedious because of the labor of forming the powers

of the matrix A. Each element of a product matrix will require n multiplications and

n — 1 additions and subtractions, and each matrix will have «2 terms, except that one

need form only the n diagonal terms for the last matrix. The fastest way to solve the

simultaneous equations is to solve them successively, i.e., to use the solution of the

first to solve the second, the solutions of the first two to solve the third, and so on.

This will require §(«2+w —2) multiplications and divisions and \n{n — 1) additions

and subtractions. Consequently, Leverrier's method will require, in the general case,

— 1)(2n3 — 2n2 + n 2) M-D,

5»(w — l)(2w2 — 4w + 3) A-S. ^ ^

Example. Let us consider the matrix

"6-3 4 1

A =
4 2 4 0

4-2 3 1

4 2 3 1.

The sums of the elements of the principal diagonals of A, A2, A3, A4 are found to be

Ji = 12, 52 = 56, 5j = 288, 54 = 1504. Thus Eqs. (6) take the form

Pi = ~ 12,

p2 = - (1/2)(12Pi + 56) = 44,

p, = - (l/3)(12p2 + 56px + 288) = - 48,

Pt = - (l/4)(12/>3 + 56pi + 288px + 1504) = 16,

and we have

7X = X4 - 12X® + 44X2 - 48X + 16.

b) The method of Krylov [7 ]. Even as originally formulated by Krylov, this method

represents a considerable saving of effort over the method of Leverrier when the order

of the determinant is greater than four. As modified by Fraser, Duncan and Collar

[22], the saving is even greater. The modified form of this method is as follows.

The Cayley-Hamilton theorem [23] states that a square matrix satisfies its own

characteristic equation when interpreted as a matrix equation, i.e., if

X" + piX"-1 + M"~2 + • • • + Pn = 0

is the characteristic equation of the matrix A, then

A" + pxA+ piAn~2 +•■■+ p J = 0. (8)
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If we postmultiply (8) by an arbitrary column matrix

C(0) = {cio, C20, • • • , c„oJ,

and define the sequence

C(l) = AC(0) = {en, C21, • • • , c„i},

C(2) = AC{\) = .42C(0) = {c,2, c22, ■ • • , cn2},

we obtain the matrix equation

C(0)pn + C(l)pn~i + • • • + C(n — 2)pt + C(n — l)pi = — C(n).

This is equivalent to the set of n simultaneous linear equations in the n unknowns

Ph p2, ' • ' , Pn,
n— 1

^ ' Cikpn—k — Cin = lj 2, ' ' ' , (9)
i-0

Solving this set of equations for the pi's, we can readily write down the polynomial

equation.

The formation of each of the column matrices C{k) requires n2 multiplications and

n(n — 1) additions and subtractions. The solution of Eqs. (9) by Aitken's method [28]

requires (l/2)«2(« + 3) multiplications and divisions and («/2)(«2 —1) additions and

subtractions. Consequently, we require

(3/2)w2(w +1) M-D,
(10)

{n/2)(n — 1)(3m + 1) A-S.

Krylov's original method can be shown to require

(l/3)(«4 + 4m3 + 2n2 - n - 3) M-D,

(1/6)n(n - l)(2w2 + 7n -1) A-S. (11)

Example. Let us again consider the matrix of the previous example. We have

C(0) = {1, 1, 1, 1}, C(l) = {8, 10, 6, 10}, C(2) = {52, 76, 40, 80},

C(3) = {324, 520, 256, 560}, C(4) = {1968, 3360, 1584, 3664}.

Thus (9) becomes
pi -)- 8p3 + 52pi -f- 324pi + 1968 = 0,

pi -f- 10/>3 -|- 76pi 4" 520^1 -f- 3360 = 0,

pi 6^>3 -|- 40^2 ~l~ 256^1 -f- 1584 = 0,

pt 10^>3 -f- 80p^ -f- 560^1 -(- 3664 = 0,
whence

pi = 16, p3= - 48, p2 = 44, Py = - 12.

The characteristic equation of A is then

16 - 48X + 44X2 - 12X3 + X4 = 0.
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c) The method of Danielewsky [8], The essence of Danielewsky's method is the

transformation of the expression D(\) = \A —/\| to the Frobenius standard form

£(X) =

pl~ X p2 p3

1 -X 0

0 1 -X

0 0 0

pn

0

0

-X

= (-l)n(Xn-/>,Xn_1-Mn~2- • • • -pn).

This gives the polynomial expansion directly.

Danielewsky starts with the (« — l)th element of the wth row (a constant term),

reduces it to unity, and then uses this to eliminate the constant terms from the other

elements of the wth row. This process introduces extraneous terms in X in the in — l)th

row, which can then be removed by multiplying the other rows by appropriate con-

stants and adding to the (« — l)th row. A similar procedure is then followed with the

(« —2)th element of the (« — l)th row, and the reduction is continued until the stand-

ard form is reached.

This process of elimination can readily be carried out by matrix multiplications.

Let us consider a matrix of order 6 which has already had two rows reduced. It is

then of the form

Cu C12 C13 Cu Cl5 C16 "

C21 C22 ^23 C 24 C26 C26

£31 C32 c33 C34 C35 C36

C 41 C42 C43 C44 C 45 C46

0 0 0 1 0 0

Lo 0 0 0 1 0 .

and the determinant has been reduced to the form

£>(X) = | C - /X |.

We now postmultiply the matrix C by the matrix E,

r 1 0 0 0 0 0

0 1 0 0 0 0

— C41/C43 — C42/C43 I/C43 — C44/C43 —Cii/Ciz

C =

E =
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

to obtain
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. t i I r i r
C11 Cl2 C] 3 Cl4 Cl5 Cl6

//////
C21 C22 C23 C24 C25 C26

//////
C31 C32 C33 C34 C36 C36

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0.

After this transformation we have

D(\)E = | C' - £X |.

If this expression is now premultiplied by E~l, we return to a form which is equal^to

our original expression, but one step closer to the standard form,

D{\) = | E~lC' - E~lE\ | = | C" - IX |.

Fortunately, E~l can be written down directly,

1 0 0 0 0 0

0 1 0 0 0 0

C41 C42 C 43 C44 C 46 C46

0 0 0 1 0 0

0 0 0 0 1 0

Lo 0 0 0 0 1 J

This particular premultiplication changes only the third row of C', hence the determi-

nant has been transformed to the form

1 . t t 1 / 1

Cu — \ C12 Cl3 Cl4 Cl5 Cl6

/ ' \ ' ' ' '
C21 C22 - A C23 Cu Cii C26

// n u n n n
C31 C 32 C 33 — A C34 C 36 C36

0 0 1 - X 0 0

0 0 0 1 - X 0

0 0 0 0 1 - X

A continuation of this process will eventually yield the normal form.

