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. A 2 e-«^< Jo(a,a)J0(«tb)
G„(a, b, r\ t) = F*(a, b, r ; n) — tt 2_ on

n ' M2 JIM - Jl(a,b)

■ {Ma<r) YoM - J0(aia) Fo(a.-r) } - (20)

The complete solution of the system A is given by (17) in conjunction with (20).

In the particular case where <p(z, t) is a function of z only, (16) becomes

2 /. oo oo

T(r, z; t) = — I I G„(a, b, r; t)<p(ct) sin /iz sin fiadfida,
TT J 0 *^0

which is in agreement with Tranter's solution.

In a similar manner it is possible to treat the more complicated case where the

boundary condition (4) is replaced by

-—b T(r, z; t) = 0 for r — b

The formal solution corresponding to this boundary condition is in fact given once

more by (17), with the function GM(a, b, r; t) satisfying the integral equation

rx Y(p)
p\ e~p'G„(a, b, r \ t)dt = (21)

Jo Z{p)
where

Y(p) = h(\r)K0(\a) - I0(U)K0(\r),

Z{p) = a\{Ko(\a)U (Kb) - 70(Xa)^0' (Xi)

+ p{l0(\b)K0(\a) - h(\a)Ko(U)}.

The inversion of (21) proceeds in accordance with formula (19).

EFFECT OF A SMALL HOLE ON THE STRESSES
IN A UNIFORMLY LOADED PLATE*

By VLADIMIR MORKOVIN (Bell Aircraft Corporation)

In a paper of the same title Martin Greenspan recently1 determined the stress

distribution in a large, uniformly loaded plate weakened by a small hole of an ap-

proximately ovaloid shape. Greenspan employed a rather laborious method of piecing

together particular solutions of the biharmonic equation for the stress function until

all the boundary conditions could be satisfied. This process would become prohibitive

in case of more complicated boundary conditions. It is the purpose of this note to

apply to the same problem the elegant and more general, yet not well known, method

for solving plane problems of elasticity which is most often associated with the name

of N. I. Mushelisvili.2

* Received July 5, 1944.

1 This Quarterly, 2, 60-71 (1944).

2 See for instance N. I. Mushelisvili, Math. Annalen, 107, 282-312 (1932). For detailed English ex-

position see I. S. Sokolnikoff's Mathematical theory of elasticity, (mimeographed lecture notes, Brown

University, 1941), pp. 243-318.
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This method rests on the representation3 of the general biharmonic stress function

U in terms of two analytic functions of the complex variable z = x+iy, <p{z) and ^(z),

U = Re |z¥>(z) + J* ^(z)^zj-. (1)

As a consequence of (1), any quantity characterizing the state of stress can be ex-

pressed in terms of <p(z) and ^(z). Thus:

+ Ox = 2\<p'{z) + <p'(z)] = 4Re{v>'(z)}, (2)

<rv — <rx + 2 iTzy = 2[zv>"(z) + ^'(z)], (3)

where the stresses bear the usual designation. Consider an arc PQ of some curve in

the plan£ of the plate, e.g., the boundary curve, and let Xnds and Y„ds be the x- and

y-components of the force acting on the element ds of this arc (from a direction lagging

behind the positive tangent by some positive angle e^l80°). Then the quantity

I« - o
{Xn + iYn)ds = — i[<p(z) + z<p'(z) + i(z)} (4)

r

represents the resultant force on the arc PQ. When forces are prescribed on a bound-

ary curve, equation (4) expresses the boundary condition in terms of the functions

<p(z) and ^(z).

In the case at hand, the equation of the boundary T is

x = p cos /S + r cos 3/3, y = q sin /3 — r sin 3/3, (5)

and the forces applied to it simply vanish so that the left-hand side of (4) becomes

zero.

It is more convenient to deal with the boundary conditions after mapping the re-

gion exterior to the ovaloid T in the z plane conformally into the region exterior to a

circle y of unit radius in the f plane by means of the mapping function

z = co(f) = jf + 1/^ + r/f3, (6)

where s = (p-\-q)/2 and t = (p — q)/2. The values of f on y shall be denoted by a. It

is noted that y corresponds to T and that a— \/<r. Greenspan's curvilinear coordinate

lines are obtained by setting | f | and arg f equal to constants. For the sake of simplic-

ity, the notation ^(z) = ^[co(f)]=^>(f); V'(z) [w(0 ] =^(f), will be used. Then,

*'(*) = v'(f)/«'(f), V(z) = (7)

and the boundary condition (4) reads

5ct4 -J- tcx2 -f- r
f>(<r) + —     —-V(1/(t) + $(\/o) = 0. (8)

o-3($ — t(T — ire4)

Two further results from the general theory of the method are needed before the

functions tp(?) and \p(^) can be determined from (8). First, it is known that when there

is no unbalanced force acting on the hole and when the stresses at infinity are uniform,

say crx = Sx, ay = Sy, rxy=Txv, the functions #>(f) and ^(f) take the form

3 Derivations of formulae (1)—(4) and a formula leading to (9) are given by I. S. Sokolnikoff, loc. cit.
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v(f) = sflf + Z — - *(f) =s(B'+ iT xy) + £ — , (9)
if" i f"

where 4B = Sy-\-Sx and 2B' = Sv — Sx. Secondly, one may easily derive the following

theorems:

(I) /f/(f) is an analytic function -within y, except perhaps at £ = 0, where it has a pole

with a principal part ofYLnxAk/$k, then

1 r f(<r)dcr " At . ,
-I  -=-Z—' for I rl > 1.
7T1J 7 a — f ! f*2iri

(II) ///(f) is aw analytic function outside of y, except perhaps at f = =o where it has a

pole with a principal part of y.Mitf*. /Aew

1 /* f{o)do " . .
- = - /(f) + £ ^*f*. for | f | > 1.

2irl J y tr — f o

The actual process of solving the problem consists of multiplying equation (8) and its

conjugate by da/2iri(a — f) and integrating around y with the aid of theorems I and

II. The first integration yields the equation

di r Br Bt / r\ s
- v(f) + jBf +   1 + —) (B' — tTIW) = 0 (10a)

f s f3 r \ «/ r

which determines <p(f) except for dj. The coefficient ai is found by multiplying (8)

by crdcr/2iri(cr — f) and repeating the integration around y. One is led to the follow-

ing equations:
- Mf) + sB^ + fll - 3r/f2 = 0, (10b)

r + s 5V iTxys2
ai = Bt - H 1 , (11)

r — s r — s r + s

<p(f) = jJJf + flx/f - 3r/f3. (12)

The integration of the conjugate of equation (8) furnishes the form of the remaining

unknown function:

/ s \ (sBiT4 — flif2 + 3rB\ sB

+ s(B' + tT„)f - ai y f + 5rf® + B^l + yV (13)

Whenever, in plane problems of elasticity, the mapping function w(f) is rational,

the solution can be carried out in a manner similar to that above.

It remains to verify Greenspan's results. According to equations (2), (7), and (12),

one has

FsB{* - ar- + SrB sBf* - aj2 + 3rB~1
'x + Oy = 2 1 1 _  ,

L jf« - t{* - 3r if« - *f2 - 3r J
(14)

which readily reduces to equation (26) of Greenspan when f is on y. The equality

of stresses at the hole and at infinity identifies the two solutions completely.