If the matrix method is followed strictly, it involves an undue amount of writing.

With only a slight increase in the number of operations, it can be abridged to give

greater ease of calculation with a calculating machine, and to permit checking at every

stage of the computation. A numerical example will best illustrate the method and

the check.

Example. For the matrix of the two previous examples, the scheme of calculations

will run as follows:

D{\) =



284 HAROLD WAYLAND [Vol. II, No. 4

(1) 6-3418
(2) 4 2 4 0 10

(3) 4 —2 3 16
(4) 4 2 3 1 10

(4') (1.3333 0.6667 / 0.3333 3.3333)

(5)
(6)
(7)
(8)

"4

2

3
-1J

0.6667 -5.6667 1.3333 -0.3333 -4 -5.3333
-1.3333 -0.6667 1.3333 -1.3333 -2 -3.3333

0-4 1 0-3-4
0 0 10 1

(9) 0 -36 12 -4 -28
(9') (0 1 -0.3333 0.1111 0.7778)

(10)
(11)

(12)
(13)

0'
-36

12
—4J

0.6667 0.1574 -0.5556 0.2963 0.5648 0.4074
-1.3333 0.01852 1.1111 -1.2593 -1.4630 -1.4815

0 10 0 1
0 0 10 1

(14) 48 11.3333 -44 45.3333 60.6667
(14') (1 0.2361 -0.9167 0.9444 1.2638)

(15)
(16)

(17)
(18)

48
11.3333

-44

45.3333J

0.01389 0 0.05556 -0.3333 -0.2639 -0.2778
1 0 0 0 1
0 10 0 1
0 0 10 1

(19) 12 -44 48 -16 0

Hence
D(\) = - 12X» + 44X2 - 48X + 16.

The explanations of this scheme are as follows. We first postmultiply the matrix

whose elements are given in lines 1, 2, 3 and 4, by the matrix

'1 0 0 0 "

0 10 0

-4/3 -2/3 1/3 -1/3

.0 0 0 1 .

This is accomplished by dividing the elements of row 4 by the element in the third

column, 3, yielding row 4'. The second-order minors of the unit element in the third

column of row 4' are then formed with rows 1, 2, and 3, the unit element always

taking the leading position. This is easily done by writing row 4' on a card, and form-

ing the cross products with the various rows. These minors are entered in rows 5, 6

and 7, under the column corresponding to the elements with which the cross product

is formed. The elements in column 3 are formed by dividing the corresponding ele-

ments of column 3, rows 1, 2 and 3 by the italicized element in row 4. Row 8 is im-

mediately written as shown. Thus, the element —5.6667 in row 5, column 2, comes

from 1( —3) —(0.6667)(4), and the element 1.333 in row 5 column 3 comes from divid-

ing the element 4 in row 1 column 3 by 3.
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We next premultiply the matrix with the elements given in rows 5, 6, 7 and 8, by

the matrix "1 0 0 0"

0 10 0

4 2 3 1

L0 0 0 1J

This is accomplished by writing the elements of row 4 in a column on a card (here

shown written to the left of rows 5, 6, 7 and 8), and forming the sum of the products

of these numbers with the elements of the columns of the rows 5, 6, 7, and 8. This

yields row 9, which is the transformed form of row 7 after the matrix multiplication.

Since the rest of the matrix is unchanged, it is unnecessary to rewrite it.

The whole process is now repeated starting with row 9, dividing each element of

that row by the italicized element ( — 36) to obtain row 9'. This is written on a card

and used to form the cross products with rows 5 and 6, giving the elements in the

first, third and fourth columns of rows 10 and 11. The elements in the second column

are obtained by dividing the corresponding elements of rows 5 and 6 by —36. Rows 12

and 13 can be written down immediately as shown. The process is continued until row

19 is reached. At this stage it is unnecessary to rewrite the entire matrix, since the

desired coefficients appear in only the first row, i.e., row 19. The polynomial can now

be written down as shown.

The columns labelled ^ an<^ ̂ 2' are used for checking the work. The elements

in the column labelled are obtained by summing the elements of the first four col-

umns of that row, while those in 23' come from only three columns, omitting that

column which contains the element used as the pivot for the previous set of cross

multiplications. The cross products formed with the^Z columns should equal the ele-

ments of the J)' column at the next stage of the transformation, e.g., the element

— 3.333 in row 6, column ' comes either from adding the elements ( — 1.3333)

+ ( — 0.6667)+ ( — 1.3333) of row 6, or from the cross product (1)(10) — (4)(3.3333).

Since these give equal results, the computation of row 6 is probably correct. This

check is not applicable to the row just reduced, so there is no point in forming

for that row, or the rows already in standard form. The accuracy of row 9, and similar

rows, is checked by forming the sum of the products of the column (4, 2, 3, 1) and the

elements of column Since this product-sum is equal to the sum of the elements of

row 9, the accuracy of that row is checked. Compensating errors can occur, so the

check is not absolute, but it is a great help in avoiding an accumulation of errors.

We must next consider the exceptional case in which a zero appears for the ele-

ment with which we expect to divide in making the next reduction, i.e., the element

one place to the left of the diagonal. The following two cases arise: (1) There is at

least one element in the row under consideration which does not have a vanishing

constant term. (2) All of the constant terms in the row under consideration vanish.

Case (1) can be decomposed into two subcases, according as the non-vanishing

element is (a) to the left of the diagonal, (b) to the right of the diagonal. In subcase

(a), we add the elements of the column containing the non-vanishing element to the

column in which we wish to introduce a constant term. (This technique can also be

used if the element immediately to the left of the diagonal has a fairly large tabular

error, and another term farther to the left is more certain.) This will not only intro-
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duce the desired constant term, but in some row it will introduce an unwanted term

in X off the diagonal. This can be removed, however, by subtracting the appropriate

row from the row containing the extraneous X. The reduction can then go ahead as

usual. In subcase (b), the determinant is immediately factorable into the product of

two determinants, one of which is already in standard form.

These subcases can best be illustrated by examples. In subcase (a), let us suppose

that after two reductions we reach the form

4 — X 3 -2 5 3

1 2 - X - 1 4 1

2 0 4 - X - 1 6

0 0 1 - X 0

0 0 0 1 - X

If we add column 1 to column 2, we obtain

4 — X 7 — X — 2 5 3

1 3 - X - 1 4 1

2 2 4 - X - 1 6

0 0 1 - X 0

0 0 0 1 - X

This has an extraneous X in row 1, which we can eliminate by subtracting row 2

from row 1, to obtain

3 - X 4 - 1 1 2

1 3 - X - 1 4 1

2 2 4 - X - 1 6

0 0 1 - X 0

0 0 0 1 - X

This is now in a form capable of treatment by the general method. In subcase (b),

we might reach the form

4 — X 3 -2 5 3

1 2 - X - 1 4 1

0 0 4 - X - 1 6

0 0 1 - X 0

0 0 0 1 - X

which can be factored into the product

| 4 - X 3
i 1 2 - X

4 - X - 1 6

1 - X 0

0 1 - X
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The determinant on the right is already in the Frobenius standard form, while that

on the left can be expanded immediately, although in the general case it would have

to be reduced further by the general method.

In case (2), the vanishing of all constant terms in a given row indicates that X is a

factor of D(k). If the rth row from the bottom has vanishing constant terms, it means

that Ar is a factor of D(\). The determinant for the lower degree polynomial which

we have yet to determine can readily be constructed from the elements above the

vanishing row. As an example, let us consider

4 — X 3 -2 5 3

1 2 - X - 1 4 1

0 0 - X 0 0

0 0 1 - X 0

0 0 0 1 - X

This is equal to

4 - X 3

1 2 - X
(- X)3.

In its original form, Danielewsky's method requires

(w2 - 2)(« - 1) M-D,

n(n - l)2 A-S,

and in the modified form given in detail above, it requires

(n - 1)(«2 + n - 1) M-D,

n(n — l)2 A-S.

(12)

(13)

In spite of the extra operations required, the modified form is to be preferred, because

it is better adapted to routine computation with a calculating machine, and because

it can be checked at each stage of the computation.

d) Reierstfl's method. Reiers^l [14] bases his method of obtaining the coefficients

of the determinantal equation

D(\) = \A - A | = (- 1)-(X- - M""1 - Mb"2   pn)

on the fact that the coefficients p* can be calculated as ( —1)*+1 times the sum of all

£-rowed principal minors of the matrix A. The method is powerful for low values of n,

but for large n the labor is considerable.

Reiers^l uses a method for computing the principal minors of A based on the

same pivotal method used by Aitken in various numerical processes dealing with de-

terminants [28]. In the process of evaluating a determinant by Chid's method [15],

simple quotients of various minors are obtained, and the method is easily extended to

give all of the principal minors of the matrix.

This form of calculation is used here since it is uniform with most of the other

methods described in this paper, and requires essentially the same number of opera-

tions as the application of Reiers01's recursion formulae. In fact, it is merely a schema-

tization of his method.
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In the process of evaluating the determinant [ ̂ 4 | by Chio's method [15 ], we use

the identity

A =

Oil 012 013

(221 022 023

031 032 033

0nl 0n2 0n3

' * 01n

• ' 02n

' ' 03n — 0n

/ / /
022 023 ' * - 02n

II /

032 0 33 ' ' ' 03n

0n2 0n3

where ai/ = aii—a,ifli,/an, (i,j = 2, 3, • • • , n). If we define our principal minors (mi-

nors obtained by striking out the same rows as columns) as Br,- ■ -w (r<s< • • • <w),

where r, s, • • • , w are the indices of the rows (and columns) used to form the minor,

then we have

B U = 011041*

Carrying the reduction one stage farther, we obtain

A — 011022

// // //
033 034 • * * 03n

II H II

043 044 - * ' «4n

// n n
0n3 0n4 * * * 0nn

where, as before a('/ = —a[xa[Ja'n. Then

T> ' "

121 — 0110220JI,

and so on through the reduction. This gives all the second order principal minors of

the form Bu, the third order minors of form But, the fourth order minors of the form

.Emu, and so on, including the value of the determinant itself.

For the minors in which the first two subscripts are 1 and 3, we start with the

determinant

/ /
CL33 * * ' CLzn

a ii

I /

#43 * ' * #4n

t t
dnZ ' ' ' &nn

and carry through the pivotal reduction as before. For minors of the form Bi... we

start with
022 023 " " ' 02n

032 033 • * ' a3n

0n2 0n3 ' * "

In this way all of the principal minors can be built up. Since we always start with a

term on the principal diagonal, the algebraic sign presents no problem.

The number of operations required by this method is:
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5-2" - («2 + 4n + 5) M-D,

4-2" - (»2 + 3n + 4) A-S.

Example. Let us again consider the expression

6 - X - 3 4 1

4 2 - X 4 0

4 - 2 3 - X 1

4 2 3 1 - X

D(X) =

The scheme of calculations will run as follows:

an = 6 1 -1/2 2/3 1/6 Bi = 6
4 2 4 0 52 = 2

4 -2 3 1 = 3
4 2 3 1 Bi = 1

<4 = 4 1 1/3 -1/6 5u = 6-4 = 24
0 1/3 1/3 5i3 = 61/3 = 2

4 1/3 1/3 J5i4 = 6-1/3 = 2

a3s = 1/3 1 1 3m = 6-41/3 = 8
-1 1 £124 = 6-4-1 = 24

a«'= 2 1 #1234 = 6-4-(1/3) 2 = 16

On = 6

033 =1/3 11

1/3 1/3

0 5134 = 6(1/3)0 = 0.

This completes all terms with 1 as the first index. Starting with the third order de-

terminant we obtain by striking out the first row and column,

O22 = 2 1 2 0
-2 3 1

2 3 1

&33 = 7 1 1/7 £23 = 2-7 = 14
-1 1 #24 = 2-1=2

K'_ = 8/7 1 5234 = 2-7-8/7 = 16

3 1
*!4= 3 i =0.
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Hence we have

pi = (- 1 Y{Bl + B,+ B,+ Bt) = 12,

pi = (— l)3(^i2 + B\z + B\4 + B23 + B2i + B34) = — 44,

P5 = (— l)4(J?i23 + B\n + 5u4 + S234) — 48,

pt = (- l)6 16 = - 16,

D(\) = X4 - 12X3 + 44X2 - 48X + 16.

e) Samuelson's method. Samuelson [13] has devised one of the fastest methods yet

developed. His method requires a few more operations than Danielewsky's, but the

routine involved is extremely simple.

To get the polynomial expansion of

D{\) = | A - I\ | = (- 1)"(X" - M"_1 - Mn~2 - • • • - P„),

we consider the differential equation

D(d/dt)xi(t) = (- lHsrV/) - P^~X\t) - p2x[n'2\t) Pnx,{t) = 0, (15)

where the superscripts in brackets denote derivatives with respect to t. Equation (15)

can be written as a set of n simultaneous first order differential equations

where

x[ (t) = X) f>ijXj(t) (i = I, 2, • • • , n),
j-i

M =

pi p2 p3

1 0 0

0 1 0

L 0 0 0

* ' Pn— 1 Pn

• • 0 0

• • 0 0

• • 1 0 J

is the "companion matrix" to the polynomial in question.

Actually we need a scheme to go from a system in many variables to a high order

system in one variable. Samuelson accomplishes this in the following manner.

Let us consider the system

Ax{t) = x'(t), (16)

where x{t) is the column matrix

x{t) = {xi(0, x2(t), • • • , *n(0l-

Equation (16) gives us n equations in the 2n variables *1, x^, ■ ■ • , x„, x{, x2', ■ ■ ■ , .

There are insufficient equations to eliminate all of the variables except those carrying

the subscript 1. However we can differentiate (16) (n — 1) times with respect to t,

obtaining the n2 equations
Ax<-n~"{t) = xM(t),

A x("~2)(i) = *<"-»(/),
V1 /)

Ax(t) = x'(t).

We now have n• linear equations in the k2 + « variables (*i, x%, • • • , x„; x{, x2', • • • ,
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x,!; ■ • • ; xi \ • ' * . ^n1)- We can use all but one equation to eliminate the

m2 — 1 variables not involving the subscript 1, and substitute in the remaining equa-

tion to get the desired high order equation in x\ and its derivatives.

Let us consider

A =

0n

021

— &n\

012 ' * ' «1 n

022

0ft2 ' * ' 0«ft —

011

L S

R I

M J

If we transfer the variables with subscript 1 to the right of (17), we can rearrange

and rewrite it in the form

W =

-7 M 0 • • • 0 0

0-7 M • ■ ■ 0 0

0 0 0 • • • -7 M

0 0 0 • • • 0 R

0 0 0 ■ ■ ■ R 0

0 0 R ■ ■ ■ 0 0

0 R 0 ... 0 0

0-5 0 • • • 0

0 0 -5 • • • 0

0 0 0 •• • -5

0 0 0 ■ • * — 0ii

0 0 0 • • • 0

1 —011

1 — 0ii 0 • • • 0

(18)

The elimination of the n2 — 1 unwanted variables from the first «2 —1 equations and

the subsequent substitution in the remaining equation can be performed by pivotal

reduction [28], always using elements of the matrix on the left of (18) until a single

row remains on the right.

Reduction down to the first row containing R can be made in the general form,

yielding
0 0 0 0---0 0 1 -011 -1r R

RM

RM2

0 0 0 0 • ■ • 0 1 -an -RS

0 0 0 0 • • • 1 -an -RS -RMS

LRU!"-1 1 -an -RS -RMS -RMn~2S J

In practice this is the point at which to start the reduction.

To set up the matrix (19) requires

n(n - l)2 M-D-,

n(n — 1 )(n — 2) A-S.

Pivotal reduction of (19) will require

4n2 - 13m + 12 M-D,

4n2 - 13m + 12 A-S,

(19)



292 HAROLD WAYLAND [Vol. II, No. 4

making totals for the method of

n3 + 2»2 - 12m + 12 M-D,
(20)

n3 + w2 - 11 n + 12 A-S.

Samuelson uses a method due to Crout for the reduction of his equations. Crout's

method involves forming exactly the same products and sums as are formed in

Aitken's method used above, although Crout's formulation involves somewhat less

writing than the above method, but also requires keeping in mind somewhat more

complicated formulae. For the average engineer or physicist, ease is fully as important

as speed.

Example. We again consider the matrix

r 6

4

4

L 4

-3 4 in

2 4 0

-2 3 1

2 3 1 J

an

L S

R "I

M J

We find that RM=[-12, 3, S], RM*=[-20, -24, 8], RM3=[24, -128, -16],
i?5= [8], RMS= [ — 16], RM2S= [ — 144]. The matrix to be reduced then becomes

-3 4 1

-12 3 5

-20 -24 8

L 24 -128 -16

The reduction then proceeds as follows:

-3

0 0 0 1 -6

0 0 1-6-8

0 1-6-8 16

1 -6 -8 16 144.

-13

1300

507
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The pivotal element for each succeeding reduction is made equal to unity by dividing

that row by the value of that element. The column marked ^2 is used as a check. For

any stage of the reduction, the cross products are formed using the^Z column as if it

were any other column, and the values entered as usual. These values should equal

the sum of the elements in the row in which they appear. The check is not absolute,

but it is very useful.

3. Methods applicable to the case \A — 5X[ =0. -a) The method of reciprocation.

The equation

| A - B\ | = 0

has the same roots as the equation [24]

| B~'A -A |=0, (21)

where B~l is the reciprocal of B, provided only that B is not singular. The matrix

product B~XA can readily be formed by Aitken's method [28], and the determinant

(21), which contains X's only along the principal diagonal, can then be expanded by

one of the methods of §2.

The formation of the product B~1A requires

(»2/2)(3» - 1) M-D,

(«/2)(» — 1)(3» — 1) A-S.'

Using the modified Danielewsky method to obtain the polynomial form, we shall need

all told

(1/2)(n + 1)(5»2 - 6» + 2) M-D,

(«/2)(« - 1 )(5n - 3) A-S.

Example. Let us consider the determinant

(22)

Z)(X)-

-9+2X -8+3X —7+X -7+2X

15-3X 16-5X 13-2X 15-4X

-8+X -8+2X -7+2X -8+3X

23-3X 24-5X 19-3X 22-6X

We have

A =

B~'A =

-9 -8 -7 -7

15 16 13 15

-8 -8 -7 -8

L 23 24 19 22

-8 0-2 3

5 0 1-2

4 8 4 7

L-6 -8 -5 -7 J

B =

/(X) =

2 3 12

-3 -5 -2 -4

12 2 3

.-3 -5 -3 —6 J
— 8 —X 0-2 3

5 -X 1-2

4 8 4—X 7

-6 -8 -5 —7 —X
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-8 0 -2 3"■2312'

-3 -5 -2 -4

12 2 3

.-3 -5 -3 -6.

5 0 1-2

4 8 4 7

.-6 -8 -5 — 7J

r-9 -8 -7 — 7"

15 16 13 15

-8 -8 -7 -8

L 23 24 19 22.

= A.

Thus

/(X) = X4 + 11X3 + 33X2 + 8X + 8.

The calculation of f?-1 can be carried through conveniently by means of Aitken's

method [28] of obtaining the reciprocal of a matrix. The product B(B~lA) can be

formed as a check.

b) The Danielewsky-Masuyama method. An extension of Danielewsky's method

of transforming a X determinant to the Frobenius standard form has been made by

Masuyama [6] for the case \A — 5X| =0. This method requires

(l/24)n(w - 1)(7»2 + 13« + 66) M-D,
(23)

(l/24)(w - l)(7w3 + 5n2 + 58w - 48) A-S.

For low orders (through the fifth) this represents a small saving in the number of

operations over the method given in §3a, but it is not as well adapted to machine

computation. It is applicable, however, to the case in which the determinant of the

matrix B vanishes, but in this case the method of §4b, using Newton's interpolation

formula, is to be preferred. For these reasons, we shall not consider the method in

more detail here.

4. Methods applicable to the case | ̂ 40X" + ^liX"_1+ • ■ • +An\ =0. -a) Transfor-

mation to the form \A — JX| =0. It is possible to transform an mth order determinant,

the terms of which are polynomials at most of degree n in X, into a determinant of

order mn with terms linear in X, provided that the matrix of the coefficients of X" is

not singular. This can be done in more than one way, but the following seems most

convenient [25].

If the determinant we wish to transform is

D(\) = UoX» + ^iX"-1 + - • • + An-iX + A„ | = 0, (24)

we consider the related set of simultaneous linear differential equations

(AoD" + AiD"-1 + ■ ■ ■ + A„^D + An)x = 0 (D = d/dt), (25)

where x is the column matrix

x - { *i, ,

and

\A0\* 0. (26)

Because of the condition (26) the reciprocal matrix A0_1 exists. Consequently we can

premultiply Eq. (25) by ^o"1, obtaining

(ImD" + Ao'A.D"-1 + • • • + Afr'An^D + A^An)x = 0, (27)

where Im is a square matrix of order m with units on the principal diagonal and zeroes

everywhere else. We can write (27) in the form

ImDx+ A^AxX*-*-" + Ao'1Aix(n~2> + • • • + A^An_lX'» + Af'Anx«» = 0, (28)
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where the superscripts in brackets denote derivatives with respect tot. Equation (28)

represents a set of m simultaneous differential equations. There are n of the column

matrices xw. Thus to make the set equivalent to Eq. (27) we need the m(n — 1)

additional equations of the form

= Dx^» = D2xt-2' = • • • = Drx™ (r = 1, 2, • • ■ , n - 1). (29)

If in Eqs. (28), (29) we now set

(*) (t) -XI ( (*> (A) <*>, _x , .
* = q e = {?i , , • • • , qm \e {k = 0, 1, 2, • ■ • , n — 1),

we get the following set of mn homogeneous simultaneous linear equations in the g's:

(Af'A, - Im\)q<-» + Ao^AtqC-" + • • • + A^An.,q^ + A^Anq^ = 0,

- /«?<"-» - Imq'"-^\ = 0,

- = 0,

- I„qa) - Imq^\ = 0.

The condition of compatability for this set of equations is the vanishing of the com-

pound determinant

A^Ai - In\ Aq~^A2 • • • Ao~*An_i Ao"^An

Im — ImX • ■ * 0 0

o -/,»••• 0 0

0 0 • • • 17U /mX

Since the X's appear only along the principal diagonal, this can be expanded into poly-

nomial form by any of the methods of §2.

This method involves the calculation of the reciprocal of Ao and the formation

of n matrix products of the form A~XB. This can be done by Aitken's method [28],

The special form of the expression makes the expansion to polynomial form by

Danielewsky's method considerably faster than in the general case.

In the quadratic case, which is the most general usually met with in physical prob-

lems, the transformation to diagonal form requires

3m3 M-D,

m(m — 1 )(3m — 1) A-S,

while the reduction to polynomial form requires

2(3m - 1 )(m2 - 1) M-D,

m(6m2 — 9m -f- 5) + 2 A-S.

The total number of operations in the quadratic case will be

9 m3 — 2m2 — 6m + 2 M-D,
(30)

9 m3 — 13w2 + 6m + 2 A-S.

Example. Let us consider the determinant
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X3 + 5Xa + 2X + 3 - X3 + 2X2 - X - 4 4X3 + Xs + 3

- X3 +2 X* + X 5X8 + 4X2 + 3X

5X3 - 4X2 - X + 1 2X3 + 3\2 + X + 2 3X3 - 5X2 + 4X + 4

We have

= 0.

Ao

An =

1
Ao'1 = —

46

1
A o lA 2 — —

46

r 1 -l 4-

-1 0 5 , Ai =

L. 5 2 3 -

r 2 -1 0-

0 1 3 , As —

L—1 1 4-

10 -11 5-|

-28 17 9

L 2 7 lJ
- 15 -16 —13 —i

— 65 54 87

- 3 6 25 J

r 5 2 1

0 1 4

L —4 3 —5 J

r 3 4 3n

2 0 0

L 1 2 4J

Ao'Ax = —
46

1
Af'As = —

46

r 30 24 -59 H

-176 -12 -5

6 14 25 J

13 50 50 "|

-41 -94 -48

L 21 10 10 J

Consequently we can write our determinantal equation in the diagonal form | A — A |,

where A is the square matrix

f 30/46 24/46 -59/46 15/46 -16/46 -13/46 13/46 50/46 50/46'

-176/46 -12/46 -5/46 -65/46 54/46 87/46 -41/46 -94/46 -48/46

6/46 14/46 25/46 3/46 6/46 25/46 21/46 10/46 10/46

-1 00000000

0 -1 0000000

00 -1 000000

000 -1 00000

0000 -1 0000

0 0 0 0 0-1 0 0 OJ

b) Interpolation-formula method. The mth order determinant (24) will, on expan-

sion, give a polynomial of degree, not greater than r — mn in X. Such a polynomial

will contain (r + 1) numerical coefficients of the various powers of X, and if we evaluate

D(X) for (r + 1) numerical values of X, we will have sufficient data to determine the

coefficients. This can be done either by using an interpolation formula or by solving

a set of simultaneous linear equations for the coefficients.

If the successive values chosen for X differ by a constant difference, the Gregory-

Newton interpolation formula is well adapted to obtaining the polynomial expansion.

This requires the formation of a difference table. However, the difference table is
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easy to compute, and in addition it indicates the order of polynomial to expect, which

is particularly useful when the matrix of the coefficients of Xn is singular (|-4o| =0).

The Gregory-Newton interpolation formula is usually written in the form [26]

x(x — 1)
D(X) = D(a) + xAD(a) + v A2D(a) + • • •

x(x - 1) • • ■ (* - f + 1)
+ -1 L 1 L ArD{a)t (31)

r!

where \ = a-\-xh, and the difference functions ArD(a) are formed as follows:

D(a)

AD (a)

D(a + h) A2D(a)

AD(a + h) AlD(a)

D(a + 2 A) A2D(a + h)

AD(a ~\~ 2 Jt)

D(a + 3 A)

D(a + rh)

where AD(a) =D(a-\-li) —D(a), AiD(a) =AD(a+h) —AD(a), and so on. The £th differ-

ences of a £th degree polynomial will be constant, so this gives us immediately the

degree of the polynomial. It will always pay to calculate one or two extra values of

the determinant to check the constancy of the last differences as a check on one's

work.

Equation (31) does not yield the polynomial form directly, since each term is a

polynomial in X. The transformation to descending powers in X can be made once for

all, so that the polynomial form can readily be calculated once a difference table is

worked out [l 1 ]. We wish to put D(X) in the form

r

D(\) = ^2 pt(\ — a)' = po + pi(\ — «) + •••+ /v(X — ay. (32)
1-0

This can be done by using the relation

' A sD(a)at{s) ' >
Pt = (1 /*0 Z  = (1/A9 E ii(s)A'D(a) (t = 1, 2, • • • , »), )

.=< si V (33)

po = D(a), )

where the terms at(s) are defined by the equation
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s[ „ r' v, = Zi*(s)rk.
sl(r — s)! t_i

For the purpose of calculation it is easier to use the recursion relation

aic(s + 1) = a*-i(s) — sah(s).

Table I gives numerical values of the function

bt(s) = ak(s)/s\

which, when used with the tabular differences and Eq. (33) will give the polynomial

equation very quickly in the form (32). If a has not been chosen equal to zero, the

equation can readily be rearranged in descending powers of X, instead of X —a, by

synthetic division.

Table I. h(s) = ak(.s)/s\

1

2

3
4

5
6
7
8

9
10

1.00000 00000
-.50000 00000+.50000 00000

+ .33333 33333 - .50000 00000

.25000 00000!+.45833 33333

+.20000 00000 -.41666 66667

+ .38055 55556-.16666 66667

+ .14285 71429
-.12500 00000

+ .11111 11111
-.10000 00000

-.35000 00000

+ .32410 71429
-.30198 41270

+ .28289 68245

+ .16666 66667
-.25000 00000

+ .29166 66667
-.31250 00000

+ .32222 22222
-.32569 44444

+.32551 80776
-.32316 46825

+.04166 66667
-.08333 33333

+.11805 55556
-.14583 33333

+ .16788 19444
-.18541 66667

+ .19942 68078

+ .008333 33333
-.020833 33333

+.034722 22222
-.048611 11111

+.061863 42593
-.074218 75000

k = 10

1

2
3
4

5

6
7
8
9

10

+ .0013888 88889
-.0041666 66667

+ .0079861 11111
-.0125000 00000

+.0174363 42593

+.0001984 12698
-.0006944 44444

+ .0015046 29630
-.0026041 66667

+ .00002480 158730
-.00009920 634921

+.00023974 867725
+ .00000275 573192
-.00001240 079365+ .00000027 55731922

If the successive values chosen for X do not differ by a constant quantity, the

Newton interpolation formula cannot be used. The Lagrange interpolation formula

[27] is available, but the method of undetermined coefficients will usually prove more

satisfactory.

Both the interpolation formula method and the method of undetermined coeffi-

cients require, first of all, the evaluation of r + 1 numerical determinants of the wth

order. This will require

(r + l)(l/3)(w — \)(m- + m + 3) M-D,

(r + l)(l/6 )m(tn — 1)(2 m — 1) A-S.
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Each numerical determinant will require the evaluation of m2 polynomials of de-

gree n, each evaluation requiring n multiplications and n additions and subtractions,

if we use the method of synthetic division. If we assume that 0 is chosen as one value

of X, so that we need evaluate the elements of only r determinants, the total number

of operations to obtain the r + 1 values of D(k) will be

mr- + (r + l)(l/3)(m — 1 )(m2 + m + 3) M-D,
(34)

mr2 + (r + \)(l/6)m(m — 1)(2 m — 1) A-S.

The interpolation formula method will require an additional (£r) (r + 1) subtrac-

tions to form the difference table, and (^rXr + l) multiplications and (?r)(r — 1) addi-

tions and subtractions to form the coefficients, if the difference between successive

assumed values of X is 1. If not, we shall need an additional r divisions by powers

of h, and r — 1 multiplications to form the powers of h. For the case h = 1, the total

for the interpolation method (including the evaluation of the numerical determi-

nants) is

\{^2m + l)r2 + (r/6)(2w3 + 4m — 3) + (1 /3)(tn3 + 2m — 3) M-D,

(m + 1 )r2 + (r + l)(m/6)(m — 1)(2 m — 1) A-S.

Example. Let us consider the determinant

4 - 3X + X2 + X3 2 - X + 3X2 - 2X3

- 2 + X - X2 + 4X3 4 + 2X — 2X2 — 8X3

(35)

D(\) =

A0 A3 A4 A6 A«

D{ 0)

D( 1)

D( 2)

D(3)

D( 4)

D( 5)

D( 6)

D{ 7)

20

-16

-528

-4144

-18460

-58920

-151696

-336568

-36

-512

-3616

-14316

-40460

-92776

-184872

-476

-3104

-10700

-26144

-52316

-92096

-2628

-7596

-15444

-26172

-39780

-4968

-7848

-10728

-13608

-2880

-2880

-2880

0

0

The accompanying difference table shows that the polynomial will be of the fifth

degree instead of the sixth. An investigation of the determinant of the coefficients of

X3 shows that it vanishes; hence we should expect the polynomial to be of degree

less than six.
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Since we have taken a = 0 and h = l, Eqs. (32) and (33) will simplify to

D(\) = po + M + />2X2 + p3\3 + piK* + p6\*,

5

Pt = lA'fl(0)i,(s).

If we now write the differences in a column, such that they are spaced the same as

the elements of Table I, we can readily calculate the coefficients pt. Placing this col-

umn beside the first column of the table, so that A£>(0) is opposite 6i(l), and A5Z?(0)

is opposite &i(5), we multiply across and add. This gives pi. (If we were dealing with

a general case in which 1, we should have to divide by h.) Moving to the next

column, keeping the same relative vertical position, the operation is repeated to get p2.

(In the general case we would divide by h2.) Blanks in the table are treated as zeros.

The calculation runs as follows (the individual products would not normally be writ-

ten down, but merely accumulated in the calculating machine):

j h(s) A'D(0) [&i(s)A*£>(0)] bt(s) A'D(O) [b2(s)A'D(0)]
1 1.00000 -36 -36 -36 0
2 -0.50000 -476 238 0.50000 -476 -238
3 0.33333 -2628 -876 -0.50000 -2628 1314
4 -0.25000 -4968 1242 0.45833 -4968 -2277

5 0.20000 -2880 -576 -0.41667 -2880 1200

pi = — 8 p2 — 1

Similarly pz—— 36, pi = 33, pt= — 24, and p0 = D(0) =20. Hence Z)(X) =20 —8X—X2
— 36X3 + 33X4 — 24XS.

c) Method of undetermined coefficients. We assume an expansion of the form

£>(X) = po + M + pik2 + • • • + />rXr.

If we assign r+1 values to X, we will obtain r+1 simultaneous linear equations for

the determination of the p's: (If we useX = 0 as one value, Z>(0) =p0, so we need solve

only r equations.)

po + ^iX,- + piki + • • • + pr^i = D(\i) (i = 1, 2, • • • , r + 1).

This set of equations can then be solved by Aitken's method [28].

In addition to the number of operations (34) for the evaluation of the numerical

determinants, the method of undetermined coefficients will require

ir2(r + 3) M-D,

Mr2 - 1) A-S,

to solve the simultaneous linear equations. This makes a total for this method of

^r2(r + 3) + mr2 + (r + l)(l)(w3 + 2m — 3) M-D,

, . (36)

if(r2 - 1) + w2 + (r + 1) (—) {m - 1)(2» - 1) A-S.

It is apparent that the interpolation formula method requires fewer operations
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than the method of undetermined coefficients, but if irregularly spaced values of the

determinants are already at hand, it is better to finish the expansion by the solution

of the simultaneous equations than to have to evaluate several new numerical deter-

minants.

In the special case in which the interval between successive values of X is unity,

the set of simultaneous equations can be written in the form

AP =

10 0

1 1 1

1 2 4

1 3 9

P o"

pi

P*

P*

L_ Pr.J

■D(oy

D(D

D(2)

D{3)

Lz>(r)J

Since the matrix A is independent of the numerical values of D(k), we can calculate

the reciprocal matrix A~l once for all, and then the solution of such a set of equations

reduces to the formation of the matrix product

{po.pi, • •• ,pr) = A-1\D(0),D{\), ■ • • ,D(r)}.

The matrix multiplicaton on the right will require

r(r + 1) M-D,

r1 A-S.

(The first row of A~1 will be [l 0 0 • • • 0], since pt=D(0).) Comparing these figures

with the number of operations required for the interpolation formula method, it is

seen that the latter method will require the same number of additions and subtrac-

tions, but (irXf+l) fewer multiplications and divisions. Consequently it has not

seemed worth while to tabulate the matrices A~l in this paper, especially when we

take into consideration the other advantages of the interpolation method, such as the

information obtainable from the difference table.

Example. Let us consider the determinant

4 - 3X + X2 + Xs 2 - X + 3X! - 2X»

2 + X — X* + 4X3 4 + 2X — 2X2 - 8XJ
D(\) =

We have

D( 0) = 20 = p0,

D( 1) = — 16 = po + pi + pi -f~ pi + pi + pi p%,

D(2) = — 528 = po + 2pi + 4/>2 + Spa + 16^>4 + 32p$ + 64pt,

D(3) = - 4144 = po + 3p, + 9p, + 21p3 + 81 p< + 243p5 + 729ps,

D{4) = — 18460 = po -f- 4^i -|- 16^2 4" 64^3 -)- 256^4 -f- 1024/>5 -f- 4096^e,

D(5) = - 58920 = po + 5^ + 25p2 + 125p3 + 625pt + 3125p6 + 15625/>6,

D(6) = - 151696 = po + 6p! + 36 p2 + 216 p3 + 1296pt + 7776pt + 46656p6.

The solution of this set of equations will give the same results as were obtained by
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use of the interpolation formula, but will require somewhat more labor, pt vanishes,

as can easily be seen by substituting the column of constants for the pe column in the

determinant of the coefficients, yielding a vanishing determinant and indicating that

the polynomial is of fifth degree.

5. A comparison of methods for obtaining the polynomial expansion, -a) Methods

applicable to the case | A —1\ | = 0. In choosing the best method for the expansion of a X

determinant into polynomial form, it is necessary to consider direct expansion for

the lower orders. The number of operations required to reach the polynomial form by

successive expansion in terms of minors of a row or column is given'by the recursion

relations

M(n) = nM(n — 1) + »(« — 1), M(2) = 2,
(37)

A(n) = nA{n — 1) + 2 (» — 1), .4(2) = 2,

where M{n) represents the number of multiplications required to expand an nth order

determinant of the form | A — 7X|, and A («) the number of additions and subtractions

for such an expansion.

We must also consider the application to this case of the interpolation formula

method (§4b) and the method of undetermined coefficients (§4c). Since the unknown

appears only on the principal diagonal with unit coefficients, the evaluation of the

elements of a determinant of wth order will require only n subtractions. Consequently

the evaluation of the » +1 numerical determinants necessary for either of these meth-

ods will require (assuming X = 0 as one value used)

(1/3)(»2 - 1)(»J + n + 3) M-D,

(l/6)«(«s - 1)(2n - 1) + »* A-S.

Table II

Eq. Method Mult, and Div. Add. and Sub.

37
Direct

Expansion

M{n) =nM(n — l)+»(n — 1)

M(2)=2
A(n)=nA(n-l)+2(.n-l)

A( 2)-2

38 Interpolation Formula (l/6)(2»<+2»'+7ns+n-6) (n/6)(2»'-»»+10»+l)

39 Undetermined Coefficients (l/6)(2»4+5n' + 13«'-2n-6) {n/Wn'+tfi+in-1)

Leverrier (l/2)(»-l)(2»3-2nJ+»+2) («/2)(»-l)(2«8-4n+3)

11 Krylov (l/3)(«4+4»'+2n'-»-3) (n/6)(»-l)(2»»+7n-l)

10 Modified Krylov (3/2)*'(»+l) (»/2)(n-l)(3n + l)

12 Danielewsky (»* —2)(» —1) »(»-!)»

13 Modified Danielewsky (n-l)(n'+n-l) *(n-l)»

14 Reiersjil (5) (2") — (»' +4n +5) (4)(2»)-(n'+3»+4)

20 Samuelson „i+2«s —12»+12 n3+ns —lln+12
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For the case in which h — 1, the additional operations required to form the difference

table and the coefficients by the interpolation formula method run the total to

(1/6) (2 n* + 2n3 + 7w2 + n — 6) M-D,
(38)

(«/6)(2»3 — n1 -+- 10w + 1) A-S.

The totals for the method of undetermined coefficients are

(1/6)(2m4 + 5n3 + 13»2 — 2» — 6) M-D,

(w/3)(w3 + n2 + 2n - 1) A-S.

For ease of comparison, the expressions for the number of operations required for

each of the methods discussed are placed together in Table II. The relative efficiencies

of the methods can be seen better from Table III, which gives the actual number of

operations required by each method for several orders of determinants.

Table III

Order

Method

Direct

Expansion

Interp.

Formula

Undet. Coeffi.

Leverrier

Krylov

Modified
Krylov

Danielewsky

Modified
Danielewsky

Reiers01

Samuelson

M-D A-S

12

19

17

18

11

10

M-D A-S

12

46

67

41

67

54

14

22

14

21

10

38

41

27

38

30

12

12

10

15

M-D A-S

60

125

171

153

179

120

42

57

43

62

46

102

116

114

118

78

36

36

32

48

M-D A-S

320

279

364

414

389

225

92

238

230

265

330

280

160

80

116 80

110

127

84

107

M-D A-S

13692

972

1189

1791

1287

588

282

330

558

369

10078

826

945

1533

1022

462

252

252

438

327

M-D A-S

986400

2525

2966

5228

3209

1215

632

712

2438

795

725758

2202

2481

4644

2688

1008

576

576

1936

723

Direct expansion proves to be as fast as any method for the second and third

order cases. Even in the fourth order case none of the methods gives a sufficient

saving over direct expansion to warrant learning a new technique if only a few equa-

tions are to be solved. Danielewsky's method requires the fewest operations from the

fifth order up, but it is really harder to use than any of the last three methods, which

are about equal in the fifth order case. Above the fifth order, the two most efficient

methods are Samuelson's and the Modified Danielewsky. The one to be used will de-

pend a great deal on the habits of the computer.
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If we have already started solving the secular equation by the matrix iteration

method, we will have computed all or part of the sequence C(k) of Krylov's method,

and it will usually be quicker to complete the polynomial expansion by that method.

If we have already evaluated Z)(X) for several values of X, as we might do in hunt-

ing for a root by the method of false position, it would be preferable to finish by the

interpolation formula method or the method of undetermined coefficients, depending

on whether the successive values of X are uniformly spaced or not.

If a machine were available on which matrices could be multiplied with ease,

Leverrier's method would be useful, since the set of simultaneous equations for the

coefficients is so simple.

b) Methods applicable to the case | A — 2?X| = 0. The number of operations required

for direct expansion of the determinant | A —5X| is given by the recursion relations

M(n) = nM(n — 1) + 2»2 M{\) = 0,

(40)
A(n) = nA(n — 1) -f- (m — 1)(2 n + 1) ^4(1) = 0.

The various methods applicable to this case are compared in Tables IV and V.

Table IV

Eq. Method Mult, and Div. Add. and Sub.

40 Direct Expansion M{n) =nM(n — l)-f-2«2 A(n) =nA(n — l) + (n — l)(2n + l)

35 Interpolation Formula (1 /6) (2«4+8«3+7»J+» - 6) (n/6) (n +1) (2»2+3» +1)

36 Undetermined Coefficients (l/6)(2n< + lln3 + 13n2 —2»—6) (ra/3) (n3 +4 n2—n — 1)

22 Reciprocation (l/2)(n + l)(5n'-6n+2) («/2)(m —1)(5«—3)

23 Danielewsky-Masuyama (l/24)«(» —l)(7n!+13»+66) (1/24) (» -1) {In* +5«2 +58ra -48)

Table V

Order

Method

Direct

Expansion

Interp.

Formula

Undet.

Coeff.

Reciprocation

Danielewsky-

Masuyama

M-D

20

27

IS

10

A-S

IS

14

M-D

42

73

94

58

42

A-S

29

56

59

36

30

M-D

200

189

235

145

115

A-S

143

150

164

102

89

M-D

1050

404

489

291

255

A-S

759

330

365

220

207

M-D

44702

1315

1532

820

875

A-S

32423

1120

1239

672

751

M-D

3219858

3254

3695

1765

2250

A -S

2335679

2850

3129

1512

1994
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Again direct expansion is to be preferred for second and third order cases. The

Danielewsky-Masuyama method requires the fewest operations in the fourth and

fifth orders, but because of the large amount of writing necessary with this method,

the author prefers the method of reciprocation for all cases from the fourth order up.

In case the determinant | J51 vanishes, the interpolation formula method is to be

preferred except in the case in which one has already obtained several values of

| A — 5X| for unequally spaced values of X, in which case the method of undetermined

coefficients is preferable.

c) Methods applicable to the case |.4+.BX+CX2|. If m is the order of the determi-

nant, direct expansion will require the number of operations given by the recursion

relations
M{m) = mM(m — 1) + 3m(2m — 1), M( 1) - 0,

A(m) = mA(m — 1) + (m — 1)(6 m + 1), A{\) = 0.

The various methods applicable to this case are compared in Tables VI and VII.

Table VI

Eq. Method Mult, and Div. Add. and Sub.

41 Direct

Expansion

M(m) — mM(m — 1) -f-3m(2m — 1)

M{ 1)=0
A (m) —mA— l)(6m-f-l)
^(1)=0

30 Transformation 9m3 —2m2 — 6m+2 9m' — 13m2+6m+2

35 Interpolation

Formula (1/3) (2m4-f 13m3-f 10m2 —m— 3) (m/6) (4m3+20m2 4:23m +1)

36 Undetermined

Coefficients (l/3)(2m4+25m3+22m2—4m—3) (m/6) (4m3-)-44m2—m — 5)

Table VII

Order

Method

Direct

Expansion

Trans.

Interp.

Formula

Undet.

Coeff.

M-D

18

54

57

103

A-S

13

34

53

67

M-D

99

209

199

340

A-S

77

146

179

248

M-D

480

522

499

815

A-S

383

394

446

634

M-D

2535

1047

1039

1634

A-S

2039

832

930

1325

M-D

15408

1834

1917

2919

A-S

12419

1514

1723

2437

M-D

108129

2949

3247

4808

A-S

87191

2494

2933

4102

In this case, direct expansion requires the smallest number of operations through

the fourth order, the interpolation method the smallest number for the fifth order,

and the method of transformation to the diagonal form the smallest number for all

higher orders. The interpolation formula method is convenient, however, even when
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it requires some extra operations, as it makes possible a preliminary plot of the func-

tion. The interpolation formula method is the best method above the fourth order

when the determinant | C\ vanishes, as the difference table gives the order of poly-

nomial to be expected.

The method of undetermined coefficients is useful primarily when several values

of the determinant have already been calculated for unevenly spaced values of A.

6. Errors. Errors of considerable magnitude can readily occur in the various proc-

esses described in this paper, due both to errors in the original data and errors caused

by rounding off numbers. The study of errors arising in the evaluation of determi-

nants, solution of simultaneous linear equations, iterative methods, etc., is far from

complete. A discussion of these errors is beyond the scope of this paper, but the inter-

ested computer should consult references [29-34].
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